CFRP damage imaging based on MVDR weighted sparse reconstruction
-
摘要: 碳纤维增强复合材料(CFRP)因性能优异而广泛用于航天等领域,其在服役中会出现损伤。利用稀疏重建(SR)算法可对CFRP损伤进行成像,定位损伤位置,但因原子失配问题会造成伪影,甚至误判损伤。针对上述问题,提出一种最小方差无失真响应(MVDR)加权的稀疏重建成像法。将CFRP监测区域划分为若干网格点,基于Lamb波散射模型构造字典,与散射信号和稀疏解变量组成SR模型;其次用MVDR成像法进行成像,基于成像结果构建MVDR权重因子,以此对稀疏解变量进行加权;最后采用基追踪去噪算法求解加权SR模型,得到最优稀疏解并转换为像素值,实现CFRP的损伤成像。CFRP损伤成像实验结果表明:所提方法在相同正则化参数下成像效果均优于SR成像法,而在3种不同正则化参数下的定位误差相比SR成像法分别降低了72.9 mm、77.4 mm与14.7 mm;在4种不同损伤位置下,MVDR-SR成像法成像结果具有更少的伪影,损伤定位误差最大为7.9 mm,相比MVDR和SR成像法具有更好的成像性能,验证了所提方法的正确性和有效性。Abstract: Carbon fiber reinforced polymer (CFRP) is widely used in aerospace and other fields due to its excellent performance, and it will be damaged in service. Sparse reconstruction (SR) algorithm can be used to image the CFRP damage and locate the damage, but the atomic mismatch problem will cause artifacts and even misjudge the damage. Aiming at the above problems, it was proposed that a sparse reconstruction imaging method weighted by minimum variance distortionless response (MVDR). The CFRP monitoring area was divided into several grids, the dictionary was constructed based on the scattering model of Lamb wave to form the SR model with the scattering signal and the sparse solution variables. Secondly, the MVDR imaging method was used for imaging. Based on the imaging results, the MVDR weighting factor was constructed to weight the sparse solution variables. Finally, the basis pursuit denoising algorithm was adopted to solve the weighted SR model, the optimal sparse solution was obtained and converted into pixel value to realize the damage imaging of CFRP. The experimental results of CFRP damage imaging show that the imaging effect of the proposed method is better than that of the SR imaging method under the same regularization parameters, the localization errors are reduced by 72.9 mm, 77.4 mm and 14.7 mm respectively compared with the SR imaging method under three different regularization parameters. Under four different damage locations, the imaging results of MVDR-SR imaging method have fewer artifacts and the maximum damage localization error is 7.9 mm. Compared with MVDR and SR imaging methods, MVDR-SR imaging method has better imaging performance, which verifies the correctness and effectiveness of the proposed method.
-
Key words:
- CFRP /
- sparse reconstruction /
- MVDR weighting factor /
- Lamb wave /
- damage imaging
-
表 1 T700 M21型CFRP参数
Table 1. Material parameters of T700 M21 CFRP
Parameter Value Parameter Value ${E_{{11}}}$/GPa 125.5±2.4 $ {v_{{12}}} $ 0.37±0.08 ${E_{{22}}}$/GPa 8.7±0.1 ${v_{{23}}}$ 0.45±0.02 ${G_{{12}}}$/GPa 4.135 $\rho $/(kg·m−3) 1571 ±2Notes: E11, E22—Elasticity modulus; G12—Shear modulus; v12, v23—Poisson's ratio; ρ—Density. 表 2 传感器坐标
Table 2. Sensor coordinate
Sensor Coordinate/mm Sensor Coordinate/mm T1 (450, 470) T7 (450, 30) T2 (370, 470) T8 (370, 30) T3 (290, 470) T9 (290, 30) T4 (210, 470) T10 (210, 30) T5 (130, 470) T11 (130, 30) T6 (50, 470) T12 (50, 30) Notes: T represents sensor; The subscript represents the sequence number. 表 3 损伤坐标
Table 3. Damage coordinate
Damage Coordinate/mm Damage Coordinate/mm D1 (65, 415) D2 (265, 412) D3 (320, 260) D4 (250, 75) Notes: D represents damage; The following number represents the serial number. 表 4 D4处不同正则化参数σ2下的SR与MVDR-SR成像法定位结果
Table 4. Location results of SR and MVDR-SR imaging methods under different regularization parameters σ2 at D4
${\sigma ^2}$ SR MVDR-SR Imaging
center/mmLocation error/mm Imaging
center/mmLocation error/mm $ 0.55\left\| {\boldsymbol{y}} \right\|_2^2 $ (187.5, 7.5) 91.9 (257.5, 92.5) 19.0 $ 0.75\left\| {\boldsymbol{y}} \right\|_2^2 $ (187.5, 7.5) 91.9 (257.5, 87.5) 14.5 $ 0.95\left\| {\boldsymbol{y}} \right\|_2^2 $ (247.5, 97.5) 22.6 (247.5, 82.5) 7.9 表 5 3种成像法在不同损伤位置成像定位结果
Table 5. Imaging positioning results of the three imaging methods at different damage localizations
Damage MVDR SR MVDR-SR Imaging
center/mmLocation error/mm Imaging
center/mmLocation error/mm Imaging
center/mmLocation error/mm D1 (82.5, 412.5) 17.6 (2.5, 387.5) 68.2 (62.5, 412.5) 3.5 D2 (267.5, 432.5) 20.7 (262.5, 402.5) 9.8 (257.5, 412.5) 7.5 D3 (307.5, 257.5) 12.7 (492.5, 257.5) 172.5 (312.5, 257.5) 7.9 D4 (247.5, 67.5) 7.9 (247.5, 97.5) 22.6 (247.5, 82.5) 7.9 -
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001 [2] KUPSKI J, FREITAS S T D. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures[J]. Composite Structures, 2021, 268: 113923. [3] 陈健, 袁慎芳. 加筋复合材料结构分层损伤的贝叶斯诊断及预测[J]. 复合材料学报, 2021, 38(11): 3726-3736.CHEN Jian, YUAN Shenfang. Bayesian diagnosis and prediction of delamination damage of stiffened composite structures[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3726-3736(in Chinese). [4] 王奕首, 王明华, 刘德博, 等. 声发射在复合材料贮箱上的应用研究进展[J]. 仪器仪表学报, 2022, 43(4): 1-17.WANG Yishou, WANG Minghua, LIU Debo, et al. Research progress on the application of acoustic emission in composite tanks[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 1-17(in Chinese). [5] 雷鹰, 刘丽君, 郑翥鹏. 结构健康监测若干方法与技术研究进展综述[J]. 厦门大学学报(自然科学版), 2021, 60(3): 630-640.LEI Ying, LIU Lijun, ZHENG Zhupeng. A review of research progress on several methods and techniques of structural health monitoring[J]. Journal of Xiamen University (Natural Science Edition), 2021, 60(3): 630-640(in Chinese). [6] 王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1): 1-16.WANG Yishou, QING Xinlin. Research progress on health monitoring technology of composite connected structures[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 1-16(in Chinese). [7] 李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166.LI Pengfei, LUO Ying, XU Chenguang. Lamb wave field reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166(in Chinese). [8] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317.YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Research progress of ultrasonic detection and imaging methods for damage of carbon fiber composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317(in Chinese). [9] WANG C H, ROSE J T, CHANG F K. A synthetic time-reversal imaging method for structural health monitoring[J]. Smart Materials and Structures, 2004, 13(2): 415. doi: 10.1088/0964-1726/13/2/020 [10] YU Y, LIU X, WANG Y, et al. Lamb wave-based damage imaging of CFRP composite structures using autoencoder and delay-and-sum[J]. Composite Structures, 2023, 303: 116263. doi: 10.1016/j.compstruct.2022.116263 [11] LI F, LUO Y. Damage imaging of lamb wave in isotropic plate using phased array delay and sum based on frequency-domain inverse scattering model[J]. Nondestructive Testing and Evaluation, 2022, 37(6): 721-736. doi: 10.1080/10589759.2022.2045292 [12] HALL J S, MICHAELS J E. Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2311-2323. doi: 10.1109/TUFFC.2010.1692 [13] HUA J, ZHANG H, MIAO Y, et al. Modified minimum variance imaging of Lamb waves for damage localization in aluminum plates and composite laminates[J]. NDT & E International, 2022, 125: 102574. [14] SU C, JIANG M, LYU S, et al. Damage imaging for composite using Lamb wave based on minimum variance distortion-less response method[J]. Transactions of the Institute of Measurement and Control, 2019, 41(15): 4179-4186. doi: 10.1177/0142331219851901 [15] LEVINE R M, MICHAELS J E. Model-based imaging of damage with Lamb waves via sparse reconstruction[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1525-1534. doi: 10.1121/1.4788984 [16] LEVINE R M, MICHAELS J E. Block-sparse reconstruction and imaging for lamb wave structural health monitoring[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(6): 1006-1015. doi: 10.1109/TUFFC.2014.2996 [17] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582 [18] WANG Z, WANG S, WANG Q, et al. Bayesian compressive sensing for recovering the time-frequency representation of undersampled Lamb wave signals[J]. Applied Acoustics, 2022, 187: 108480. doi: 10.1016/j.apacoust.2021.108480 [19] GOLATO A, AHMAD F, SANTHANAM S, et al. Multipath exploitation for enhanced defect imaging using Lamb waves[J]. NDT & E International, 2017, 92: 1-9. [20] GOLATO A, SANTHANAM S, AHMAD F, et al. Multimodal sparse reconstruction in guided wave imaging of defects in plates[J]. Journal of Electronic Imaging, 2016, 25(4): 043013. doi: 10.1117/1.JEI.25.4.043013 [21] ZHANG H, LU Y, MA S, et al. Adaptive sparse reconstruction of damage localization via Lamb waves for structure health monitoring[J]. Computing, 2019, 101: 679-692. doi: 10.1007/s00607-018-00694-0 [22] XU C, DENG M. Lamb wave imaging based on multi-frequency sparse decomposition[J]. Mechanical Systems and Signal Processing, 2022, 174: 109076. doi: 10.1016/j.ymssp.2022.109076 [23] HUA J, WANG Z, GAO F, et al. Sparse reconstruction imaging of damage for Lamb wave simultaneous excitation system in composite laminates[J]. Measurement, 2019, 136: 201-211. doi: 10.1016/j.measurement.2018.12.081 [24] HUA J, GAO F, ZENG L, et al. Modified sparse reconstruction imaging of lamb waves for damage quantitative evaluation[J]. NDT & E International, 2019, 107: 102143. [25] XU C, YANG Z, TIAN S, et al. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum[J]. Composite Structures, 2019, 223: 110973. doi: 10.1016/j.compstruct.2019.110973 [26] WU H, MA S, DU B. Damage imaging method for composites laminates based on sparse reconstruction of single-mode Lamb wave[J]. Measurement Science and Technology, 2022, 33(12): 125403. doi: 10.1088/1361-6501/ac9075 [27] XU C, YANG Z, ZHAI Z, et al. A weighted sparse reconstruction-based ultrasonic guided wave anomaly imaging method for composite laminates[J]. Composite Structures, 2019, 209: 233-241. doi: 10.1016/j.compstruct.2018.10.097 [28] XU C, YANG Z, ZUO H, et al. Minimum variance Lamb wave imaging based on weighted sparse decomposition coefficients in quasi-isotropic composite laminates[J]. Composite Structures, 2021, 275: 114432. doi: 10.1016/j.compstruct.2021.114432 [29] 徐冠基, 许才彬, 杨志勃, 等. 碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J]. 西安交通大学学报, 2019, 53(6): 176-182. doi: 10.7652/xjtuxb201906023XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted block sparse imaging method for Lamb wave damage detection of carbon fiber laminates[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 176-182(in Chinese). doi: 10.7652/xjtuxb201906023 [30] DE LUCA A, CAPUTO F, KHODAEI Z S, et al. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves[J]. Composites Part B: Engineering, 2018, 138: 168-180. doi: 10.1016/j.compositesb.2017.11.042 [31] LI Y, VOROBYOV S A, HE Z. Terrain-scattered jammer suppression in MIMO radar using space-(fast) time adaptive processing[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai: IEEE, 2016: 3026-3033. [32] STERNINI S, PAU A, SCALEA F L D. Minimum variance imaging in plates using guided wave mode beamforming[J]. IEEE Trans Ultrason Ferroelectrics Freq Control, 2019, 66(12): 1906-1919. doi: 10.1109/TUFFC.2019.2935139 [33] HARLEY J B, MOURA J M F. Data-driven matched field processing for Lamb wave structural health monitoring[J]. The Journal of the Acoustical Society of America, 2014, 135(3): 1231-1244. doi: 10.1121/1.4863651 [34] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. doi: 10.1109/JSTSP.2007.910281 [35] MOLL J, KATHOL J, FRITZEN C, et al. Open guided waves: Online platform for ultrasonic guided wave measurements[J]. Structural Health Monitoring, 2019, 18(5-6): 1903-1914. [36] XU B, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26: 123-134. [37] NOKHBATOLFOGHAHAI A, NAVAZI H M, GROVES R M. Use of dictionary learning for damage localization in complex structures[J]. Mechanical Systems and Signal Processing, 2022, 180: 109394. doi: 10.1016/j.ymssp.2022.109394