Properties of microwave absorbers formed by fused deposition modeling with Fe3O4-MWCNTs/PLA composite wire
-
摘要: 具有轻质高强、宽吸收带、薄厚度和热稳定性的电磁吸收材料是实现微波吸收应用的核心要求。本文以聚乳酸(PLA)为基体,Fe3O4和多壁碳纳米管(MWCNTs)为填料,通过球磨混合和熔融挤出法制备出Fe3O4-MWCNTs/PLA复合线材,利用熔融沉积成型(FDM)制备出Fe3O4-MWCNTs/PLA复合材料。采用XRD、SEM和矢量网络分析仪分别对复合材料的物相结构、微观形貌和电磁特性进行了表征,并研究了Fe3O4含量对复合材料吸波性能的影响。Fe3O4与MWCNTs-PLA复合形成的复合吸波材料质量轻、稳定性好、介电性能可调,因其良好的阻抗匹配和电磁波衰减能力而表现出优异的宽带吸收能力。实验结果表明:Fe3O4含量达到25wt%,厚度为1.4 mm时,反射损耗达到−48.5 dB,有效吸收带宽达到6.78 GHz (10.38~17.16 GHz),表现出优异的微波吸收性能。Abstract: Electromagnetic absorbing materials with light weight, high strength, wide absorption band, thin thickness and thermal stability are the core requirements for microwave absorption applications. In this paper, Fe3O4-MWCNTs/PLA composite wires were prepared by ball milling mixing and melt extrusion using polylactic acid (PLA) as matrix, Fe3O4 and multi-walled carbon nanotubes (MWCNTs) as fillers, and Fe3O4-MWCNTs/PLA composites were prepared by melt deposition molding (FDM). The phase structure, microstructure and electromagnetic properties of the composites were characterized by XRD, SEM and vector network analyzer, respectively. The composite absorbing material of Fe3O4-MWCNTs/PLA has light weight, good stability, and adjustable dielectric properties, which exhibits excellent broadband absorption ability due to its good impedance matching and electromagnetic wave attenuation ability. The experimental results show that when the Fe3O4 content reaches 25wt% and the thickness is 1.4 mm, the reflection loss reaches −48.5 dB and the effective absorption bandwidth reaches 6.78 GHz (10.38-17.16 GHz), showing excellent microwave absorption performance.
-
Key words:
- dielectric loss /
- magnetic loss /
- Fe3O4 /
- carbon nanotube /
- impedance matching
-
图 5 不同Fe3O4含量的Fe3O4-MWCNTs/PLA复合材料SEM图像:(a) 6%MWCNTs/PLA;(b) 10%Fe3O4-6%MWCNTs/PLA;(c) 15%Fe3O4-6%MWCNTs/PLA;(d) 20%Fe3O4-6%MWCNTs/PLA;((e), (f)) 25%Fe3O4-6%MWCNTs/PLA
Figure 5. SEM images of Fe3O4-MWCNTs/PLA composites with different Fe3O4 contents: (a) 6%MWCNTs/PLA; (b) 10%Fe3O4-6%MWCNTs/PLA; (c) 15%Fe3O4-6%MWCNTs/PLA; (d) 20%Fe3O4-6%MWCNTs/PLA; ((e), (f)) 25%Fe3O4-6%MWCNTs/PLA
图 7 Fe3O4-MWCNTs/PLA复合材料的电磁参数:(a) 复介电常数实部;(b) 复介电常数虚部;(c) 介电损耗角正切;(d) 复磁导率实部;(e) 复磁导率虚部;(f) 磁损耗角正切
Figure 7. Electromagnetic parameters of Fe3O4-MWCNTs/PLA composites: (a) Real part of complex permittivity; (b) Imaginary part of complex permittivity; (c) Dielectric loss tangent; (d) Real part of complex permeability; (e) Imaginary part of complex permeability; (f) Magnetic loss tangent
图 10 6%MWCNTs/PLA ((a), (a1))、10%Fe3O4-6%MWCNTs/PLA ((b), (b1))、15%Fe3O4-6%MWCNTs/PLA ((c), (c1))、20%Fe3O4-6%MWCNTs/PLA ((d), (d1))和25%Fe3O4-6%MWCNTs/PLA ((e), (e1))的反射损耗曲线图与3D颜色映射曲面图
Figure 10. Reflection loss curves and 3D color mapping surfaces of 6%MWCNTs/PLA ((a), (a1)), 10%Fe3O4-6%MWCNTs/PLA ((b), (b1)), 15%Fe3O4-6%MWCNTs/PLA ((c), (c1)), 20%Fe3O4-6%MWCNTs/PLA ((d), (d1)), 25%Fe3O4-6%MWCNTs/PLA ((e), (e1))
LR, min—Minimal reflection loss; d—Thickness; EAB—Effective absorption bandwidth
表 1 Fe3O4-多壁碳纳米管(MWCNTs)/聚乳酸(PLA)复合材料的成分
Table 1. Ingredients of Fe3O4-multi-walled carbon nanotubes (MWCNTs)/polylactic acid (PLA) composites
Sample Mass fraction/wt% PLA MWCNTs Fe3O4 6%MWCNTs/PLA 94 6 0 10%Fe3O4-6%MWCNTs/PLA 84 6 10 15%Fe3O4-6%MWCNTs/PLA 79 6 15 20%Fe3O4-6%MWCNTs/PLA 74 6 20 25%Fe3O4-6%MWCNTs/PLA 69 6 25 表 2 Fe3O4-MWCNTs/PLA复合粉末DSC曲线对应的数据
Table 2. DSC data of Fe3O4-MWCNTs/PLA composite powders
Sample Tm/℃ Tc/℃ Tg/℃ 6%MWCNTs/PLA 113.2 98.88 86.48 10%Fe3O4-6%MWCNTs/PLA
15%Fe3O4-6%MWCNTs/PLA
20%Fe3O4-6%MWCNTs/PLA
25%Fe3O4-6%MWCNTs/PLA112.6
112.8
112.7
112.798.47
98.37
98.34
98.3785.67
85.68
85.65
85.45Notes: Tm—Melting temperature; Tc—Crystallization temperature; Tg—Glass transition temperature. 表 3 近3年文献中报道的Fe3O4复合材料与本文制备的复合材料吸波性能对比
Table 3. Comparison of the absorbing properties of Fe3O4 composites reported in the literature in the past three years and the composites prepared in this paper
Material Loading/wt% Matrix LR, min/dB (Thickness) EAB/GHz Ref. Fe3O4@f-GNPs
RGO-Fe3O4
CF/Fe3O4
Fe3O4/MDCF
Palygorskite/Fe3O4
Fe3O4@Ti3C2Tx/CNTs
Fe3O4/RGO@PANI
Fe3O4@RGO
Fe3O4@2H-MoS2
ZnO/Fe3O4
25%Fe3O4-6%MWCNTs/PLA70
35
50
70
50
20
60
60
60
70
31Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
Paraffin
PLA−25.00 (2 mm)
−34.40 (1.6 mm)
−19.00 (1.5 mm)
−26.45 (5 mm)
−40.41 (5.9 mm)
−40.01 (2 mm)
−46.49 (2.5 mm)
−49.40 (1.75 mm)
−50.00 (1.9 mm)
−51.10 (2.2 mm)
−48.50 (1.4 mm)2.40
3.80
4.80
4.28
4.80
5.80
4.25
3.96
4.20
5.28
6.78[34]
[33]
[35]
[36]
[38]
[39]
[40]
[43]
[47]
[49]
This workNotes: EAB—Effective absorption bandwidth (LR, min≤−10 dB); f-GNPs—Graphene nanosheets; RGO—Graphene; CF—Foamed carbon; MDCF—Reticulated foam carbon; CNTs—Carbon nanotubes; PANI—Polyaniline. -
[1] FENG W X, LIU Y Y, BI Y X, et al. Recent advancement of magnetic MOF composites in microwave absorption[J]. Synthetic Metals,2023,294:117307. doi: 10.1016/j.synthmet.2023.117307 [2] HUANG Y, JI J D, CHEN Y, et al. Broadband microwave absorption of Fe3O4-BaTiO3 composites enhanced by interfacial polarization and impedance matching[J]. Composites Part B: Engineering,2019,163:598-605. doi: 10.1016/j.compositesb.2019.01.008 [3] SUN Y, ZHANG J W, ZONG Y, et al. Crystalline-amorphous permalloy@iron oxide core-shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents[J]. ACS Applied Materials & Interfaces,2019,11(6):6374-6383. [4] WANG Z J, WU L N, ZHOU J G, et al. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber[J]. Journal of Physical Chemistry C,2013,117(10):5446-5452. doi: 10.1021/jp4000544 [5] YANG H J, CAO W Q, ZHANG D Q, et al. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature[J]. ACS Applied Materials & Interfaces,2015,7(13):7073-7077. doi: 10.1021/acsami.5b01122 [6] ZHANG X J, WANG G S, CAO W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS Applied Materials & Interfaces,2014,6(10):7471-7478. [7] CHE R, PENG L M, DUAN X, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials,2004,16(5):401-405. doi: 10.1002/adma.200306460 [8] CHANG Q, LIANG H S, SHI B, et al. Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption[J]. IScience,2022,25(3):103925. doi: 10.1016/j.isci.2022.103925 [9] DENG Y F, ZHENG Y, ZHANG D F, et al. A novel and facile-to-synthesize three-dimensional honeycomb-like nano-Fe3O4@C composite: Electromagnetic wave absorption with wide bandwidth[J]. Carbon,2020,169:118-128. doi: 10.1016/j.carbon.2020.05.021 [10] LIANG C B, SONG P, MA A J, et al. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution[J]. Composites Science and Technology,2019,181:107683. doi: 10.1016/j.compscitech.2019.107683 [11] BHASKARA RAO B V, JENA M, AEPURU R, et al. Superior electromagnetic wave absorption performance of Fe3O4 modified graphene assembled porous carbon (mGAPC) based hybrid foam[J]. Materials Chemistry and Physics,2022,290:126512. doi: 10.1016/j.matchemphys.2022.126512 [12] YIN J H, XU X H, JI J D, et al. Synthesis and microwave absorption properties of Fe3O4/CuS composites[J]. Physica Status Solidi A: Applications and Materials Science,2022,219(22):2200189. [13] LIU P B, HUANG Y, ZHANG X. Synthesis and excellent microwave absorption properties of graphene/polypyrrole composites with Fe3O4 particles prepared via a co-precipitation method[J]. Materials Letters,2014,129:35-38. doi: 10.1016/j.matlet.2014.04.194 [14] NIU Y, GUO A P, WANG S W, et al. Enhanced wave absorption properties of the flexible composites (MWCNTs/PVDF) with low filler content[J]. Science of Advanced Materials,2017,9(12):2090-2095. doi: 10.1166/sam.2017.3122 [15] WANG H, XING H L, LIU Q C, et al. Synthesis and microwave absorbing properties of CeO2/multi-walled carbon nanotubes composites[J]. Journal of Materials Science: Materials in Electronics,2018,29(22):19308-19315. doi: 10.1007/s10854-018-0057-2 [16] WANG X X, FU K, WEN X Y, et al. Oxygen vacancy boosted microwave absorption in CeO2 hollow nanospheres[J]. Applied Surface Science,2022,598:153826. doi: 10.1016/j.apsusc.2022.153826 [17] 熊益军, 王岩, 王强, 等. 一种基于3D打印技术的结构型宽频吸波超材料[J]. 物理学报, 2018, 67(8):106-133.XIONG Yijun, WANG Yan, WANG Qiang, et al. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Physica Sinica,2018,67(8):106-133(in Chinese). [18] MEI H, YANG W Q, YANG D, et al. Metamaterial absorbers towards broadband, polarization insensitivity and tunability[J]. Optics and Laser Technology,2022,147:107627. doi: 10.1016/j.optlastec.2021.107627 [19] 刘洋子健, 夏春蕾, 张均, 等. 熔融沉积成型3D打印技术应用进展及展望[J]. 工程塑料应用, 2017, 45(3):130-133.LIU Yangzijian, XIA Chunlei, ZHANG Jun, et al. Application progress and prospect of fused deposition modeling 3D printing technology[J]. Engineering Plastics Application,2017,45(3):130-133(in Chinese). [20] WU T Y, HUAN X H, JIA X L, et al. 3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers[J]. Composites Part B: Engineering,2022,233:109658. doi: 10.1016/j.compositesb.2022.109658 [21] YIN L X, TIAN X Y, SHANG Z T, et al. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing[J]. Materials Letters,2019,239:132-135. doi: 10.1016/j.matlet.2018.12.087 [22] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):158-168.WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):158-168(in Chinese). [23] 中国国家标准化管理委员会. 塑料拉伸性能的测定第4部分: 各向同性和正交各向异性纤维增强复合材料的试验条件: GB/T 1040.4—2006[S]. 北京: 中国标准出版社, 2006.Standardization Administration of the People's Republic of China. Determination of tensile properties of plastics—Part 4: Test conditions for isotropic and orthotropic fiber-reinforced composites: GB/T 1040.4—2006[S]. Beijing: Standards Press of China, 2006(in Chinese). [24] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302.YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). [25] ZHU Y F, NI Q Q, FU Y Q. One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: Synthesis and electromagnetic absorption properties[J]. RSC Advances,2015,5(5):3748-3756. doi: 10.1039/C4RA11784K [26] PRASAD C, MURTHY P K, KRISHNA R H H, et al. Bio-inspired green synthesis of RGO/Fe3O4 magnetic nanoparticles using Murrayakoenigii leaves extract and its application for removal of Pb(II) from aqueous solution[J]. Journal of Environmental Chemical Engineering,2017,5(5):4374-4380. doi: 10.1016/j.jece.2017.07.026 [27] MALEKI S T, BABAMORADI M, ROUHI M, et al. Facile hydrothermal synthesis and microwave absorption of halloysite/polypyrrole/Fe3O4[J]. Synthetic Metals,2022,290:117142. doi: 10.1016/j.synthmet.2022.117142 [28] TABAR MALEKI S, SADATI S J. Synthesis and investigation of hyperthermia properties of Fe3O4/HNTs magnetic nanocomposite[J]. Inorganic Chemistry Communications,2022,145:110000. doi: 10.1016/j.inoche.2022.110000 [29] SAINI P, CHOUDHARY V, SINGH B P, et al. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding[J]. Materials Chemistry and Physics,2009,113(2-3):919-926. doi: 10.1016/j.matchemphys.2008.08.065 [30] 叶喜葱, 高琦, 何恩义, 等. 熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能[J]. 复合材料学报, 2023, 40(5):2759-2771.YE Xicong, GAO Qi, HE Enyi, et al. Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2023,40(5):2759-2771(in Chinese). [31] SHU R W, WU Y, ZHANG J B, et al. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption[J]. Composites Part B: Engineering,2020,193:108027. doi: 10.1016/j.compositesb.2020.108027 [32] ZHAO X N, NIE X Y, LI Y, et al. A layered double hydroxide-derived exchange spring magnet array grown on graphene and its application as an ultrathin electromagnetic wave absorbing material[J]. Journal of Materials Chemistry C,2019,7(39):12270-12277. doi: 10.1039/C9TC03254A [33] DU Z H, CHEN X B, ZHANG Y W, et al. One-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorption[J]. Materials,2020,13(14):3065. doi: 10.3390/ma13143065 [34] JIANG S, QIAN K, YU K J, et al. Controllable synthesis and microwave absorption properties of Fe3O4@f-GNPs nanocomposites[J]. Composites Communications,2020,20:100363. doi: 10.1016/j.coco.2020.100363 [35] LIANG Y Q, YIN X Q, ZHANG Y Q, et al. Electromagnetic response and microwave absorption properties of CF/Fe3O4 absorbing composites[J]. Journal of Materials Science: Materials in Electronics,2022,33(4):2152-2165. doi: 10.1007/s10854-021-07422-z [36] JIANG S, QIAN K, YU K J, et al. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption[J]. Chemical Physics Letters,2021,779:138873. doi: 10.1016/j.cplett.2021.138873 [37] SHU R W, WAN Z L, ZHANG J B, et al. Facile design of three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers[J]. ACS Applied Materials & Interfaces,2020,12(4):4689-4698. [38] WANG S, REN H D, LIAN W, et al. Purification and dissociation of raw palygorskite through wet ball milling as a carrier to enhance the microwave absorption performance of Fe3O4[J]. Applied Clay Science,2021,200:105915. doi: 10.1016/j.clay.2020.105915 [39] ZHANG C, WU Z C, XU C Y, et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption[J]. Small,2022,18(3):2104380. doi: 10.1002/smll.202104380 [40] CAI H P, FENG C C, XIAO H B, et al. Synthesis of Fe3O4/RGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties[J]. Journal of Alloys and Compounds,2022,893:162227. doi: 10.1016/j.jallcom.2021.162227 [41] LIU X G, GENG D Y, MENG H, et al. Microwave-absorption properties of ZnO-coated iron nanocapsules[J]. Applied Physics Letters,2008,92(17):214-216. [42] WANG Y M, WANG L D, WU H J, et al. Enhanced microwave absorption properties of α-Fe₂O₃-filled ordered mesoporous carbon nanorods[J]. Materials,2013,6(4):1520-1529. doi: 10.3390/ma6041520 [43] QIAN C Y, LIANG X H, WU M, et al. Lightweight chain-typed magnetic Fe3O4@RGO composites with enhanced microwave-absorption properties[J]. Nanomaterials,2022,12(20):3699. doi: 10.3390/nano12203699 [44] DU J H, ZHAO L, ZENG Y, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure[J]. Carbon,2011,49(4):1094-1100. doi: 10.1016/j.carbon.2010.11.013 [45] ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. doi: 10.1016/j.jcis.2020.09.122 [46] XU D W, YANG S, CHEN P, et al. 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties[J]. Journal of Alloys and Compounds,2019,782:600-610. doi: 10.1016/j.jallcom.2018.12.239 [47] WANG H P, ZHOU Y, XING H N, et al. Construction of flower-like core-shell Fe3O4@2H-MoS2 heterostructures: Boosting the interfacial polarization for high-performance microwave absorption[J]. Ceramics International,2022,48(7):9918-9926. doi: 10.1016/j.ceramint.2021.12.196 [48] JIAN X, WU B, WEI Y F, et al. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. ACS Applied Materials & Interfaces,2016,8(9):6101-6109. [49] SU Z W, DAI P, YANG M N, et al. ZnO/Fe3O4 nanoparticles encapsulated in N-doped porous carbon for extraordinary microwave absorption[J]. Journal of Electronic Materials,2023,52(2):1233-1241. doi: 10.1007/s11664-022-10074-2 [50] CAO F H, XU J, LIU M J, et al. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2022,108:1-9. [51] LI N N, SHU R W, ZHANG J B, et al. Synthesis of ultralight three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite composite aerogel for highly efficient electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,596:364-375. doi: 10.1016/j.jcis.2021.03.143 [52] LI N, XIE X, LU H X, et al. Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties[J]. Ceramics International,2019,45(17):22880-22888. doi: 10.1016/j.ceramint.2019.07.331 [53] ZHANG X, WANG H H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. doi: 10.1016/j.apsusc.2019.03.264