留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯量子点-TiO2/聚丙烯酰胺荧光水凝胶的制备与性能

杜娟 田洪莉 何雨璇 张超 佘小红 朱雯莉 杨巧玲

杜娟, 田洪莉, 何雨璇, 等. 石墨烯量子点-TiO2/聚丙烯酰胺荧光水凝胶的制备与性能[J]. 复合材料学报, 2024, 41(4): 1968-1976. doi: 10.13801/j.cnki.fhclxb.20230831.001
引用本文: 杜娟, 田洪莉, 何雨璇, 等. 石墨烯量子点-TiO2/聚丙烯酰胺荧光水凝胶的制备与性能[J]. 复合材料学报, 2024, 41(4): 1968-1976. doi: 10.13801/j.cnki.fhclxb.20230831.001
DU Juan, TIAN Hongli, HE Yuxuan, et al. Preparation and properties of GQDs-TiO2/polyacrylamide fluorescent hydrogel[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1968-1976. doi: 10.13801/j.cnki.fhclxb.20230831.001
Citation: DU Juan, TIAN Hongli, HE Yuxuan, et al. Preparation and properties of GQDs-TiO2/polyacrylamide fluorescent hydrogel[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1968-1976. doi: 10.13801/j.cnki.fhclxb.20230831.001

石墨烯量子点-TiO2/聚丙烯酰胺荧光水凝胶的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230831.001
基金项目: 四川省科技计划项目(2022JDRC0090)
详细信息
    通讯作者:

    杜娟,博士,讲师,硕士生导师,研究方向为高强度水凝胶的设计合成及性能、有机无机纳米复合材料的制备及功能化 E-mail: dujuan@suse.edu.cn

  • 中图分类号: TB332

Preparation and properties of GQDs-TiO2/polyacrylamide fluorescent hydrogel

Funds: Sichuan Science and Technology Program (2022JDRC0090)
  • 摘要: 通过将原位溶胶-凝胶法和自由基聚合法巧妙相结合制备了一种坚固、荧光的杂化水凝胶石墨烯量子点-TiO2/聚丙烯酰胺(GQDs-TiO2/PAM)。在该杂化水凝胶中,同时充当多功能交联剂和纳米填料的TiO2和GQDs粒子与水凝胶网络中的亲水基团通过氢键等非共价键牢固地结合。PAM、TiO2和GQDs之间的强非共价键作用赋予该凝胶优异的力学性能。GQDs-TiO2/PAM (0.5wt%GQDs)水凝胶的断裂伸长率和抗拉强度分别高达2412%和181 kPa,为TiO2/PAM水凝胶的1.78和1.13倍。另外,GQDs的引入还赋予该复合水凝胶特殊的荧光性能,它能够在365 nm紫外光照射下发出明显的蓝色荧光。因此,该水凝胶在生物医药、重金属离子检测、荧光探针等领域有很大发展潜力。

     

  • 图  1  (a) GQDs-TiO2/聚丙烯酰胺(PAM)杂化水凝胶的形成过程示意图;TiO2溶胶(b)、AM-TiO2分散液(c)、AM-GQDs-TiO2分散液(d)及水凝胶(e)的照片

    Figure  1.  (a) Schematic diagram for the preparation of GQDs-TiO2/polyacrylamide (PAM) hybrid hydrogel; Photographs of TiO2 hydrosol (b), AM-TiO2 dispersion (c), AM-GQDs-TiO2 dispersion (d) and hydrogel (e)

    图  2  GQDs-TiO2/PAM杂化水凝胶(1wt%GQDs)的SEM图像

    Figure  2.  SEM image of the GQDs-TiO2/PAM hybrid hydrogels (1wt%GQDs)

    图  3  GQDs和TiO2/PAM、GQDs/PAM、GQDs-TiO2/PAM(1wt%GQDs) 水凝胶的FTIR图谱

    Figure  3.  FTIR spectra of GQDs, TiO2/PAM, GQDs/PAM, andGQDs-TiO2/PAM hydrogels (1wt%GQDs)

    图  4  GQDs-TiO2/PAM杂化水凝胶(1wt%GQDs)力学性能图片:(a) 交叉和拉伸;(b) 打结和拉伸;(c) 压缩和释放

    Figure  4.  Photographs of GQDs-TiO2/PAM hybrid hydrogels (1wt%GQDs) under external forces: (a) Cross-bended and stretched; (b) Knotted and stretched; (c) Compressed and released

    图  5  PAM、TiO2/PAM和GQDs-TiO2/PAM水凝胶拉伸应力-应变曲线 (GQDs含量为0wt%、0.5wt%、1wt%、3wt%)

    Figure  5.  Tensile stress-strain curves of PAM, TiO2/PAM and GQDs-TiO2/PAM hydrogels (GQDs contents are 0wt%, 0.5wt%, 1wt%, 3wt%)

    图  6  GQDs/PAM、TiO2/PAM及GQDs-TiO2/PAM (1wt%GQDs) 水凝胶的TG (a)和DTG (b)曲线

    Figure  6.  TG (a) and DTG (b) curves of GQDs/PAM, TiO2/PAM, and GQDs-TiO2/PAM (1wt%GQDs) hydrogels

    图  7  GQDs-TiO2/PAM杂化水凝胶(1wt%GQDs)在365 nm紫外光下的光致发光照片(a)和荧光图谱(b)

    Figure  7.  Photoluminescence photos (a) and fluorescence spectrum (b) of GQDs-TiO2/PAM (1wt%GQDs) hybrid hydrogels under 365 nm UV light

    图  8  TiO2/PAM、GQDs/PAM和GQDs-TiO2/PAM水凝胶薄膜覆盖的不同浓度亚甲基蓝溶液 (0.01wt‰和0.004wt‰)紫外光照前后的吸收光谱

    Figure  8.  Absorption spectra of methylene blue solutions (0.01wt‰ and 0.004wt‰) with different concentrations covered by TiO2/PAM, GQDs/PAM and GQDs-TiO2/PAM hydrogel films before and after ultraviolet irradiation, respectively

    表  1  不同石墨烯量子点(GQDs)含量水凝胶的配方

    Table  1.   Formula of hydrogels with different contents of graphene quantum dot (GQDs)

    HydrogelTEOA/gTBOT/µLAM/gGQDs/wt%BIS (0.1wt%, mL)APS/g
    PAM2.520.08
    GQDs/PAM2.5120.08
    TiO2/PAM0.17562002.520.08
    GQDs-TiO2/PAM0.17562002.50.520.08
    GQDs-TiO2/PAM0.17562002.5120.08
    GQDs-TiO2/PAM0.17562002.5320.08
    GQDs-TiO2/PAM0.17562002.5520.08
    Notes: TEOA—Triethanolamine; TBOT—Tetrabutyl titanate; AM—Acrylamide; BIS—N, N'-methylenebis(2-propenamide); APS—Ammo-nium persulphate; PAM—Polyacrylamide.
    下载: 导出CSV
  • [1] TAN J, ZHANG J, LI W, et al. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J]. Journal of Materials Chemistry C,2016,4(42):10146-10153. doi: 10.1039/C6TC03027K
    [2] GEORGE M, MOHANTY A. Viscoelastic and mechanical characterization of graphene decorated with graphene quantum dots reinforced epoxy composites[J]. Polymer Engineering & Science, 2020, 60(12): 3011-3023.
    [3] WANG H Y, ZHOU L, YU H M, et al. Exploration of room-temperature phosphorescence and new mechanism on carbon dots in a polyacrylamide platform and their applications for anti-counterfeiting and information encryption[J]. Advanced Optical Materials,2022,10(15):2200678. doi: 10.1002/adom.202200678
    [4] SUN M Y, QU S N, HAO Z D, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale,2014,6(21):13076-13081. doi: 10.1039/C4NR04034A
    [5] JIN K F, JI X, YANG T T, et al. Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting[J]. Chemical Engineering Journal,2021,406:126794. doi: 10.1016/j.cej.2020.126794
    [6] LYU S H, ZHANG S S, ZUO J J, et al. The efficient detection of Fe3+ by sulfonamidated lignin composite carbon quantum dots[J]. Polymer Engineering & Science,2023,63(5):1439-1447.
    [7] HERRMANN A, HAAG R, SCHEDLER U. Hydrogels and their role in biosensing applications[J]. Advanced Healthcare Materials, 2021, 10(11): 2100062.
    [8] BINDER S, GERLACH G. Performance of force-compensated chemical sensors based on bisensitive hydrogels[J]. Sensors and Actuators B: Chemical, 2021, 342: 129420.
    [9] OKUMURA Y, ITO K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links[J]. Advanced Materials, 2001, 13(7): 485-487.
    [10] GONG J P. Why are double network hydrogels so tough?[J]. Soft Matter, 2010, 6(12): 2583-2590.
    [11] HARAGUCHI K, TAKEHISA T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J]. Advanced Materials, 2002, 14(16): 1120-1124.
    [12] HUANG T, XU H, JIAO K, et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel[J]. Advanced Materials,2007,19(12):1622-1626. doi: 10.1002/adma.200602533
    [13] TAN Y, WU R L, LI H L, et al. Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay[J]. Journal of Materials Chemistry B,2015,3(21):4426-4430. doi: 10.1039/C5TB00506J
    [14] GAO G R, WANG Z W, XU D, et al. Snap-buckling motivated controllable jumping of thermo-responsive hydrogel bilayers[J]. ACS Applied Materials & Interfaces,2018,10(48):41724-41731.
    [15] CHATTERJEE S, LEE M W, WOO S H. Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes[J]. Carbon, 2009, 47(12): 2933-2936.
    [16] HARAGUCHI K, LI H J, XU Y J, et al. Copolymer nanocomposite hydrogels: Unique tensile mechanical properties and network structures[J]. Polymer,2016,96:94-103. doi: 10.1016/j.polymer.2016.04.039
    [17] WANG D, TAN Y, XU H X, et al. A tough and fluorescent dual nanocomposite hydrogel based on SiO2@TiO2 core-shell nanoparticles[J]. Applied Surface Science,2019,467-468:588-595. doi: 10.1016/j.apsusc.2018.10.208
    [18] LING J, LI N, YANG X, et al. Strengthening mechanism of poly(acrylamide)/graphene oxide/laponite dual nanocomposite hydrogels[J]. Journal of Applied Polymer Science,2017,134(24):44963.
    [19] KIM J Y, CHOI Y, CHOI J, et al. Graphene nanoribbon/carbon nanotube hybrid hydrogel: Rheology and membrane for ultrafast molecular diafiltration[J]. ACS Applied Materials & Interfaces,2022,14(9):11779-11788.
    [20] THONIYOT P, TAN M J, KARIM A A, et al. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials[J]. Advanced Science,2015,2(1-2):1400010. doi: 10.1002/advs.201400010
    [21] XU B, LI H J, WANG Y Y, et al. High strength nanocomposite hydrogels with outstanding UV-shielding property[J]. Polymer Composites,2016,37(3):810-817. doi: 10.1002/pc.23238
    [22] ZHOU Z X, QIAN C H, YUAN W Z. Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin[J]. Composites Science and Technology, 2021, 203: 108608.
    [23] ZHANG D, YANG J H, BAO S, et al. Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light[J]. Scientific Reports,2013,3(1):1399. doi: 10.1038/srep01399
    [24] YANG Y, TAN Y, WANG X L, et al. Photothermal nanocomposite hydrogel actuator with electric-field-induced gradient and oriented structure[J]. ACS Applied Materials & Interfaces,2018,10(9):7688-7692.
    [25] ZHU C H, HAI Z B, CUI C H, et al. In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application[J]. Small,2012,8(6):930-936. doi: 10.1002/smll.201102060
    [26] OHM Y, PAN C F, FORD M J, et al. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics[J]. Nature Electronics,2021,4(3):185-192. doi: 10.1038/s41928-021-00545-5
    [27] ZHANG Z R, YAO Z P, LI Y, et al. Cation-induced Ti3C2Tx MXene hydrogel for capacitive energy storage[J]. Chemical Engineering Journal,2022,433:134488. doi: 10.1016/j.cej.2021.134488
    [28] FENG Y B, LIU H, ZHU W H, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays[J]. Advanced Functional Materials,2021,31(46):2105264. doi: 10.1002/adfm.202105264
    [29] PINCHER D W M, BADER C A, HAYBALL J D, et al. Graphene quantum dot embedded hydrogel for dissolved iron sensing[J]. ChemistrySelect,2019,4(33):9640-9646. doi: 10.1002/slct.201901779
    [30] HU M, GU X Y, HU Y, et al. PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity[J]. Macromolecular Materials and Engineering,2016,301(11):1352-1362. doi: 10.1002/mame.201600248
    [31] 张文博, 李莉, 李思纯, 等. 石墨烯量子点的改性及应用[J]. 复合材料学报, 2022, 39(7):3104-3120. doi: 10.13801/j.cnki.fhclxb.20210919.001

    ZHANG Wenbo, LI Li, LI Sichun, et al. Modification and application of graphene quantum dots[J]. Acta Materiae Compositae Sinica,2022,39(7):3104-3120(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210919.001
    [32] 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3):712-721.

    WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica,2021,38(3):712-721(in Chinese).
    [33] 许波. 金属氧化物纳米粒子交联的高强度纳米复合水凝胶的制备和性能研究[D]. 北京: 北京理工大学, 2015.

    XU Bo. Study on synthesis and properties of metal oxide nanoparticles cross-linked nanocomposite hydrogels with high strength[D]. Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [34] DU J, ZHU W, SHE X, et al. A tough fluorescent nanocomposite hydrogel probe based on graphene quantum dots for the selective detection of Fe3+ ions[J]. Materials Advances,2022,3(20):7579-7589. doi: 10.1039/D2MA00605G
    [35] OLIVEIRA A C, DA SILVA A N, JUNIOR J A L, et al. Structural changes in nanostructured catalytic oxides monitored by Raman spectroscopy: Effect of the laser heating[J]. Journal of Physics and Chemistry of Solids,2017,102:90-98. doi: 10.1016/j.jpcs.2016.11.005
    [36] 胡梦. 荧光纳米碳点及其复合水凝胶的制备与性能研究[D]. 广州: 华南理工大学, 2016.

    HU Meng. Fabrication and performance research of fluorescent nano carbon dot and its composite hydrogel[D]. Guangzhou: South China University of Technology, 2016(in Chinese).
    [37] DU J, SHE X H, ZHU W L, et al. Super-tough, anti-fatigue, self-healable, anti-fogging, and UV shielding hybrid hydrogel prepared via simultaneous dual in situ sol-gel technique and radical polymerization[J]. Journal of Materials Chemistry B,2019,7(45):7162-7175. doi: 10.1039/C9TB01625B
    [38] 王旭, 陈熙, 徐新阳, 等. CQDs/TiO2复合材料的制备及光催化降解抗生素[J]. 环境化学, 2022, 41(12):3876-3885. doi: 10.7524/j.issn.0254-6108.2022040301

    WANG Xu, CHEN Xi, XU Xinyang, et al. Preparation of CQDs/TiO2 composites and photocatalytic degradation of antibiotic wastewater[J]. Environmental Chemistry,2022,41(12):3876-3885(in Chinese). doi: 10.7524/j.issn.0254-6108.2022040301
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  334
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-08-16
  • 录用日期:  2023-08-18
  • 网络出版日期:  2023-08-31
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回