留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梁式试验的UHPC-高强钢筋搭接黏结性能

邓明科 姚昕 张阳玺 靳梦娜 曹继涛

邓明科, 姚昕, 张阳玺, 等. 基于梁式试验的UHPC-高强钢筋搭接黏结性能[J]. 复合材料学报, 2024, 41(10): 5527-5539. doi: 10.13801/j.cnki.fhclxb.20240011.002
引用本文: 邓明科, 姚昕, 张阳玺, 等. 基于梁式试验的UHPC-高强钢筋搭接黏结性能[J]. 复合材料学报, 2024, 41(10): 5527-5539. doi: 10.13801/j.cnki.fhclxb.20240011.002
DENG Mingke, YAO Xin, ZHANG Yangxi, et al. Bonding properties of UHPC-high strength rebar based on beam test[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5527-5539. doi: 10.13801/j.cnki.fhclxb.20240011.002
Citation: DENG Mingke, YAO Xin, ZHANG Yangxi, et al. Bonding properties of UHPC-high strength rebar based on beam test[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5527-5539. doi: 10.13801/j.cnki.fhclxb.20240011.002

基于梁式试验的UHPC-高强钢筋搭接黏结性能

doi: 10.13801/j.cnki.fhclxb.20240011.002
基金项目: 国家自然科学基金(52108173)
详细信息
    通讯作者:

    张阳玺,博士,副教授,硕士生导师,研究方向为新材料及结构加固 E-mail: yangxizhang@xauat.edu.cn

  • 中图分类号: TU528;TU317.1;TB333

Bonding properties of UHPC-high strength rebar based on beam test

Funds: National Natural Science Foundation of China (52108173)
  • 摘要: 为了研究高强钢筋与超高性能混凝土(UHPC) 的黏结性能,通过梁式搭接试验,设计制作了9根搭接梁,分析了钢筋搭接长度、钢纤维掺量、机械锚固措施对搭接梁中高强钢筋与UHPC黏结性能的影响。结果表明:采用UHPC连接的搭接梁,搭接段受拉钢筋与混凝土具有更优异的黏结性能;随着钢筋搭接长度的增加,搭接梁的峰值荷载提高,但平均黏结强度逐渐减小;搭接梁的峰值荷载和黏结强度随着钢纤维掺量的增大而增大;采用机械锚固措施处理后的搭接梁,具有更高的峰值荷载和黏结强度,其中采用弯钩处理的搭接梁峰值荷载和黏结强度提升最为明显,分别提高了212.4%、199.4%,并且搭接钢筋发生屈服。根据搭接梁达到峰值荷载时轴力和弯矩的平衡条件,计算出搭接梁中钢筋的最大拉应力,进一步建立钢筋与UHPC平均黏结强度的计算方法,并与中心拉拔试验、对拉搭接试验结果进行对比。

     

  • 图  1  梁大样图及俯视图

    Figure  1.  Sample and top view of beam

    1—C40 precast concrete sections; 2—A8@100; 3—Rough surface concave and convex depth 6 mm; 4—Post-cast section

    图  2  梁截面配筋图及键槽示意图

    Figure  2.  Beam cross-section reinforcement diagram and keyway schematics

    图  3  机械锚固措施图

    Figure  3.  Mechanical anchorage measure diagram

    d—Steel bar diameter

    图  4  试件制作图

    Figure  4.  Specimen fabrication diagram

    图  5  哑铃型试件示意图 (单位:mm)

    Figure  5.  Schematic diagram of dumbbell type specimen (Unit: mm)

    图  6  试验加载装置及测点布置图

    Figure  6.  Layout of test loading device and measuring point

    1—Displacement meter; 2—Concrete strain gauge; 3—Pressure sensor; 4—Reaction beam; 5—Hydraulic jack; 6—Distribution beam; 7—Test beam

    图  7  钢筋测点布置

    Figure  7.  Layout of reinforcement measuring points

    图  8  UHPC-高强钢筋梁式搭接试件破坏示意图

    Figure  8.  Schematic diagram of UHPC-high strength rebar beam lap test specimen failure

    图  9  UHPC-高强钢筋梁式搭接试件荷载-挠度曲线

    Figure  9.  Load-deflection curves of UHPC-high strength rebar beam lap test specimen

    图  10  UHPC-高强钢筋梁式搭接试件跨中混凝土应变分析

    Figure  10.  Strain analysis of plane section of UHPC-high strength rebar beam lap test specimen

    F—Load (less than or equal to ultimate load); Fu—Ultimate load of the specimen

    图  11  UHPC-高强钢筋梁式搭接试件搭接段钢筋应变分析

    Figure  11.  Strain analysis of steel bar in lap section of UHPC-high strength rebar beam lap test specimen

    图  12  钢筋应力计算示意图

    Figure  12.  Schematic diagram of reinforcement stress calculation

    $ h $—Beam height; b—Beam width; $ {h_{\text{0}}} $—Effective height of beam; $ {d'} $—Distance from the point of action of the combined forces of the compression reinforcement to the outer edge of the beam; $ {A_{\text{s}}} $—Cross-sectional area of tensile reinforcement; $ {A_{\text{s}}^{\prime}} $—Cross-sectional area of compression reinforcement; $ {x_{\text{c}}} $—Height of compression zone of beam section; $ m $—The depth of the extreme UHPC tensile fiber below the neutral axis; $ {\varepsilon _{\text{t}}} $—Calculated tensile strain of UHPC; $ {\varepsilon _{\text{u}}} $—Compressive strain of UHPC at the extreme compression fiber; $ {\varepsilon _{\text{s}}} $—Actual strain in tensile reinforcement; $ {\varepsilon _{\text{s}}^{\prime}} $—Actual strain in compression reinforcement; $ {f_{\text{y}}} $—Yield stress of tensile reinforcement; $ {f_{\text{y}}^{\prime}} $—Yield stress of compression reinforcement; $ {f_{\text{t}}} $—Measured uniaxial tensile strength of dumbbell specimens; $ {\sigma _{\text{c}}} $—Compressive stress of UHPC at the extreme compression fiber; $ {T_{\text{s}}} $—Combined force of tensile reinforcement; $ {T_{{\text{UHPC}}}} $—Combined force of UHPC in the tension zone; $ {C_{\text{s}}} $—Combined force of compression reinforcement; $ {C_{{\text{UHPC}}}} $—Combined pressure of UHPC in the pressure zone

    图  13  钢筋搭接长度对黏结强度的影响

    Figure  13.  Influence of lap length on bond strength

    图  14  钢纤维掺量对黏结强度的影响

    Figure  14.  Infulence of steel fiber content on bonding strength

    图  15  机械锚固措施对黏结强度的影响

    Figure  15.  Influence of mechanical anchoring measures on bond strength

    表  1  梁式搭接试验试件参数设计及钢筋应力计算结果

    Table  1.   Parameter design of beam lap test specimen and results of reinforcement stress calculation

    Number Type L Lap form Vf/vol% Peak load/kN fs/MPa Yield or not
    B1
    B2
    C80
    UHPC
    3d
    3d
    Straight rebar lap
    Straight rebar lap
    2
    2
    23.5
    95.2

    187
    Not
    Not
    B3 UHPC 8d Straight rebar lap 2 207.8 449 Not
    B4 UHPC 12d Straight rebar lap 2 231.1 494 Not
    B5 UHPC 3d Straight rebar lap 3 145.3 302 Not
    B6 UHPC 3d Hook treatment 2 297.4 560 Yield
    B7 UHPC 3d Anchor plate 2 124.1 257 Not
    B8 UHPC 3d One side weld 2 124.3 257 Not
    B9 UHPC 3d Two side weld 2 188.0 403 Not
    Notes: Type—Type of post-cast concrete in lap section; UHPC—Ultra-high-performance concrete; L—Lap length (Lap form-different mechanical anchorage measures); Vf—Fibre volume fraction; fs—Calculated tensile strength of rebar.
    下载: 导出CSV

    表  2  超高性能混凝土(UHPC)材料性能

    Table  2.   Material properties of UHPC

    Vf/vol% fcu/MPa fc/MPa ft/MPa
    2 123.3 113.2 6.22
    3 135.6 122.7 7.01
    Notes: fcu—Cubic compressive strength; fc—Prismatic compressive strength; ft—Tensile strength.
    下载: 导出CSV

    表  3  钢筋力学性能

    Table  3.   Mechanical properties of reinforcement

    Strength grade Diameter/
    mm
    Yield strength/
    MPa
    Ultimate strength/
    MPa
    HPB300 8 357 529
    HRB500 20 560 715
    下载: 导出CSV

    表  4  UHPC-高强钢筋梁式试验对比

    Table  4.   Test comparison of UHPC-high strength rebar beam lap test

    Number Type L Vf/vol% Lap form Center pull-out test Brace lap test Beam lap test τu2/τu1 τu3/τu2
    τu1/MPa Failure mode τu2/MPa Failure mode τu3/MPa Failure mode
    B1
    B2
    C80
    UHPC
    3d
    3d
    0
    2
    Straight rebar lap
    Straight rebar lap
    19.2
    35.6
    SPF
    SPF
    12.1
    23.1
    SPF BOF 0.63
    SPF 15.6 BOF 0.65 0.68
    B3 UHPC 8d 2 Straight rebar lap 20.8 SPF 16.2 SPF 14.0 BOF 0.78 0.86
    B4 UHPC 12d 2 Straight rebar lap 14.4 RF 12.3 RF 10.3 BOF 0.85 0.84
    B5 UHPC 3d 3 Straight rebar lap 49.7 SPF 27.6 SPF 25.2 BOF 0.56 0.91
    B6 UHPC 3d 2 Hook treatment 50.7 RF 46.7 BEF 0.92
    B7 UHPC 3d 2 Anchor plate 25.2 SPF 21.4 BOF 0.85
    B8 UHPC 3d 2 One side weld 27.1 SPF 21.4 BOF 0.79
    B9 UHPC 3d 2 Two side weld 28.4 SPF 33.6 BOF 1.18
    Notes: All the above specimens are made of HRB500 grade rebar, diameter is 20 mm, the concrete protective layer is 1.5d; τu1—Bond strength obtained by center poll-out test; τu2—Bond strength obtained by brace lap test; τu3—Bond strength obtained by beam lap test; SPF and RF represent the splitting pull-out failure and steel bar rupture failure respectively; BOF and BEF represent the bonding failure of steel bars and the bending failure of lap beams respectively.
    下载: 导出CSV

    表  5  UHPC-高强钢筋搭接长度计算

    Table  5.   Lap length calculation of UHPC-high strength rebar

    Lap
    length
    Vf/vol% Mechanical anchoring measures
    3 Straight
    rebar lap
    Hook treatment Anchor plate One side weld
    lsy 9.8d 11.6d 6.7d 9.4d 8.6d
    lsu 13.7d 16.0d 10.9d 13.6d 12.6d
    Notes: lsy—Minimum lap length of steel bar yield; lsu—Minimum lap length of steel bar rupture.
    下载: 导出CSV
  • [1] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13.

    SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13(in Chinese).
    [2] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high-performance concrete[J]. Joural of Architecture and Civil Engineering, 2014, 31(3): 1-24(in Chinese). doi: 10.3969/j.issn.1673-2049.2014.03.002
    [3] LI J, WU Z, SHI C, et al. Durability of ultra-high performance concrete—A review[J]. Construction and Building Materials, 2020, 255: 119296. doi: 10.1016/j.conbuildmat.2020.119296
    [4] TSIOTSIAS K, PANTAZOPOULOU S J. Bond behavior of high-performance fiber reinforced concrete (HPFRC) under direct tension pullout[J]. Engineering Structures, 2021, 243: 112701. doi: 10.1016/j.engstruct.2021.112701
    [5] KOOK K H, SHIN H O, KWAHK I J, et al. Bond characteristics of ultra high performance concrete[J]. Journal of the Korea Concrete Institute, 2010, 22(6): 753-760. doi: 10.4334/JKCI.2010.22.6.753
    [6] DENG E F, ZHANG Z, ZHANG C X, et al. Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge[J]. Engineering Structures, 2023, 275: 115314. doi: 10.1016/j.engstruct.2022.115314
    [7] LI L, JIANG Z. Flexural behavior and strut-and-tie model of joints with headed bar details connecting precast members[J]. Perspectives in Science, 2016, 7: 253-260. doi: 10.1016/j.pisc.2015.11.041
    [8] JIANG H, HU Z, FENG J, et al. Flexural behavior of UHPC-filled longitudinal connections with non-contacting lap-spliced reinforcements for narrow joint width[J]. Structures, 2022, 39: 620-636. doi: 10.1016/j.istruc.2022.03.017
    [9] DAGENAIS M A, MASSICOTTE B. Tension lap splices strengthened with ultrahigh-performance fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2015, 27(7): 04014206. doi: 10.1061/(ASCE)MT.1943-5533.0001169
    [10] 冯军骁, 郑七振, 龙莉波, 等. 超高性能混凝土连接的预制梁受弯性能试验研究[J]. 工业建筑, 2017, 47(8): 59-65.

    FENG Junxiao, ZHENG Qizhen, LONG Libo, et al. Experimental studies of flexural behavior of precast ultra-high-performance concrete beam[J]. Industrial Construction, 2017, 47(8): 59-65(in Chinese).
    [11] ALKAYSI M, EL-TAWIL S. Factors affecting bond development between ultra high performance concrete (UHPC) and steel bar reinforcement[J]. Construction and Building Materials, 2017, 144: 412-422. doi: 10.1016/j.conbuildmat.2017.03.091
    [12] BAE B I, CHOI H K, CHOI C S. Bond stress between conventional reinforcement and steel fibre reinforced reactive powder concrete[J]. Construction and Building Materials, 2016, 112: 825-835. doi: 10.1016/j.conbuildmat.2016.02.118
    [13] HU A, LIANG X, SHI Q. Bond characteristics between high-strength bars and ultrahigh-performance concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019323. doi: 10.1061/(ASCE)MT.1943-5533.0002919
    [14] 梁芮, 黄远. 高强钢筋与超高性能混凝土黏结性能试验研究[J]. 建筑结构学报, 2022, 43(9): 294-302.

    LIANG Rui, HUANG Yuan. Experimental study on the bond performance between high strength steel rebar and ultra-high-performance concrete[J]. Journal of Building Structures, 2022, 43(9): 294-302(in Chinese).
    [15] 邓宗才, 袁常兴. 高强钢筋与活性粉末混凝土黏结性能的试验研究[J]. 土木工程学报, 2014, 47(3): 69-78.

    DENG Zongcai, YUAN Changxing. Experimental study on bond capability between high strength rebar and reactive powder concrete[J]. China Civil Engineering Journal, 2014, 47(3): 69-78(in Chinese).
    [16] 韩方玉, 刘建忠, 刘加平, 等. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(S1): 244-248.

    HAN Fangyu, LIU Jianzhong, LIU Jiaping, et al. Study on anchorage behavior of steel bar in ultra-high-performance concrete[J]. Materials Reports, 2019, 33(S1): 244-248(in Chinese).
    [17] 李艳艳, 赵银磊, 武凯, 等. 高强钢筋与超高性能混凝土粘结性能及可靠度分析[J/OL]. 工程力学, 1-10. http://kns.cnki.net/kcms/detail/11.2595.O3.20230731.1427.026.html.

    LI Yanyan, ZHAO Yinlei, WU Kai, et al. Bond property and reliability analysis between high strength rebar and ultra-high-performance concrete[J/OL]. Engineering Mechanics, 1-10. http://kns.cnki.net/kcms/detail/11.2595.O3.20230731.1427.026.html. (in Chinese).
    [18] LAGIER F, MASSICOTTE B, CHARRON J P. Bond strength of tension lap splice specimens in UHPFRC[J]. Construction and Building Materials, 2015, 93: 84-94. doi: 10.1016/j.conbuildmat.2015.05.009
    [19] 方志, 陈潇, 张门哲, 等. 活性粉末混凝土中带肋钢筋搭接性能试验研究[J]. 土木工程学报, 2019, 52(3): 20-28, 49.

    FANG Zhi, CHEN Xiao, ZHANG Menzhe, et al. Experimental study on performance of lap-spliced ribbed steel bars in reactive powder concrete[J]. China Civil Engineering Journal, 2019, 52(3): 20-28, 49(in Chinese).
    [20] 马福栋, 邓明科, 孙宏哲, 等. 变形钢筋/超高性能混凝土搭接黏结性能[J]. 复合材料学报, 2021, 38(11): 3912-3924.

    MA Fudong, DENG Mingke, SUN Hongzhe, et al. Bond behavior of deformed steel bars lap-splice in ultra-high-performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3912-3924(in Chinese).
    [21] AL-QURAISHI H, AL-FARTTOOSI M, ABDULKHUDHUR R. Tension lap splice length of reinforcing bars embedded in reactive powder concrete (RPC)[J]. Structures, 2019, 19: 362-368. doi: 10.1016/j.istruc.2018.12.011
    [22] RONANKI V S, AALETI S, VALENTIM D B. Experimental investigation of bond behavior of mild steel reinforcement in UHPC[J]. Engineering Structures, 2018, 176: 707-718. doi: 10.1016/j.engstruct.2018.09.031
    [23] HUNG C C, YUEN T Y, HUANG C W, et al. Tension lap splices in UHPC beams: Influence of rebar size, steel fibers, splice length, and coarse aggregate[J]. Journal of Building Engineering, 2022, 55: 104716.

    HUNG C C, YUEN T Y, HUANG C W, et al. Tension lap splices in UHPC beams: Influence of rebar size, steel fibers, splice length, and coarse aggregate[J]. Journal of Building Engineering, 2022, 55: 104716.
    [24] 梁芮, 黄远. 超高性能混凝土与钢筋劈裂黏结强度试验研究[J]. 建筑结构学报, 2024, 45(6): 254-261.

    LIANG Rui, HUANG Yuan. Experimental study on bond splitting strength of ultra-high-performance concrete with steel bars[J]. Journal of Building Structures, 2024, 45(6): 254-261(in Chinese).
    [25] 邱明红, 邵旭东, 胡伟业, 等. 钢筋UHPC矩形截面受弯构件的钢筋应力简化计算[J]. 中国公路学报, 2021, 34(8): 106-116.

    QIU Minghong, SHAO Xudong, HU Weiye, et al. Siplified calculation of reinforcement stress in reinforced UHPC bending members with rectangular sections[J]. China Journal of Highway and Transport, 2021, 34(8): 106-116(in Chinese).
    [26] 徐明雪, 梁兴文, 汪萍, 等. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8): 70-78. doi: 10.6052/j.issn.1000-4750.2018.06.0307

    XU Mingxue, LIANG Xingwen, WANG Ping, et al. Theoretical investigation on normal section flexural capacity of UHPC beams[J]. Engineering Mechanics, 2019, 36(8): 70-78(in Chinese). doi: 10.6052/j.issn.1000-4750.2018.06.0307
    [27] 靳梦娜. 高强钢筋与超高性能混凝土黏结性能试验研究[D]. 西安: 西安建筑科技大学, 2022.

    JIN Mengna. Experimental study on bonding performance concrete between high strength steel bar and ultra-high-performance concrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2022(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  203
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2023-12-24
  • 录用日期:  2024-01-03
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回