留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功能原理的Gyroid点阵结构塑性屈服强度

吴凤和 王超世 孙迎兵 刘磊 张同庆 王朝华

吴凤和, 王超世, 孙迎兵, 等. 基于功能原理的Gyroid点阵结构塑性屈服强度[J]. 复合材料学报, 2024, 41(10): 5646-5656. doi: 10.13801/j.cnki.fhclxb.20240201.002
引用本文: 吴凤和, 王超世, 孙迎兵, 等. 基于功能原理的Gyroid点阵结构塑性屈服强度[J]. 复合材料学报, 2024, 41(10): 5646-5656. doi: 10.13801/j.cnki.fhclxb.20240201.002
WU Fenghe, WANG Chaoshi, SUN Yingbing, et al. Study on plastic yield strength of Gyroid lattice structures based on functional principleson[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5646-5656. doi: 10.13801/j.cnki.fhclxb.20240201.002
Citation: WU Fenghe, WANG Chaoshi, SUN Yingbing, et al. Study on plastic yield strength of Gyroid lattice structures based on functional principleson[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5646-5656. doi: 10.13801/j.cnki.fhclxb.20240201.002

基于功能原理的Gyroid点阵结构塑性屈服强度

doi: 10.13801/j.cnki.fhclxb.20240201.002
基金项目: 国家自然科学基金(52205278);山西省基础研究计划资助项目(202103021223290)
详细信息
    通讯作者:

    王朝华,博士,副教授,硕士生导师,研究方向为点阵结构性能调控与优化、结构轻量化设计 E-mail: wangzhaohua@tyust.edu.cn

  • 中图分类号: TB39;TB330.1

Study on plastic yield strength of Gyroid lattice structures based on functional principleson

Funds: National Natural Science Foundation of China (52205278); Fundamental Research Program of Shanxi Province (202103021223290)
  • 摘要: 点阵结构与密实结构存在的力学性能差异之一表现在塑性屈服响应上,因此,研究其屈服行为可为点阵结构的设计和应用提供重要的理论依据。首先,对Gyroid点阵结构进行简化,并基于变形体功能原理建立其力学模型,得到Gyroid点阵结构塑性屈服强度与体积分数之间的映射关系;然后,基于有限元分析软件Abaqus对Gyroid点阵结构准静态压缩过程开展仿真实验,初步验证理论模型的准确性;最后,通过选择性激光熔化(SLM)制备不同体积分数316L不锈钢Gyroid点阵结构,进行单轴压缩实验,分析其变形机制与力学性能。结果表明:理论推导、有限元仿真结果与实验结果相比,误差在25%以内,且根据3种方法结果拟合得到的Gibson-Ashby模型系数具有较好的一致性,表明本文基于理论推导建立的Gyroid点阵结构塑性屈服强度预测模型的有效性。理论模型的构建方法可以转化到其他复杂类型点阵结构中,为快速核算点阵结构力学性能,并将其应用在工程装备中提供理论依据。

     

  • 图  1  Gyroid点阵结构设计与制造示意图

    Figure  1.  Schematic diagram of Gyroid lattice structure design and manufacturing

    图  2  Gyroid点阵结构晶胞简化示意图

    Figure  2.  Simplified schematic diagram of Gyroid lattice structure cell

    d—Diameter; l—Branching rod length; a—Spatial length of a cell

    图  3  Gyroid晶胞受力分析

    Figure  3.  Analysis of Gyroid crystal cell stress

    σ—Stress; F—Force; θ—Angle between pole and horizontal plane; M1—Torque at the node

    图  4  316L不锈钢应力-应变曲线

    Figure  4.  Stress-strain curve of 316L stainless steel

    图  5  压缩模拟载荷与边界条件

    Figure  5.  Compression simulation load and boundary conditions

    A—Cross sectional area of lattice structure; L—Side length of the lattice structure; u—Displacement of upper plane nodes

    图  6  不同单元尺寸的模型收敛性分析

    Figure  6.  Convergence analysis of models with different element sizes

    图  7  有限元模拟获得的Gyroid点阵结构应力-应变曲线

    Figure  7.  Stress-strain curves of Gyroid lattice structure obtained from finite element simulation

    图  8  Gyroid点阵结构应力/应变云图

    Figure  8.  Stress/strain distribution of Gyroid lattice structure

    图  9  Gyroid点阵结构宏观形貌

    Figure  9.  Macro morphology of Gyroid lattice structure

    图  10  Gyroid点阵结构尺寸测量

    Figure  10.  Measurement of Gyroid lattice structure dimensions

    图  11  Gyroid点阵结构理论与实测尺寸对比

    Figure  11.  Comparison of theoretical and actual dimensions of Gyroid lattice structure

    图  12  Gyroid点阵结构理论与实测质量对比

    Figure  12.  Comparison of theoretical and actual mass of Gyroid lattice structure

    图  13  Gyroid点阵结构表面微观形貌

    Figure  13.  Microscopic morphologies of Gyroid lattice structure surface

    图  14  Gyroid点阵结构压缩实验过程

    Figure  14.  Experimental process of Gyroid lattice structure compression

    图  15  Gyroid点阵结构压缩变形机制

    Figure  15.  Compression deformation mechanism of Gyroid lattice structure

    图  16  压缩实验获到的Gyroid点阵结构应力-应变曲线

    Figure  16.  Stress-strain curves of Gyroid lattice structure obtained from compression experiments

    图  17  简化前后Gyroid点阵结构体积分数对比

    Figure  17.  Comparison of volume fractions of Gyroid lattice structures before and after simplification

    图  18  Gyroid点阵结构塑性屈服强度Gibson-Ashby拟合

    Figure  18.  Gibson-Ashby fitting of plastic yield strength of Gyroid lattice structure

    σG—Plastic yield strength of lattice structure; σs—Yield strength of base metal; Vv—Volume fraction

    表  1  Gyroid点阵结构理论推导、有限元和实验结果对比

    Table  1.   Comparison of theoretical derivation, finite element and experimental results of Gyroid lattice structure

    Volume fraction/vol% Plastic yield strength/MPa
    Theoretical derivation Finite element analysis Experimental
    5 1.48 1.78 1.83
    7.5 2.72 3.40 3.48
    10 4.19 4.72 4.97
    12.5 5.85 6.71 6.86
    15 7.69 8.36 9.18
    下载: 导出CSV
  • [1] 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J]. 复合材料学报, 2022, 39(7): 3641-3651.

    CHENG Shuliang, WU Lingjie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3641-3651(in Chinese).
    [2] WU F H, LIAN H, PEI G B, et al. Design and optimization of variable-density lattice structure based on load paths[J]. Facta Universitatis-Series Mechanical Engineering, 2023, 21(2): 273-292. doi: 10.22190/FUME220108017W
    [3] SCHAEDLER T A, JACOBSEN A J, CARTER W B. Toward lighter, stiffer materials[J]. Science, 2013, 341(6151): 1181-1182. doi: 10.1126/science.1243996
    [4] 梁栋, 陈伟, 胡勇, 等. 点阵单元类型和排布角度对传热特性的影响[J]. 航空动力学报, 2022, 37(1): 26-35.

    LIANG Dong, CHEN Wei, HU Yong, et al. Influences of lattice unit type and arrangement orientation on heat transfer characteristics[J]. Journal of Aerospace Power, 2022, 37(1): 26-35(in Chinese).
    [5] 李永欣, 郭长春, 李凯伦, 等. SLM制备的小长径比四棱锥点阵填充轻量化研究[J]. 机械工程学报, 2021, 57(24): 132-138. doi: 10.3901/JME.2021.24.132

    LI Yongxin, GUO Changchun, LI Kailun, et al. Filling lightweight research on pyramid lattice with small slenderness ratio fabricated by SLM[J]. Journal of Mechanical Engineering, 2021, 57(24): 132-138(in Chinese). doi: 10.3901/JME.2021.24.132
    [6] CHOUHAN G, BALA MURALI G. Designs, advancements, and applications of three-dimensional printed Gyroid structures: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024, 238(2): 965-987.
    [7] FENG J W, FU J Z, YAO X H, et al. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 022001. doi: 10.1088/2631-7990/ac5be6
    [8] Al-KETAN O, ROWSHAN R, Al-RUB R K A. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive Manufacturing, 2018, 19: 167-183. doi: 10.1016/j.addma.2017.12.006
    [9] DEVALK T, LAKES R. Poisson's ratio and modulus of Gyroid lattices[J]. Physica Status Solidi B-Basic Solid State Physics, 2021, 258(12): 2100081. doi: 10.1002/pssb.202100081
    [10] 张明康. 隐式曲面梯度多孔结构优化设计及激光选区熔化成形力学性能研究[D]. 广州: 华南理工大学, 2020.

    ZHANG Mingkang. Optimal design and mechanical properties of implicit surface gradient porous structure manufactured by selective laser melting[D]. Guangzhou: South China University of Technology, 2020(in Chinese).
    [11] JONES A, LEARY M, BATEMAN S, et al. Parametric design and evaluation of TPMS-like cellular solids[J]. Materials & Design, 2022, 221: 110908.
    [12] LU Y T, ZHAO W Y, CUI Z T, et al. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99: 56-65. doi: 10.1016/j.jmbbm.2019.07.012
    [13] KHADERI S N, DESHPANDE V S, FLECK N A. The stiffness and strength of the Gyroid lattice[J]. International Journal of Solids and Structures, 2014, 51(23-24): 3866-3877. doi: 10.1016/j.ijsolstr.2014.06.024
    [14] MASKERY I, STURM L, AREMU A O, et al. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing[J]. Polymer, 2018, 152: 62-71. doi: 10.1016/j.polymer.2017.11.049
    [15] XING P, HUANG Q Y, ZHANG G X, et al. Compensating the anisotropic mechanical properties of electron beam melting-based Gyroid scaffolds using structural design[J]. International Journal of Mechanical Sciences, 2022, 226: 107442. doi: 10.1016/j.ijmecsci.2022.107442
    [16] KELLY C N, FRANCOVICH J, JULMI S, et al. Fatigue behavior of as-built selective laser melted titanium scaffolds with sheet-based Gyroid microarchitecture for bone tissue engineering[J]. Acta Biomaterialia, 2019, 94: 610-626. doi: 10.1016/j.actbio.2019.05.046
    [17] YANG L, YAN C Z, CAO W C, et al. Compression-compression fatigue behaviour of Gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting[J]. Acta Materialia, 2019, 181: 49-66. doi: 10.1016/j.actamat.2019.09.042
    [18] VIET N V, ZAKI W. Free vibration and buckling characteristics of functionally graded beams with triply periodic minimal surface architecture[J]. Composite Structures, 2021, 274: 114342. doi: 10.1016/j.compstruct.2021.114342
    [19] USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures[J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303-329.
    [20] ATAEE A, LI Y C, BRANDT M, et al. Ultrahigh-strength titanium Gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications[J]. Acta Materialia, 2018, 158: 354-368. doi: 10.1016/j.actamat.2018.08.005
    [21] YANG X, YANG Q, SHI Y S, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices[J]. Additive Manufacturing, 2022, 54: 102737. doi: 10.1016/j.addma.2022.102737
    [22] ZADPOOR A A, HEDAYATI R. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials[J]. Journal of Biomedical Materials Research Part A, 2016, 104(12): 3164-3174. doi: 10.1002/jbm.a.35855
    [23] FU J, DING J H, QU S, et al. Improved light-weighting potential of SS316L triply periodic minimal surface shell lattices by micro laser powder bed fusion[J]. Materials & Design, 2022, 222: 111018.
    [24] YOO D. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(1): 61-71. doi: 10.1007/s12541-011-0008-9
    [25] PENG X, HUANG Q, ZHANG Y, et al. Elastic response of anisotropic Gyroid cellular structures under compression: Parametric analysis[J]. Materials & Design, 2021, 205: 109706.
    [26] 杨磊. 增材制造三周期极小曲面点阵结构的力学性能研究[D]. 武汉: 华中科技大学, 2020.

    YANG Lei. Research on mechanical properties of additive manufactured triply periodic minimal surface lattice structures[D]. Wuhan: Huazhong University of Science and Technology, 2020(in Chinese).
    [27] 迟静, 李敏, 王淑峰, 等. Ti-C含量对多孔TiC/FeAl复合材料孔型结构和力学性能的影响[J]. 复合材料学报, 2018, 35(9): 2503-2511.

    CHI Jing, LI Min, WANG Shufeng, et al. Effects of Ti-C contents on the pore structures and mechanical properties of porous TiC/FeAl composites[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2503-2511(in Chinese).
    [28] ZHANG L, FEIH S, DAYNES S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading[J]. Additive Manufacturing, 2018, 23: 505-515. doi: 10.1016/j.addma.2018.08.007
    [29] ZHANG C, ZHENG H, YANG L, et al. Mechanical responses of sheet-based Gyroid-type triply periodic minimal surface lattice structures fabricated using selective laser melting[J]. Materials & Design, 2022, 214: 110407.
    [30] MACONACHIE T, LEARY M, LOZANOVSKI B, et al. SLM lattice structures: Properties, performance, applications and challenges[J]. Materials & Design, 2019, 183: 108137.
    [31] WANG N Y, MEENASHISUNDARAM G K, CHANG S, et al. A comparative investigation on the mechanical properties and cytotoxicity of cubic, octet, and TPMS Gyroid structures fabricated by selective laser melting of stainless steel 316L[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129: 015151.
    [32] RAVICHANDER B B, JAGDALE S H, KUMAR G. Surface morphology, compressive behavior, and energy absorption of graded triply periodic minimal surface 316L steel cellular structures fabricated by laser powder bed fusion[J]. Materials, 2022, 15(23): 8294. doi: 10.3390/ma15238294
    [33] YANG K V, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2018, 712: 166-174. doi: 10.1016/j.msea.2017.11.078
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  200
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 修回日期:  2024-01-12
  • 录用日期:  2024-01-23
  • 网络出版日期:  2024-02-02
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回