留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型二维三组元水泥基拟声子晶体复合材料的低频带隙特性与应用

肖鹏 缪林昌 郑海忠 雷利剑

肖鹏, 缪林昌, 郑海忠, 等. 一种新型二维三组元水泥基拟声子晶体复合材料的低频带隙特性与应用[J]. 复合材料学报, 2024, 41(10): 5607-5621. doi: 10.13801/j.cnki.fhclxb.20240131.001
引用本文: 肖鹏, 缪林昌, 郑海忠, 等. 一种新型二维三组元水泥基拟声子晶体复合材料的低频带隙特性与应用[J]. 复合材料学报, 2024, 41(10): 5607-5621. doi: 10.13801/j.cnki.fhclxb.20240131.001
XIAO Peng, MIAO Linchang, ZHENG Haizhong, et al. Low frequency bandgap characteristics and application of a novel two-dimensional three-component cement-based phononic-like crystal composite material[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5607-5621. doi: 10.13801/j.cnki.fhclxb.20240131.001
Citation: XIAO Peng, MIAO Linchang, ZHENG Haizhong, et al. Low frequency bandgap characteristics and application of a novel two-dimensional three-component cement-based phononic-like crystal composite material[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5607-5621. doi: 10.13801/j.cnki.fhclxb.20240131.001

一种新型二维三组元水泥基拟声子晶体复合材料的低频带隙特性与应用

doi: 10.13801/j.cnki.fhclxb.20240131.001
基金项目: 国家自然科学基金(51578147;52173248)
详细信息
    通讯作者:

    缪林昌,博士,教授,博士生导师,主要从事声子晶体复合材料等方面的教学和科研 E-mail: Lc.miao@seu.edu.cn

  • 中图分类号: O328;TB330.1

Low frequency bandgap characteristics and application of a novel two-dimensional three-component cement-based phononic-like crystal composite material

Funds: National Natural Science Foundation of China (51578147; 52173248)
  • 摘要: 为了拓宽混凝土超材料的弹性波带隙宽度和数量,本文基于局域共振理论设计了一种新型二维三组元水泥基拟声子晶体。首先,采用有限元方法计算和研究了该新型二维三组元水泥基拟声子晶体的能带结构、振动模态、位移场和衰减特性。其次,分析了带隙形成机制和影响因素,并根据质量-弹簧系统模型推导了带隙范围的理论估计式。最后,将该水泥基拟声子晶体应用到地铁道床上,分析了水泥基拟声子晶体地铁道床的减振性能。结果表明:该新型二维三组元水泥基拟声子晶体在200 Hz频段内打开了5条低频带隙,在带隙频率范围内,衰减值大多都在10 dB以上,衰减效果较好;带隙的打开与各原胞的振动特征呈现出对应关系,因特定原胞的平移振动触发,由特定原胞与基体的耦合作用的强度所控制;散射体材料的密度、包裹层材料的弹性模量及厚度是影响其带隙的主要因素;由新型二维三组元水泥基拟声子晶体组成的水泥基拟声子晶体地铁道床在1~200 Hz频段内的振动加速度均小于普通混凝土地铁道床,最大插入损失为10.22 dB,插入损失平均值为8.76 dB,具有显著的减振性能。

     

  • 图  1  水泥基拟声子晶体原胞结构及第一布里渊区

    Figure  1.  Cement-based phononic-like crystal primitive cell and first Brillouin region

    Rs—Scatterer inner diameter; Rc—Wrapping layerouter diameter; a—Lattice constant; M—Matrix; Γ, M—High symmetry point; kx, ky—Wave vector in the x and y directions

    图  2  有限元方法计算流程图

    Figure  2.  Finite element method calculation flowchart

    图  3  传统水泥基声子晶体能带结构

    Figure  3.  Band structure of traditional cement-based phononic crystal

    图  4  新型二维三组元水泥基拟声子晶体能带结构

    Figure  4.  Band structure of novel two-dimensional three-component cement-based phononic-like crystal

    图  5  第一带隙振动模态

    Figure  5.  Vibration mode of the first bandgap

    图  6  第一带隙位移场

    Figure  6.  Displacement field of the first bandgap

    图  7  第二带隙振动模态

    Figure  7.  Vibration mode of the second bandgap

    图  8  第二带隙位移场

    Figure  8.  Displacement field of the second bandgap

    图  9  第三带隙振动模态

    Figure  9.  Vibration mode of the third bandgap

    图  10  第三带隙位移场

    Figure  10.  Displacement field of the third bandgap

    图  11  第四带隙振动模态

    Figure  11.  Vibration mode of the fourth bandgap

    图  12  第四带隙位移场

    Figure  12.  Displacement field of the fourth bandgap

    图  13  第五带隙振动模态

    Figure  13.  Vibration mode of the fifth bandgap

    图  14  第五带隙位移场

    Figure  14.  Displacement field of the fifth bandgap

    图  15  新型二维三组元水泥基拟声子晶体的频率响应函数计算模型

    Figure  15.  Frequency response function calculation model of novel two-dimensional three-component cement-based phononic-like crystal

    图  16  新型二维三组元水泥基拟声子晶体的频率响应函数

    Figure  16.  Frequency response function of novel two-dimensional three-component cement-based phononic-like crystal

    图  17  新型二维三组元水泥基拟声子晶体的散射体材料参数对带隙的影响

    Figure  17.  Effect of scatterer material parameters on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  18  新型二维三组元水泥基拟声子晶体的散射体结构参数对带隙的影响

    Figure  18.  Effect of scatterer structure parameters on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  19  新型二维三组元水泥基拟声子晶体的包裹层材料参数对带隙的影响

    Figure  19.  Effect of material parameters of wrapping layer on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  20  新型二维三组元水泥基拟声子晶体的包裹层结构参数对带隙的影响

    Figure  20.  Effect of structure parameters of wrapping layer on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  21  新型二维三组元水泥基拟声子晶体的水泥砂浆基体材料参数对带隙的影响

    Figure  21.  Effect of material parameters of cement mortar matrix on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  22  新型二维三组元水泥基拟声子晶体的水泥砂浆基体结构参数对带隙的影响

    Figure  22.  Effect of structure parameters of cement mortar matrix on bandgap of novel two-dimensional three-component cement-based phononic-like crystal

    图  23  不同散射体形状的新型二维三组元水泥基拟声子晶体的计算模型

    Figure  23.  Calculation models of novel two-dimensional three-component cement-based phononic-like crystal with different scatterer shapes

    图  24  不同形状散射体的新型二维三组元水泥基拟声子晶体的能带结构

    Figure  24.  Band structure of novel two-dimensional three-component cement-based phononic-like crystal with different scatterer shapes

    图  25  新型二维三组元水泥基拟声子晶体内部散射体的多形状耦合的计算模型

    Figure  25.  Calculation models of multi-shape coupling of internal scatterers in novel two-dimensional three-component cement-based phononic-like crystal

    图  26  新型二维三组元水泥基拟声子晶体原胞内部散射体多形状耦合的能带结构

    Figure  26.  Band structure of multi-shape coupling of internal scatterers in novel two-dimensional three-component cement-based phononic-like crystal

    图  27  单振子和多振子局域共振声子晶体原胞的弹簧-质量系统等效模型

    Figure  27.  Spring-mass system equivalent models of single-oscillator and multi-oscillator local resonance phononic crystal primitive cell

    k0-k5—Equivalent stiffness of oscillators; m0-m5—Equivalent mass of oscillators

    图  28  多振子局域共振声子晶体的无限质量-质量晶格结构

    Figure  28.  Infinite mass-in-mass lattice structure of local resonance phononic crystal with multiple oscillators

    L—Lattice constant

    图  29  等效模型分析法计算结果

    Figure  29.  Calculation result of equivalent model analysis method

    q—Wave vector; a—Lattice constant

    图  30  水泥基拟声子晶体地铁道床和普通混凝土地铁道床计算模型

    Figure  30.  Calculation models of cement-based phononic-like crystal subway track bed and ordinary concrete subway track bed

    图  31  水泥基拟声子晶体地铁道床和普通混凝土地铁道床时域和频域曲线

    Figure  31.  Time domain and frequency domain curves of cement-based phononic-like crystal subway track bed and ordinary concrete subway track bed

    图  32  水泥基拟声子晶体地铁道床和普通混凝土地铁道床1/3倍频程及插入损失

    Figure  32.  One-third octave and insertion loss of cement-based phononic-like crystal subway track bed and ordinary concrete subway track bed

    表  1  结构参数

    Table  1.   Structure parameters

    Scatterer i Rs/m Rc/m a/m
    1 0.0275 0.033 0.1
    2 0.018 0.0216
    3 0.013 0.0156
    4 0.01 0.012
    5 0.007 0.0084
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Material parameters

    Component Density
    ρ/(kg·m−3)
    Elastic modulus
    E/Pa
    Shear modulus
    G/Pa
    Scatterer 3300 1.2×1011 4.8×1010
    Wrapping layer 12 1.34×105 5.93×104
    Matrix 2000 3.45×1010 1.44×1010
    下载: 导出CSV

    表  3  新型二维三组元水泥基拟声子晶体的带隙影响因素及其水平

    Table  3.   Bandgap influencing factors and their levels of novel two-dimensional three-component cement-based phononic-like crystal

    Influence factor Level 1 Level 2 Level 3 Level 4 Level 5
    Material parameters Scatterer E/Pa 1.2×109 1.2×1010 1.2×1011 1.2×1012 1.2×1013
    ρ/(kg·m−3) 2300 2800 3300 3800 4300
    v 0.15 0.20 0.25 0.30 0.35
    Wrapping layer E/Pa 1.34×103 1.34×104 1.34×105 1.34×106 1.34×107
    ρ/(kg·m−3) 6 9 12 15 18
    v 0.09 0.11 0.13 0.15 0.17
    Matrix E/Pa 3.45×108 3.45×109 3.45×1010 3.45×1011 3.45×1012
    ρ/(kg·m−3) 1000 1500 2000 2500 3000
    v 0.10 0.15 0.20 0.25 0.30
    Structure parameters Scatterer Rs/m 0.8R1 0.9R1 R1
    Wrapping layer Rc/m 0.8R2 0.9R2 R2
    Matrix a/m 0.1 0.12 0.14
    Notes: R1—Inner diameter of scatterer; R2—Outer diameter of wrapping layer; v—Poisson's ratio.
    下载: 导出CSV
  • [1] 陈俊豪, 曾晓辉, 谢友均, 等. 具有减振功能的混凝土超材料的带隙特性[J]. 硅酸盐学报, 2023, 51(5): 1272-1282.

    CHEN Junhao, ZENG Xiaohui, XIE Youjun, et al. Band gap properties of metaconcrete with vibration reduction function[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1272-1282(in Chinese).
    [2] JIN H X, HAO H, CHEN W S, et al. Effect of enhanced coating layer on the bandgap characteristics and response of metaconcrete[J]. Mechanics of Advanced Materials and Structures, 2021, 30(1): 175-188.
    [3] 韩洁, 路国运, 赵一涛. 超材料混凝土单胞骨料的有阻尼自由振动特性研究[J]. 振动与冲击, 2022, 41(4): 239-245, 269.

    HAN Jie, LU Guoyun, ZHAO Yitao. A study of damped free vibration characteristics on a metaconcrete unit cell[J]. Journal of Vibration and Shock, 2022, 41(4): 239-245, 269(in Chinese).
    [4] XU C, CHEN W S, HAO H, et al. Damping properties and dynamic responses of metaconcrete beam structures subjected to transverse loading[J]. Construction and Building Materials, 2021, 311: 125273. doi: 10.1016/j.conbuildmat.2021.125273
    [5] 靳贺欣, 陈文苏, 郝洪, 等. 超材料混凝土抗冲击效应数值研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 78-89.

    JIN Hexin, CHEN Wensu, HAO Hong, et al. Numerical study on impact resistance of metaconcrete[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(2): 78-89(in Chinese).
    [6] BRICCOLA D, PANDOLFI A. Analysis on the dynamic wave attenuation properties of metaconcrete considering a quasi-random arrangement of inclusions[J]. Frontiers in Materials, 2021, 7: 615189. doi: 10.3389/fmats.2020.615189
    [7] 熊剑荣, 任凤鸣, 田时雨, 等. 超材料混凝土减振性能研究现状与展望[J]. 复合材料学报, 2024, 41(2): 656-671.

    XIONG Jianrong, REN Fengming, TIAN Shiyu, et al. Status and prospects of research on vibration reduction performance of metaconcrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 656-671(in Chinese).
    [8] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: Designed aggregates to enhance dynamic performance[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69-81.
    [9] XU C, CHEN W S, HAO H. The influence of design parameters of engineered aggregate in metaconcrete on bandgap region[J]. Journal of the Mechanics and Physics of Solids, 2020, 139: 103929. doi: 10.1016/j.jmps.2020.103929
    [10] 张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 69-77. doi: 10.11883/bzycj-2019-0252

    ZHANG En, LU Guoyun, YANG Huiwei, et al. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion and Shock Waves, 2020, 40(6): 69-77(in Chinese). doi: 10.11883/bzycj-2019-0252
    [11] MIRANDA E J P, ANGELIN A F, SILVA F M, et al. Passive vibration control using a metaconcrete thin plate[J]. Cerâmica, 2019, 65(1): 27-33.
    [12] 陈俊豪, 曾晓辉, 谢友均, 等. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 94-102.

    CHEN Junhao, ZENG Xiaohui, XIE Youjun, et al. Research on band gaps characteristics of multiple resonant cement-based phononic crystals[J]. Materials Reports, 2024, 38(12): 94-102(in Chinese).
    [13] LIU Y, AN X Y, CHEN H L, et al. Vibration attenuation of finite-size metaconcrete: Mechanism, prediction and verification[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106294. doi: 10.1016/j.compositesa.2021.106294
    [14] LEI L J, MIAO L C, LI C, et al. The effects of composite primitive cells on band gap property of locally resonant phononic crystal[J]. Modern Physics Letters B, 2021, 35(20): 2150334. doi: 10.1142/S0217984921503346
    [15] GOFFAUX C, SÁNCHEZ-DEHESA J, LAMBIN P. Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures[J]. Physical Review B, 2004, 70(18): 3352-3359.
    [16] GOFFAUX C, SÁNCHEZ-DEHESA J, YEYATI A L, et al. Evidence of Fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 225502. doi: 10.1103/PhysRevLett.88.225502
    [17] WANG G, SHAO L H, LIU Y Z, et al. Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals[J]. Chinese Physics, 2006, 15(8): 1843-1848. doi: 10.1088/1009-1963/15/8/036
    [18] HUANG G L, SUN C T. Band gaps in a multiresonator acoustic metamaterial[J]. Journal of Vibration and Acoustics, 2010, 132(3): 031003. doi: 10.1115/1.4000784
    [19] ZHOU X Q, WANG J, WANG R Q, et al. Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators[J]. Applied Physics A, 2016, 122(4): 427.
    [20] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials[J]. International Journal of Engineering Science, 2009, 47(4): 610-617. doi: 10.1016/j.ijengsci.2008.12.007
    [21] MIAO L C, LEI L J, LI C, et al. Vibration reduction of phononic-like crystal metaconcrete track bed for underground railway[J]. Journal of Materials in Civil Engineering, 2023, 35(8): 04023254. doi: 10.1061/JMCEE7.MTENG-15400
  • 加载中
图(32) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  147
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 修回日期:  2024-01-12
  • 录用日期:  2024-01-23
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回