留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MVDR加权稀疏重建的CFRP损伤成像

冯继启 叶波 邹杨坤 朱之贞 杨常春

冯继启, 叶波, 邹杨坤, 等. 基于MVDR加权稀疏重建的CFRP损伤成像[J]. 复合材料学报, 2024, 41(10): 5673-5686. doi: 10.13801/j.cnki.fhclxb.20240507.002
引用本文: 冯继启, 叶波, 邹杨坤, 等. 基于MVDR加权稀疏重建的CFRP损伤成像[J]. 复合材料学报, 2024, 41(10): 5673-5686. doi: 10.13801/j.cnki.fhclxb.20240507.002
FENG Jiqi, YE Bo, ZOU Yangkun, et al. CFRP damage imaging based on MVDR weighted sparse reconstruction[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5673-5686. doi: 10.13801/j.cnki.fhclxb.20240507.002
Citation: FENG Jiqi, YE Bo, ZOU Yangkun, et al. CFRP damage imaging based on MVDR weighted sparse reconstruction[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5673-5686. doi: 10.13801/j.cnki.fhclxb.20240507.002

基于MVDR加权稀疏重建的CFRP损伤成像

doi: 10.13801/j.cnki.fhclxb.20240507.002
基金项目: 国家自然科学基金(62063012);云南省中青年学术和技术带头人后备人才项目(202305AC160062)
详细信息
    通讯作者:

    叶波,博士,教授,博士生导师,研究方向为结构健康监测、电磁无损检测 E-mail: yeripple@hotmail.com

  • 中图分类号: TB332;TP206+.1

CFRP damage imaging based on MVDR weighted sparse reconstruction

Funds: National Natural Science Foundation of China (62063012); The Young and Middle-Aged Academic and Technical Leaders Reserve Talents Project of Yunnan Province (202305AC160062)
  • 摘要: 碳纤维增强复合材料(CFRP)因性能优异而广泛用于航天等领域,其在服役中会出现损伤。利用稀疏重建(SR)算法可对CFRP损伤进行成像,定位损伤位置,但因原子失配问题会造成伪影,甚至误判损伤。针对上述问题,提出一种最小方差无失真响应(MVDR)加权的稀疏重建成像法。将CFRP监测区域划分为若干网格点,基于Lamb波散射模型构造字典,与散射信号和稀疏解变量组成SR模型;其次用MVDR成像法进行成像,基于成像结果构建MVDR权重因子,以此对稀疏解变量进行加权;最后采用基追踪去噪算法求解加权SR模型,得到最优稀疏解并转换为像素值,实现CFRP的损伤成像。CFRP损伤成像实验结果表明:所提方法在相同正则化参数下成像效果均优于SR成像法,而在3种不同正则化参数下的定位误差相比SR成像法分别降低了72.9 mm、77.4 mm与14.7 mm;在4种不同损伤位置下,MVDR-SR成像法成像结果具有更少的伪影,损伤定位误差最大为7.9 mm,相比MVDR和SR成像法具有更好的成像性能,验证了所提方法的正确性和有效性。

     

  • 图  1  Lamb波散射示意图

    Figure  1.  Scattering plot of Lamb wave

    r1 —Distance from the excitation source to the scattering source; r2 —Distance from the scattering source to the receiving source; r3—Distance from the excitation source to the receiving source

    图  2  最小方差无失真响应(MVDR)-稀疏重建(SR)成像法流程

    Figure  2.  Flowchart of the minimum variance distortionless response (MVDR)-sparse reconstruction (SR) imaging method

    BPDN—Basic pursuit denoise

    图  3  碳纤维增强复合材料(CFRP)层合板

    Figure  3.  Carbon fiber reinforced polymer (CFRP) laminates

    图  4  传感器/损伤坐标示意图

    Figure  4.  Coordinate plot of sensor and damage

    图  5  激励信号

    Figure  5.  Excitation signal

    图  6  D4处不同正则化参数下的SR与MVDR-SR成像法成像结果

    Figure  6.  SR and MVDR-SR imaging results under different regularization parameters at D4

    图  7  损伤D1成像结果

    Figure  7.  Damage D1 imaging results

    图  8  损伤D2成像结果

    Figure  8.  Damage D2 imaging results

    图  9  损伤D3成像结果

    Figure  9.  Damage D3 imaging results

    图  10  损伤D4成像结果

    Figure  10.  Damage D4 imaging results

    表  1  T700 M21型CFRP参数

    Table  1.   Material parameters of T700 M21 CFRP

    ParameterValueParameterValue
    ${E_{{11}}}$/GPa125.5±2.4$ {v_{{12}}} $0.37±0.08
    ${E_{{22}}}$/GPa8.7±0.1${v_{{23}}}$0.45±0.02
    ${G_{{12}}}$/GPa4.135$\rho $/(kg·m−3)1571±2
    Notes: E11, E22—Elasticity modulus; G12—Shear modulus; v12, v23—Poisson's ratio; ρ—Density.
    下载: 导出CSV

    表  2  传感器坐标

    Table  2.   Sensor coordinate

    Sensor Coordinate/mm Sensor Coordinate/mm
    T1 (450, 470) T7 (450, 30)
    T2 (370, 470) T8 (370, 30)
    T3 (290, 470) T9 (290, 30)
    T4 (210, 470) T10 (210, 30)
    T5 (130, 470) T11 (130, 30)
    T6 (50, 470) T12 (50, 30)
    Notes: T represents sensor; The subscript represents the sequence number.
    下载: 导出CSV

    表  3  损伤坐标

    Table  3.   Damage coordinate

    Damage Coordinate/mm Damage Coordinate/mm
    D1 (65, 415) D2 (265, 412)
    D3 (320, 260) D4 (250, 75)
    Notes: D represents damage; The following number represents the serial number.
    下载: 导出CSV

    表  4  D4处不同正则化参数σ2下的SR与MVDR-SR成像法定位结果

    Table  4.   Location results of SR and MVDR-SR imaging methods under different regularization parameters σ2 at D4

    ${\sigma ^2}$ SR MVDR-SR
    Imaging
    center/mm
    Location error/mm Imaging
    center/mm
    Location error/mm
    $ 0.55\left\| {\boldsymbol{y}} \right\|_2^2 $ (187.5, 7.5) 91.9 (257.5, 92.5) 19.0
    $ 0.75\left\| {\boldsymbol{y}} \right\|_2^2 $ (187.5, 7.5) 91.9 (257.5, 87.5) 14.5
    $ 0.95\left\| {\boldsymbol{y}} \right\|_2^2 $ (247.5, 97.5) 22.6 (247.5, 82.5) 7.9
    下载: 导出CSV

    表  5  3种成像法在不同损伤位置成像定位结果

    Table  5.   Imaging positioning results of the three imaging methods at different damage localizations

    Damage MVDR SR MVDR-SR
    Imaging
    center/mm
    Location error/mm Imaging
    center/mm
    Location error/mm Imaging
    center/mm
    Location error/mm
    D1 (82.5, 412.5) 17.6 (2.5, 387.5) 68.2 (62.5, 412.5) 3.5
    D2 (267.5, 432.5) 20.7 (262.5, 402.5) 9.8 (257.5, 412.5) 7.5
    D3 (307.5, 257.5) 12.7 (492.5, 257.5) 172.5 (312.5, 257.5) 7.9
    D4 (247.5, 67.5) 7.9 (247.5, 97.5) 22.6 (247.5, 82.5) 7.9
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] KUPSKI J, FREITAS S T D. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures[J]. Composite Structures, 2021, 268: 113923.
    [3] 陈健, 袁慎芳. 加筋复合材料结构分层损伤的贝叶斯诊断及预测[J]. 复合材料学报, 2021, 38(11): 3726-3736.

    CHEN Jian, YUAN Shenfang. Bayesian diagnosis and prediction of delamination damage of stiffened composite structures[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3726-3736(in Chinese).
    [4] 王奕首, 王明华, 刘德博, 等. 声发射在复合材料贮箱上的应用研究进展[J]. 仪器仪表学报, 2022, 43(4): 1-17.

    WANG Yishou, WANG Minghua, LIU Debo, et al. Research progress on the application of acoustic emission in composite tanks[J]. Chinese Journal of Scientific Instrument, 2022, 43(4): 1-17(in Chinese).
    [5] 雷鹰, 刘丽君, 郑翥鹏. 结构健康监测若干方法与技术研究进展综述[J]. 厦门大学学报(自然科学版), 2021, 60(3): 630-640.

    LEI Ying, LIU Lijun, ZHENG Zhupeng. A review of research progress on several methods and techniques of structural health monitoring[J]. Journal of Xiamen University (Natural Science Edition), 2021, 60(3): 630-640(in Chinese).
    [6] 王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报, 2016, 33(1): 1-16.

    WANG Yishou, QING Xinlin. Research progress on health monitoring technology of composite connected structures[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 1-16(in Chinese).
    [7] 李鹏飞, 骆英, 徐晨光. 基于压缩感知的复合材料板Lamb波场重构及损伤成像[J]. 复合材料学报, 2021, 38(4): 1155-1166.

    LI Pengfei, LUO Ying, XU Chenguang. Lamb wave field reconstruction and damage imaging of composite plate based on compressed sensing[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1155-1166(in Chinese).
    [8] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317.

    YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Research progress of ultrasonic detection and imaging methods for damage of carbon fiber composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317(in Chinese).
    [9] WANG C H, ROSE J T, CHANG F K. A synthetic time-reversal imaging method for structural health monitoring[J]. Smart Materials and Structures, 2004, 13(2): 415. doi: 10.1088/0964-1726/13/2/020
    [10] YU Y, LIU X, WANG Y, et al. Lamb wave-based damage imaging of CFRP composite structures using autoencoder and delay-and-sum[J]. Composite Structures, 2023, 303: 116263. doi: 10.1016/j.compstruct.2022.116263
    [11] LI F, LUO Y. Damage imaging of lamb wave in isotropic plate using phased array delay and sum based on frequency-domain inverse scattering model[J]. Nondestructive Testing and Evaluation, 2022, 37(6): 721-736. doi: 10.1080/10589759.2022.2045292
    [12] HALL J S, MICHAELS J E. Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(10): 2311-2323. doi: 10.1109/TUFFC.2010.1692
    [13] HUA J, ZHANG H, MIAO Y, et al. Modified minimum variance imaging of Lamb waves for damage localization in aluminum plates and composite laminates[J]. NDT & E International, 2022, 125: 102574.
    [14] SU C, JIANG M, LYU S, et al. Damage imaging for composite using Lamb wave based on minimum variance distortion-less response method[J]. Transactions of the Institute of Measurement and Control, 2019, 41(15): 4179-4186. doi: 10.1177/0142331219851901
    [15] LEVINE R M, MICHAELS J E. Model-based imaging of damage with Lamb waves via sparse reconstruction[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1525-1534. doi: 10.1121/1.4788984
    [16] LEVINE R M, MICHAELS J E. Block-sparse reconstruction and imaging for lamb wave structural health monitoring[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(6): 1006-1015. doi: 10.1109/TUFFC.2014.2996
    [17] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [18] WANG Z, WANG S, WANG Q, et al. Bayesian compressive sensing for recovering the time-frequency representation of undersampled Lamb wave signals[J]. Applied Acoustics, 2022, 187: 108480. doi: 10.1016/j.apacoust.2021.108480
    [19] GOLATO A, AHMAD F, SANTHANAM S, et al. Multipath exploitation for enhanced defect imaging using Lamb waves[J]. NDT & E International, 2017, 92: 1-9.
    [20] GOLATO A, SANTHANAM S, AHMAD F, et al. Multimodal sparse reconstruction in guided wave imaging of defects in plates[J]. Journal of Electronic Imaging, 2016, 25(4): 043013. doi: 10.1117/1.JEI.25.4.043013
    [21] ZHANG H, LU Y, MA S, et al. Adaptive sparse reconstruction of damage localization via Lamb waves for structure health monitoring[J]. Computing, 2019, 101: 679-692. doi: 10.1007/s00607-018-00694-0
    [22] XU C, DENG M. Lamb wave imaging based on multi-frequency sparse decomposition[J]. Mechanical Systems and Signal Processing, 2022, 174: 109076. doi: 10.1016/j.ymssp.2022.109076
    [23] HUA J, WANG Z, GAO F, et al. Sparse reconstruction imaging of damage for Lamb wave simultaneous excitation system in composite laminates[J]. Measurement, 2019, 136: 201-211. doi: 10.1016/j.measurement.2018.12.081
    [24] HUA J, GAO F, ZENG L, et al. Modified sparse reconstruction imaging of lamb waves for damage quantitative evaluation[J]. NDT & E International, 2019, 107: 102143.
    [25] XU C, YANG Z, TIAN S, et al. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum[J]. Composite Structures, 2019, 223: 110973. doi: 10.1016/j.compstruct.2019.110973
    [26] WU H, MA S, DU B. Damage imaging method for composites laminates based on sparse reconstruction of single-mode Lamb wave[J]. Measurement Science and Technology, 2022, 33(12): 125403. doi: 10.1088/1361-6501/ac9075
    [27] XU C, YANG Z, ZHAI Z, et al. A weighted sparse reconstruction-based ultrasonic guided wave anomaly imaging method for composite laminates[J]. Composite Structures, 2019, 209: 233-241. doi: 10.1016/j.compstruct.2018.10.097
    [28] XU C, YANG Z, ZUO H, et al. Minimum variance Lamb wave imaging based on weighted sparse decomposition coefficients in quasi-isotropic composite laminates[J]. Composite Structures, 2021, 275: 114432. doi: 10.1016/j.compstruct.2021.114432
    [29] 徐冠基, 许才彬, 杨志勃, 等. 碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J]. 西安交通大学学报, 2019, 53(6): 176-182. doi: 10.7652/xjtuxb201906023

    XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted block sparse imaging method for Lamb wave damage detection of carbon fiber laminates[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 176-182(in Chinese). doi: 10.7652/xjtuxb201906023
    [30] DE LUCA A, CAPUTO F, KHODAEI Z S, et al. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves[J]. Composites Part B: Engineering, 2018, 138: 168-180. doi: 10.1016/j.compositesb.2017.11.042
    [31] LI Y, VOROBYOV S A, HE Z. Terrain-scattered jammer suppression in MIMO radar using space-(fast) time adaptive processing[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai: IEEE, 2016: 3026-3033.
    [32] STERNINI S, PAU A, SCALEA F L D. Minimum variance imaging in plates using guided wave mode beamforming[J]. IEEE Trans Ultrason Ferroelectrics Freq Control, 2019, 66(12): 1906-1919. doi: 10.1109/TUFFC.2019.2935139
    [33] HARLEY J B, MOURA J M F. Data-driven matched field processing for Lamb wave structural health monitoring[J]. The Journal of the Acoustical Society of America, 2014, 135(3): 1231-1244. doi: 10.1121/1.4863651
    [34] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597. doi: 10.1109/JSTSP.2007.910281
    [35] MOLL J, KATHOL J, FRITZEN C, et al. Open guided waves: Online platform for ultrasonic guided wave measurements[J]. Structural Health Monitoring, 2019, 18(5-6): 1903-1914.
    [36] XU B, GIURGIUTIU V. Single mode tuning effects on Lamb wave time reversal with piezoelectric wafer active sensors for structural health monitoring[J]. Journal of Nondestructive Evaluation, 2007, 26: 123-134.
    [37] NOKHBATOLFOGHAHAI A, NAVAZI H M, GROVES R M. Use of dictionary learning for damage localization in complex structures[J]. Mechanical Systems and Signal Processing, 2022, 180: 109394. doi: 10.1016/j.ymssp.2022.109394
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-04-14
  • 录用日期:  2024-04-26
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回