Loading [MathJax]/jax/output/SVG/jax.js

相变微胶囊光热转换机制及性能增强研究进展

王程遥, 李昭君, 张涛, 朱群志

王程遥, 李昭君, 张涛, 等. 相变微胶囊光热转换机制及性能增强研究进展[J]. 复合材料学报, 2024, 41(2): 592-608. DOI: 10.13801/j.cnki.fhclxb.20230802.004
引用本文: 王程遥, 李昭君, 张涛, 等. 相变微胶囊光热转换机制及性能增强研究进展[J]. 复合材料学报, 2024, 41(2): 592-608. DOI: 10.13801/j.cnki.fhclxb.20230802.004
WANG Chengyao, LI Zhaojun, ZHANG Tao, et al. Research progress in photothermal conversion mechanism and performance enhancement of the microencapsulated phase change materials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 592-608. DOI: 10.13801/j.cnki.fhclxb.20230802.004
Citation: WANG Chengyao, LI Zhaojun, ZHANG Tao, et al. Research progress in photothermal conversion mechanism and performance enhancement of the microencapsulated phase change materials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 592-608. DOI: 10.13801/j.cnki.fhclxb.20230802.004

相变微胶囊光热转换机制及性能增强研究进展

基金项目: 高端外国专家引进计划(G2022013028L)
详细信息
    通讯作者:

    王程遥,博士,讲师,硕士生导师,研究方向为液滴微流控与功能材料 E-mail: wangchengyao@shiep.edu.cn

  • 中图分类号: TK02;TB33

Research progress in photothermal conversion mechanism and performance enhancement of the microencapsulated phase change materials

Funds: National Innovation Talent Promotion Program (G2022013028L)
  • 摘要: 微胶囊相变材料解决了相变材料易泄露、易腐蚀的问题,被广泛应用在太阳能利用、调温纤维与织物、节能建筑和传热流体等领域。但常规相变微胶囊由于芯壳结构,削弱了光热转换性能,存在光热转换性能差的问题,通过添加光热材料对相变微胶囊改性可以有效提高光热转换性能。本文首先总结了相变微胶囊芯材、壳材的选择及各类材料的特点。重点阐述了有机光热材料、碳基材料、半导体材料、金属基材料等光热材料的特点及其光热转换机制。同时,引入光热转换效率,概述了不同改性材料对相变微胶囊光热性能的提升。最后展望了光热转换改性相变微胶囊未来的发展方向。

     

    Abstract: Microencapsulated phase change materials (MPCM) can effectively prevent leakage and corrosion of phase change materials, which are widely utilized in the fields of solar energy utilization, thermo-regulated fibers and fabrics, energy saving buildings and heat transfer fluids. However, there is a problem that the core-shell structure of conventional MPCM weakens the photothermal conversion performance. The poor performance can be effectively improved by modifying MPCM with the addition of photothermal materials. In this paper, the materials of MPCM’s core and shell and their characteristics are summarized. The characteristics and photothermal conversion mechanisms of photothermal materials, including organic photothermal materials, carbon-based materials, semiconductor materials, metal-based materials and other photothermal materials, are illustrated. Additionally, photothermal conversion efficiency is introduced to evaluate the enhancement of photothermal properties of modified MPCM with different modified photothermal materials. Finally, future trend of modified MPCM with photothermal conversion is prospected.

     

  • 金属与环境接触时,金属表面与周围环境中的活性物质(如O2、H2O、Cl等)之间会自然发生反应,生成化学性质更稳定的化合物,导致材料性能的恶化,即腐蚀[1]。金属的腐蚀基本上是一个电化学过程。当金属接触水和溶解的氧气时,表面金属原子开始发生氧化反应,其中金属离子(如Fe2+)在高电位的阳极形成,随着电子通过金属转移到阴极而流入周围环境,从而产生腐蚀电流以促进氧化反应。腐蚀作为一种自然现象,给许多行业带来了严重有害影响。据研究,过去50年,腐蚀造成的经济损失相当于各国GDP的3%~4%,全球腐蚀成本估计为2.5万亿美元,占全球GDP的3.4%[2]。金属发生腐蚀时不仅会影响经济发展,还会引起危害人民群众生命安全的事件。例如,地下地上输油输气管道因腐蚀而造成的破损导致介质的泄露;船舶由于腐蚀而发生沉船;建筑物由于腐蚀而发生坍塌[3]。因此,开发具有优良防腐蚀性能和低渗透性能的先进防护技术至关重要。

    在各种腐蚀防护策略中,防腐涂层是最常用、最经济和最有效的方法。聚合物涂层可以在金属表面形成一层外壳,以阻止包括O2、H2O、Cl在内的外部物质的渗透,起到屏障保护的作用。事实上,聚合物的微裂纹及孔洞、腐蚀性物质(如O2、H2O、Cl等)的固有渗透性和涂层的降解会导致涂层的阻隔水平降低,使聚合物涂层的保护性能随着暴露在环境中时间的延长而丧失[4]。例如,在化学侵蚀和机械应力的共同作用下,聚合物涂层很可能产生应力腐蚀开裂,使腐蚀物质可以轻松穿过涂层腐蚀钢体。传统的聚合物涂层也容易发生表面磨损和裂缝,这会加速腐蚀介质的迁移,导致涂层过早失效[5]。因此,提高常规聚合物涂料的耐腐蚀性能以满足苛刻的防腐应用要求是至关重要的。

    在聚合物中,环氧树脂作为阻隔材料具有特殊的优势:(1) 分子结构致密,具有很强的内聚力,力学性能好;(2) 分子链上具有多个吸附位点和官能团,对物质具有优越的黏附性;(3) 固化收缩率和线胀系数很小,固化后体积变化不大;(4) 重复单元主要由亚甲基组成,使其具有良好的疏水性[6]。因此,在聚合物中环氧树脂是防腐涂层基体最好的选择。二维纳米材料具有高直径/厚度比、良好的阻水阻氧性能、离子不渗透性和化学稳定性等优点[7]。将其引入到环氧树脂基体中形成二维纳米材料/环氧树脂复合材料可以结合两种材料的优点,能够实现环氧树脂重防腐的目标。常用二维纳米材料有:石墨烯及其衍生物、氮化硼和二硫化钼等。本文系统地介绍了二维纳米材料在环氧树脂防腐涂料中的屏障保护作用、抑制保护作用和牺牲保护作用,然后阐述了常见二维纳米材料在环氧树脂防腐涂料中的应用。此外,还总结了解决二维纳米材料团聚问题、调控二维纳米材料取向、提高涂层和钢体附着力的方法。最后,综述了二维纳米材料在环氧树脂防腐涂层中应用的现状,描述了其存在的挑战和应用前景。

    二维纳米材料/环氧树脂复合涂层防腐能力的显著增强主要是由于具有不同功能的各组分的协同作用,其机制可归结为以下几个方面。

    从本质上讲环氧树脂防腐涂层是一种复合涂层,由各种离散的固体功能添加剂和环氧树脂组成的体系。在该体系中,环氧树脂作为黏合剂占大部分成分,可以提供一个物理屏障,防止钢体直接暴露于腐蚀介质中[8]。二维纳米材料作为功能填料加入到环氧树脂中,容易填充涂层的微孔和裂纹,增强涂层的阻隔效应[9]。此外,二维纳米填料因其大的比表面积和良好的长宽比可以使腐蚀物质的扩散路径曲折延长,增强涂层的迷宫效应(图1)。因此,二维纳米材料在环氧树脂涂层中从两方面协同阻碍腐蚀介质的渗透[10]

    图  1  二维纳米材料阻止腐蚀介质在环氧树脂 (EP) 涂层中扩散示意图[10]
    Figure  1.  Diagrams of two-dimensional nanomaterials preventing the diffusion of corrosive media in epoxy resin (EP) coatings[10]

    缓蚀剂的添加赋予了涂层主动防护的性能,能够在涂层被动防护性能失效时仍可实现对金属基体的防护。然而将缓蚀剂直接添加到涂层中,会导致缓蚀剂中的活性基团与涂层中的活性成分发生相互作用,破坏涂层的稳定性和完整性[11]。而且还可能由于缓蚀剂的不可控释放过早的响应,造成主动防护性能的快速消失,无法实现长期稳定的有效防护。把缓蚀剂负载在二维纳米材料上,利用二维纳米材料的光热效应、磁热效应和电热效应有效地放大和增强外界刺激的特点,来实现对缓蚀剂的可控释放,从而在涂层屏障作用失效时抑制钢体腐蚀的发生[12]

    抑制电化学腐蚀速度要从电化学本质入手,改变钢体的腐蚀电位,形成阴极保护。具有导电性的二维纳米材料在阴极保护涂层中发挥重要作用,增强涂层的保护性能。在阴极保护涂层中,通常加入活性金属锌,与钢体形成电偶腐蚀,牺牲阳极保护钢体。但是,只有锌颗粒的负载高于80wt%时才可以相互接触并与钢体形成通路[13]。然而,高含量的锌颗粒会导致环氧涂层出现裂纹并且降低与钢体的附着力。导电二维纳米材料加入到富锌涂层中可以将孤立的锌颗粒连接起来,并将锌颗粒的负载量降低到20wt%以下,显著提高富锌涂层的防腐效果[14]。当界面部分的锌颗粒被消耗时,由于导电二维纳米材料的电子转移作用,涂层远端部分的锌颗粒可以被进一步消耗,提高了锌的利用率,增加了涂层的阴极保护效果[15]

    但是,在不含锌颗粒的环氧树脂涂层中填料很难构成通路,局部导电会加速腐蚀速率。因此,科研人员提出绝缘保护,从根本上阻止电子的迁移,抑制电化学腐蚀[16]。环氧树脂涂层的绝缘保护,即在环氧树脂中添加绝缘填料。腐蚀介质穿越涂层接触钢体时,通过电子的迁移发生一系列的化学反应,使钢体发生腐蚀。环氧树脂防腐涂层内部为绝缘体时,致使电子不能在腐蚀介质和钢体间迁移,从而阻止腐蚀的扩展。绝缘填料分为两种类型:一是对导电二维纳米材料进行改性使其导电性能降低;二是使用新型绝缘二维纳米材料代替导电填料。

    二维材料由于其具有独特的片层结构和大的比表面积,在提高环氧树脂涂层的耐腐蚀性方面起着至关重要的作用。传统的二维材料(如玻璃鳞片和黏土片)因其厚度较大严重降低了环氧树脂涂层与钢体的附着力,大大限制了腐蚀防护性能的提高[17]。因此,新型二维纳米材料在腐蚀防护领域受到了大量研究,如石墨烯及其衍生物、氮化硼、二硫化钼。上述三种二维纳米材料生产工艺成熟,在工业生产上具有一定的应用价值。与传统二维材料相比具有单原子厚度,使得钢体与环氧树脂涂层之间具有良好的附着力,并且表面的相互作用主要由弱范德华力控制,从而形成惰性表面,化学性质稳定[18]。与其他二维纳米材料相比,石墨烯及其衍生物、氮化硼和二硫化钼具有紧凑六边形晶格,几乎所有原子和分子都难以穿透,具有良好的物理屏蔽作用[19]。下面重点介绍石墨烯及其衍生物、氮化硼和二硫化钼作为填料在环氧树脂防腐涂层中的应用。

    石墨烯及其衍生物(氧化石墨烯、氟化石墨烯)具有独特的单层结构,由sp2杂化碳原子组成的二维蜂窝状晶格,可以与环氧树脂具有更大的接触区域,有利于延长腐蚀介质的扩散途径,从而抑制腐蚀介质的渗透[20]。此外,π-π共轭碳网络中密集的离域电子云可以堵塞芳香环内的间隙,形成活性分子排斥场[21],导致氧气(16.34 eV)和水分子(42.8 eV)穿过石墨烯及其衍生物的膜需要很高的势能[22-23]。因此,石墨烯及其衍生物有利于提高环氧树脂涂层的物理屏蔽作用。Rajitha等[24]报道,在环氧树脂中加入0.2wt%石墨烯纳米片,涂层电阻从1270 Ω·cm2增长到101700 Ω·cm2,防腐蚀性能显著增强。Wang等[25]利用原位聚合的方法制备磺化聚苯胺/氧化石墨烯纳米复合材料,并将其添加到水性环氧树脂涂层中,氧化石墨烯和磺化聚苯胺协同发挥物理屏蔽作用,使得添加磺化聚苯胺/氧化石墨烯纳米复合材料的水性环氧树脂复合涂层具有长期耐腐蚀性能。含有0.5wt%填料的水性环氧树脂复合涂层在腐蚀介质中浸泡168 h后,具有良好的防腐性能,保护效率高达97.43%。窦宝捷等[26]将氟化石墨烯作为填料加入到环氧树脂中制备防腐涂层。结果表明,氟化石墨烯/环氧树脂涂层的电阻在3000 h的浸泡过程中始终维持在1011 Ω·cm2以上,表现出对腐蚀介质优良的长期屏蔽性能,涂层的长期防护性能显著提升。

    此外,石墨烯的导电性是决定石墨烯/环氧涂层耐腐蚀性能的另一个因素。石墨烯的每个碳原子在最外层有四个未配对电子,其中三个在一个二维平面内通过σ键连接到相邻的碳原子上,第四个电子在三维空间中可以自由获得,用于电子传导[27]。这种独特的结构使石墨烯载流子具有超高的本征迁移率,从而使石墨烯具有优异的导电性。在传统的富锌环氧树脂涂料中,锌颗粒首先起到牺牲阳极的作用来保护金属基体。其次,锌颗粒的腐蚀产物会堵塞涂层的孔隙,阻碍电解液的扩散起到防腐保护的作用。当石墨烯被添加到富锌涂层中时,在初始阶段会起到屏障的作用,延长电解质的扩散路径。当锌颗粒被腐蚀时,石墨烯可以传递电子,将孤立的锌粒子连接起来形成电子传递通道,更有效地将锌氧化失去的电子传递到金属衬底表面。因此,石墨烯加入到环氧树脂涂层中降低了富锌涂层中电子传递的难度,增强了富锌涂层对钢体的阴极保护作用(图2)[28]。Hayatdavoudi等[29]研究表明,0.4wt%石墨烯为锌颗粒提供了更均匀的活化,提高锌颗粒的利用率。因此,添加一定量的石墨烯纳米片可以作为提高富锌环氧树脂涂层保护性能的有效策略。然而,也有报道称,石墨烯可能对涂层缺陷处的腐蚀保护产生巨大的负面影响。Zhou等[30]报道石墨烯表现出腐蚀增强效应,这是由于涂层缺陷处石墨烯具有高导电性,有利于铜的电化学腐蚀。此外,Schriver等[31]发现,石墨烯只能提供短期的腐蚀保护,在一定时间内,它甚至促进了更广泛的腐蚀。Dipak等[32]指出,石墨烯与金属之间将形成导电网络,从而加速腐蚀。环氧树脂中加入石墨烯,因其负载量不同既可以抑制腐蚀又可以促进腐蚀。当石墨烯的负载量可以把孤立的锌颗粒和钢体形成通路时,表现为抑制腐蚀。当石墨烯的负载量不能使它们形成通路,在缺陷处表现为促进腐蚀。因此,为了避免腐蚀增强现象,必须控制环氧树脂中石墨烯的负载量。

    图  2  石墨烯/水性环氧含锌涂层防腐机制示意图: (a) 复合涂层物理屏蔽作用; (b) 石墨烯片的阻隔作用; (c) 锌颗粒的阴极保护作用; (d) 腐蚀锌颗粒[28]
    Figure  2.  Schematic diagram of anti-corrosion mechanism of graphene/waterborne epoxy zinc-containing coating: (a) Physical shielding effect of composite coating; (b) Barrier effect of graphene sheets; (c) Cathodic protection of zinc particles; (d) Corrosive zinc particles[28]

    此外,部分研究人员表示降低石墨烯导电性,是提高石墨烯/环氧树脂防腐涂层防护性能的重要手段[16]。根据文献报道,石墨烯经氧化或氟化处理后得到的氧化石墨烯或氟化石墨烯,其导电率由103 S/cm降低至10−9 S/cm,导电性能显著下降,从根本上解决了石墨烯在缺陷处促进腐蚀的现象[33]。Liu等[34]将钛(Ti)修饰的氧化石墨烯加入到环氧树脂中制备防腐涂层,通过EIS分析发现,氧化石墨烯-钛/环氧树脂 (GO-Ti/EP) 防腐涂层相比于纯环氧树脂 (EP) 防腐涂层在阻抗的衰减上更加稳定,且GO-Ti/EP涂层在低频阻抗模值(|Z|0.01 Hz)的阻抗模量是纯EP的26.5倍。Sadak等[33]研究表明,氟化石墨烯在环氧树脂涂层中具有较好的分散稳定性,氟化石墨烯添加使环氧树脂涂层的接触角由95.3°提高至110.9°,提高了涂层的疏水性,降低了腐蚀介质与涂层表面的接触面积。在浸泡初期,纯环氧树脂涂层和氟化石墨烯/环氧树脂涂层的|Z|0.01 Hz均在1011 Ω·cm2左右。随浸泡时间的延长,环氧树脂涂层的|Z|0.01 Hz快速下降至109 Ω·cm2,而氟化石墨烯/环氧树脂涂层在3000 h浸泡过程中始终维持在1011 Ω·cm2以上。涂层电阻也表现出相似的变化规律。氟化石墨烯的添加提高了环氧树脂涂层的屏蔽性能,增强了涂层长期防护的稳定性,解决了石墨烯/环氧树脂涂层不能长时间稳定防腐蚀的问题。

    氮化硼的晶格结构类似于石墨烯,硼原子和氮原子交替排列成六角形晶格,其片层结构对腐蚀介质具有类似的抗渗透性[35]。氮化硼还具有较高的热稳定性和化学稳定性,单层氮化硼在空气环境中可以稳定到850℃,而单层石墨烯只能稳定到450℃。实验证明,单层氮化硼涂层能够有效隔离空气环境中铜基体与氧气的相互作用,并起到的高温保护作用,有望成为抗氧化涂料的较好选择[36]

    氮化硼的带隙为5.97 eV,电场破坏强度达到7.94 MV/cm,是一种优良的电绝缘体。作为环氧树脂防腐涂层中的填料,氮化硼具有出色的抗渗透能力,阻止腐蚀介质侵蚀基体,又具有良好的绝缘性,从本质上阻隔了电化学腐蚀,显著增强环氧树脂涂层的防腐性能。即使腐蚀介质能够通过缺陷扩散到氮化硼/环氧树脂防腐涂层下面金属的表面,在很长一段时间内,也只能在缺陷附近发生局部氧化[37]。氮化硼/环氧树脂防腐涂层的绝缘特性阻断了电子从金属到氧的传递,从而阻止了电化学腐蚀,并长期表现出优良的耐腐蚀性能。因此,如果实际应用需要较长的保护时间,氮化硼/环氧树脂防腐涂层是首选。Husain等[38]报道了在海洋环境下,不锈钢表面涂有氮化硼/环氧树脂防腐涂层,具有较低的腐蚀电流密度和腐蚀速率。Wu等[17]在块状氮化硼材料剥离过程中,加入γ-氨丙基三乙氧基硅烷 (APTES) 材料,制备APTES改性的h-BN,命名为Fh-BN,并将层状Fh-BN加入含有磷酸锶锌(SZP)的环氧树脂涂层中进行腐蚀防护测试(图3)。发现,Fh-BN可以获得优异的长期防腐效果。

    图  3  (改性氮化硼, 磷酸锶锌)/环氧树脂 ((Fh-BN, SZP)/EP) 涂层的防腐机制示意图[17]
    Figure  3.  Schematic representation of the anti-corrosion mechanism for (modified boron nitride, zinc strontium phosphate)/ epoxy resin ((Fh-BN, SZP)/EP) coatings[17]

    二硫化钼由3个原子层组成,具有蜂窝状六边形排列的钼层夹在2个具有六边形排列的硫层之间,硫原子、钼原子通过共价键相连,原子间孔径很小,具有优越的抗渗透性。同时,二硫化钼具有比表面积大、 疏水性能好、 化学稳定性高等特点,在防腐填料方面具有强大的潜力[39]。二硫化钼拥有1.8 eV的能带隙,为半导体材料,可以用铁、钴和镍粒子对二硫化钼纳米片进行掺杂,使二硫化钼的活性位点数目增加,可发挥阴极保护机制[40]。Arunkumar等[41]研究了铁、钴和镍粒子掺杂的二硫化钼在侵蚀性氯化物环境中对低碳钢的腐蚀防护性能,结果显示铁、钴和镍粒子的加入使二硫化钼的耐腐蚀性能显著提高,其中铁显示出最高的保护效率,具有较低的电流密度 (Icorr) 和较高的腐蚀电位 (Ecorr) 值。也可以用聚合物改性二硫化钼增大能带隙,使其成为绝缘体,并且增强在环氧树脂中的分散性。Xia等[42]将聚多巴胺(PDA)改性二硫化钼 (MoS2@PDA) 引入到环氧树脂体系中,制备了一种新型环氧树脂防腐涂料 (MoS2@PDA/EP)。与未改性环氧树脂涂层相比,MoS2@PDA/EP涂层的耐腐蚀性提高了近3个数量级,结合强度提高了近3 MPa。Jing等[43]制备了富含缺陷部位的二硫化钼,并通过环氧基团进一步官能化,γ-(2, 3-环氧丙氧基)丙基三甲氧基硅烷 (KH560) 成功地对其进行了改性。结果表明,KH560-MoS2的环氧涂层在增强防腐性能方面具有显著优势。在进一步研究中,Jing等[44]通过二硫化钼的两步化学改性获得了KH560-PDA-MoS2杂化材料。在环氧树脂中加入KH560-PDA-MoS2后,发现纳米填料复合涂层的截面更粗糙,涂层具有一定的断裂韧性,并且复合涂层的耐腐蚀性比纯环氧涂层和KH560-MoS2的环氧涂层有所提高,KH560-PDA-MoS2的制备流程和防腐机制如图4所示。

    图  4  (a) γ-(2, 3-环氧丙氧基)丙基三甲氧基硅烷-聚多巴胺-MoS2 (KH560-PDA-MoS2) 合成过程示意图; (b)复合涂层防腐机制示意图[44]
    Figure  4.  (a) Schematic of preparation of γ-(2, 3-epoxypropoxy) propyl trimethoxysilane-polydopamine-MoS2 (KH560-PDA-MoS2); (b) Anticorrosion schematic diagram of composite coatings[44]

    石墨烯及其衍生物可以利用多种防腐机制协同作用抑制腐蚀。因其独特的二维片层结构,可以延长腐蚀介质的渗透路径,提高环氧树脂涂层的防腐蚀性能。还可以负载缓蚀剂并控制其释放,当涂层的屏蔽功能失效时也能够有效抑制钢体的腐蚀。此外,石墨烯还具有阴极保护作用,在富锌涂层中加入石墨烯,作为桥梁可以把孤立的锌颗粒和钢体连接起来,对钢体形成阴极保护。但是,石墨烯的负载量影响其作用效果,当负载量不可以把孤立的锌颗粒和钢体连成通路时,就会促进缺陷处钢体腐蚀[45]。为解决这个问题,可以对石墨烯进行改性。例如把石墨烯进行氧化或氟化处理,使其表面缺陷和官能团数量显著增加,导致导电性能显著下降,使得涂层具有长期稳定的防腐蚀性能[46];也可以使用氮化硼、二硫化钼等绝缘二维纳米材料代替石墨烯作为防腐涂层的填料。氮化硼作为绝缘二维纳米材料从根本上解决了导电性加速腐蚀的问题。即使氧和水能够通过缺陷扩散到氮化硼/环氧树脂涂层下面金属的表面,在很长一段时间内,也只能在缺陷附近发生局部氧化[37]。氮化硼还具有较高的热稳定性和化学稳定性,对腐蚀介质具有良好的抗渗透性。因此,氮化硼/环氧树脂涂料是长效防腐的首选。二硫化钼拥有1.8 eV的能带隙,为半导体材料,可以利用导电离子掺杂的方法,使其导电性能提高,发挥阴极保护机制[40];也可以用聚合物改性二硫化钼,增大能带隙,使其成为绝缘体,并且增强在环氧树脂中的分散性,提高环氧树脂防腐涂层的物理屏蔽效应。

    在上述概述的基础上,表1列出环氧树脂基体中用于在3.5wt%NaCl腐蚀环境中保护金属基底的几种典型纳米填料的简要总结。综述了相同环境下的腐蚀电流密度 (Icorr)、腐蚀电位 (Ecorr)。表1还列出了这些二维纳米材料/环氧树脂涂层的其他重要特征,如稳定性、附着力、疏水性等。

    表  1  二维层状材料在涂层中的防腐效果
    Table  1.  Anticorrosion effect of two-dimensional layered materials in coatings
    Two-dimensional
    nanomaterial/Epoxy
    anticorrosive coating
    Corrosion
    environment
    Mass
    fraction ω/wt%
    Preservative effectKey characterRef.
    Graphene/Epoxy 3.5wt%NaCl 0.5 Icorr:2.617×10−8 A·cm−2
    Ecorr:−0.094 V
    Good adhesion and excellent corrosion resistance [24]
    Graphene oxide/Epoxy 3.5wt%NaCl 0.5 Icorr:3.061×10−7 A·cm−2
    Ecorr:−0.690 V
    Low viscosity and good adhesion with steel surface [25]
    Fluorographene/Epoxy 3.5wt%NaCl 0.5 Icorr:6.199×10−7 A·cm−2
    Ecorr:−0.696 V
    High hydrophobicity and good impermeability [26]
    Hexagonal boron nitride/Epoxy 3.5wt%NaCl 0.5 Icorr:4.960×10−8 A·cm−2
    Ecorr:−0.608 V
    High thermal stability and excellent corrosion resistance [17]
    Molybdenum disulfide/Epoxy resin 3.5wt%NaCl 0.5 Icorr:7.474×10−9 A·cm−2
    Ecorr:−0.0928 V
    Good physical shielding performance and long-term
    stable corrosion resistance
    [42]
    Notes: Icorr—Corrosion current density; Ecorr—Corrosion potential.
    下载: 导出CSV 
    | 显示表格

    由于二维纳米材料的疏水性及片层之间的范德华力,在环氧树脂基体中容易团聚,分布杂乱无规则,降低了涂层的屏蔽性能。有机涂层和金属基体的界面通过物理吸附结合,涂层与金属之间的附着力较差。因此,从如何解决二维纳米材料的分散性、如何促进二维纳米材料在环氧树脂中有序排列、如何增强涂层与金属界面的附着力等三个方面来优化二维纳米材料作为填料在防腐涂料中的应用。

    二维纳米材料的表面积非常大,在粒子间的静电力、范德华力、化学键作用下,纳米粒子有使表面积减小的趋势,发生团聚现象[43]。环氧树脂中的二维纳米材料的团聚现象会降低环氧树脂的交联度,导致环氧树脂出现微裂纹、孔洞等缺陷,为腐蚀介质侵蚀基体提供途径(图5)[45],给环氧树脂涂层的物理性屏蔽能带来负面影响,大大降低环氧树脂涂层的耐腐蚀性能。

    图  5  (a)分散良好的二维纳米材料延长腐蚀材料的渗透路径;(b)分散不良导致渗透路径短[45]
    Figure  5.  (a) Well-dispersed 2D nanomaterials extend the penetration path of corrosive materials; (b) Poor dispersion leads to short penetration paths[45]

    通过非共价改性,可以保留二维纳米材料的整体结构,利用共轭π-π相互作用、氢键相互作用对其进行表面修饰,抑制其在环氧树脂涂料中的团聚现象。Song等[46]将芘分子连接到石墨烯上,通过π-π键增强石墨烯片和环氧树脂界面之间的相互作用,从而提高其在环氧树脂中的分散性。氧化石墨烯含有大量的含氧极性官能团,使其表面可以通过氢键作用力进行修饰。Zhang等[47]首次尝试利用聚乙烯吡咯烷酮通过氢键改性氧化石墨烯,并将改性后的氧化石墨烯分散在环氧树脂中,结果表明改性氧化石墨烯在环氧树脂涂层中的分散更加均匀。Cui等[48]合成聚2-丁基苯胺,并使用其在液相中剥离氮化硼,叠层的氮化硼可以剥离成少量原子层,并且聚2-丁基苯胺对氮化硼进行表面改性,提高氮化硼在环氧树脂中的分散性,延缓金属腐蚀。

    通过在二维纳米填料表面接枝官能团进行共价键改性,也可以抑制其在环氧树脂涂料中的团聚现象[49]。按接枝官能团的种类可分为有机官能团接枝改性、无机纳米粒子接枝改性、聚合物链接枝改性等。Pourhashem等[50]采用原位修饰的方法,通过在石墨烯表面封装纳米SiO2颗粒,促进石墨烯在环氧树脂中均匀分散,并且充当绝缘隔离物来抑制腐蚀。Di等[51]也采用相同的方式,以Fe3O4纳米材料原位修饰氧化石墨烯或氟化石墨烯,提高其在环氧树脂涂层中的分散性。Zhang等[52]利用聚多巴胺对有机和无机基质具有普遍黏附能力的特点来表面改性氮化硼,在氮化硼表面引发多巴胺的自氧化,随后用KH560接枝,h-BN@PDA-KH560在环氧树脂涂层中具有良好的分散性,使其显示出良好的防腐性能。

    与目前对纳米填料的分散性和相容性的大量研究相比,纳米填料的取向研究较少。同时,二维纳米材料在涂层基体中的排列和取向需要精确控制,尤其是二维纳米材料的宽高比和高各向异性,使得层状结构在提高涂层性能方面至关重要。尽管部分二维纳米材料由于具有磁性响应效应,但需要超高磁场 (9~16 T) 来排列二维纳米材料[53]。另一种简单的方法是赋予二维纳米材料磁性,即在其置于外部磁场之前,在其表面沉积磁性材料。这种修饰过的二维纳米材料可以在水平磁场作用下水平排列在环氧树脂中[7]。Ding等[54]利用表面接枝改性的方法,用Fe3O4改性石墨烯使其具有磁性,在外加磁场的作用下,调控其在环氧树脂中的取向。平行分级排列的磁性石墨烯显著增加了腐蚀介质的扩散阻力,提高了涂层的耐蚀性。这种调控取向的方法也适用于其他二维纳米材料,如氧化石墨烯、氟化石墨烯、氮化硼、二硫化钼等,以寻求更加优异的耐腐蚀性。

    除了外加磁场,二维纳米材料也可以通过自组装的方法实现其在环氧树脂涂层中有序排列。例如,Li等[55]通过自组装方法发现,磺化石墨烯在水和水性环氧乳液中可以稳定。此外,在磺化石墨烯浓度为1.0wt%时,可以自发平行排列而不结块,显著提高了涂层的耐腐蚀性能。在Yousefi等[56]的研究中,水性环氧树脂中大面积氧化石墨烯的原位还原和自对齐 (平均面积191 μm2) 使还原氧化石墨烯纳米片自对齐成层状结构。这种密集堆积的层状结构具有较强的结合强度和耐腐蚀性。

    涂层对钢体防护效果的好坏,除了涂层本身的防腐蚀性能,还取决于涂层与钢体之间的附着力,即它们之间的物理或化学作用力。一般认为化学附着更为牢固。二维纳米材料可以负载一些极性基团,与基材表面的极性基团发生化学作用,提高环氧树脂涂层的附着力。近些年来对附着力促进剂进行了大量研究,其中对硅烷偶联剂研究得较多。

    硅烷偶联剂分子链两端一般都带有活性基团, 其结构为YRa-Si-Xb。其中:Y是一种活性基团,如氨基、环氧基等,可以与涂料体系中的活性基团反应;X是烷氧基团,通常可以水解成极性的硅羟基,吸附于钢体表面并与之反应[57]。这样硅烷偶联剂就能够在涂层和钢体之间形成一种连接纽带,大幅度提升涂层与钢体的附着力。在这个反应中,由于石墨烯表面官能团很少,一般将石墨烯部分转化为氧化石墨烯,使其表面含有可以与硅烷偶联剂反应的含氧基团。Parhizkar等[58]在N, N-二甲基甲酰胺溶液中加入氧化石墨烯和γ-氨丙基三乙氧基硅烷 (KH550),并在85℃下获得功能性氧化石墨烯(FGO)。采用FGO溶液对钢板进行处理,干燥后涂敷环氧树脂涂层,涂层的附着力和阻隔性能得到了显著改善(图6)。

    图  6  环氧涂层与经功能性氧化石墨烯(FGO)涂层改性的钢基体化学结合示意图[58]
    Figure  6.  Diagram of chemical bonding between epoxy coating and steel matrix modified by functional graphene oxide (FGO) coating[58]

    本文综述了石墨烯及其衍生物、氮化硼、二硫化钼在环氧树脂防腐涂料中的应用、作用机制及遇到的问题。二维材料具有类似的平面结构,由于其原子间的作用力,原子间孔径很小,且由于π-π相互作用,腐蚀介质通过需要克服很大的能垒,因此二维纳米材料具有很好的物理屏蔽性能。根据二维纳米材料在防腐涂料中的作用机制,阐述了其在环氧树脂防腐涂料的屏障保护作用、抑制保护作用和牺牲保护作用。最后,从二维材料在环氧树脂涂层的均匀分散、取向调控及提升环氧树脂涂层和钢体之间的附着力三个方面提出了解决方案。纵观二维纳米材料在环氧树脂防腐涂层中应用的研究现状,还存在以下问题亟需解决:

    (1) 二维纳米材料与环氧树脂涂层基体之间较弱的相互作用和相容性严重限制其耐腐蚀能力,界面作用力较弱,腐蚀介质可以轻松穿过涂层腐蚀基体,如何提高二维纳米填料与树脂基体的相容性对于涂层防腐十分重要;

    (2) 提高导电二维纳米材料增强阴极保护涂层是一项艰巨的任务。具体而言,通过优化成分含量 (导电二维纳米材料/锌含量比) 和涂层内部结构来同时促进电子转移和屏蔽保护尚不明确;

    (3) 二维层状材料作为一类环保的纳米填料,可取代涂料中的防腐有机物和金属微粒,但有关其防腐机制的研究并不透彻,因此在对二维层状材料防腐过程深入表征的基础上,结合分子动力学模拟,对其防腐机制进行更加深入的研究;

    (4) 任何一种二维纳米材料改善涂层防腐蚀性能的效果都是有限的,因此寻求多种二维纳米材料的优化组合,发挥其在涂层防腐中的协同作用是未来应该着力研究的一个重要方向。

  • 图  1   有机光热材料光热转换机制图[83]

    HOMO—Highest occupied molecular orbital; LUMO—Lowest unoccupiedmolecular orbital

    Figure  1.   Photothermal conversion mechanism diagram of organic photothermal materials[83]

    图  2   碳纳米管(CNTs)[90](a)和氧化石墨烯(GO)[93](b)的微观形貌SEM图像; (c)碳基材料光热转换机制[94]

    Figure  2.   SEM images of carbon nanotubes (CNTs)[90] (a) and graphene oxide (GO)[93] (b); (c) Photothermal conversion mechanism of carbon based materials[94]

    图  3   (a)典型金属纳米粒子的光吸收带宽[100];(b)金属材料光热转换机制[103]

    Figure  3.   (a) Optical absorptive bandwidth of representative metal nanoparticles[100]; (b) Photothermal conversion mechanism of metal materials[103]

    图  4   半导体材料光热转换机制图[112]

    VB—Valenceband; CB—Conduction band

    Figure  4.   Image of photothermal conversion mechanism of semiconductor materials[112]

    图  5   (a) MPCM制备原理图;(b) 不同壳层SiO2 (SCN)、SiO2/聚多巴胺(SCN/PDA)SiO2/聚吡咯(SCN/PPy)、SiO2/聚多巴胺掺杂聚吡咯(SCN/PAP)的MPCM光吸收强度曲线;(c) 不同比例的PAP∶ SCN的MPCM光吸收强度曲线[122]

    CTAB—Cetyl trimethyl ammonium bromide; n-OD—n-octadecane; TEOS—Tetraethyl orthosilicate; PY—Pyrrole; DA—Dopamine; SCN micro-PCMs—n-OD@SiO2 microencapsulated phase change materials; PAP—Polydopamine-doped polypyrrole complexes

    Figure  5.   (a) Preparation principle of MPCM; (b) Light absorption intensity curves of MPCM with different shells n-OD@SiO2 (SCN), SCN/polydopamine (PDA), SCN/polypyrrole (PPy), SCN/polydopamine-doped polypyrrole complexes (PAP); (c) Light absorption intensity curves of PAP∶SCN MPCM with different ratios[122]

    图  6   (a)石蜡@TiO2-GO MPCM的制备原理;(b) MPCM的光热转换率变化曲线;(c) UV-vis漫反射光谱曲线[126]

    TBT—Tetrabutyl titanate; GO—Graphene oxide

    Figure  6.   (a) Preparation principle of paraffin@TiO2-GO MPCM; (b) Photothermal conversion curves of MPCM; (c) UV-vis diffuse reflection spectra[126]

    图  7   (a) 不同样品的紫外-可见光谱[134];(b) 不同量SiC的MPCM的时间-温度曲线[138];(c) 不同MPCM的温度-时间响应曲线;(d) 不同样品的各波段光响应曲线[139]

    UVA—Ultraviolet visible A (400-320 nm); UVB—Ultraviolet visible B (320-280 nm); UVC—Ultraviolet visible C (100-280 nm); CA—Capric acid

    Figure  7.   (a) Ultraviolet visible spectra of the different samples[134]; (b) Time-temperature curves of the MPCM with different amount of SiC[138]; (c) Temperature-time response curves of different MPCM; (d) Light response curves of different samples at different wavelengths[139]

    图  8   (a)样品M0(正十八烷@CuS-SiO2 MPCM)及其不同反应温度M4 (60℃)、M2 (70℃)、M5 (80℃)下的吸收光谱[145];(b)不同样品的吸收光谱[147]

    NIR—Near-infrared

    Figure  8.   (a) Absorbance spectra of samples M0 (n-octadecane@CuS-SiO2 MPCM), different reaction temperature M4 (60℃), M2 (70℃), M5 (80℃)[145]; (b) Absorption spectra of different samples[147]

    表  1   相变微胶囊(MPCM)常见的芯材材料

    Table  1   Common core materials of microencapsulated phase change materials (MPCM)

    MaterialMelting enthalpy/(J·g−1)Melting temperature/℃Ref.
    Organic materialParaffinn-hexadecane254.720.84[23]
    n-octadecane230.028.2[24]
    n-eicosane189.018-30[25]
    Alcoholn-dodecanol200.018-28[26]
    Myristyl alcohol220.038[27]
    Fatty acidPalmitic acid226.265[28]
    Lauric acid232.644.2[29]
    Capric acid177.031.84[30]
    Inorganic materialCarbonateNa2CO3275.7854[31]
    NitrateNaNO3180.0300[32]
    KNO3100.0334[33]
    Hydrated saltNa2SO4·10H2O251.032.4[34]
    Na2HPO4·12H2O177.834.72[35]
    CaCl2·6H2O200.029.5[36]
    Metal and alloyLi433.78186[37]
    Ti232.060.5[37]
    Al-Mg-Zn (60/34/6wt%)329.1450.31[38]
    下载: 导出CSV

    表  2   半导体光热材料[109-111]

    Table  2   Semiconductor photothermal materials[109-111]

    ClassificationRepresentative categoryMaterial
    Semiconductor materials with defect structuresCopper chalcogenideCuS, Cu7S4, Cu9S5
    Transition metal oxideMoO3, WO3, CuO, Cu2O
    Semiconductor materials with intrinsic absorption band gapTransition metal compoundsCdS, CdSe, MoS2, MoSe, WS2
    CarbideSiC, ZrC
    OthersZnO, TiO2, NiO, Ti4O7
    下载: 导出CSV
  • [1]

    KANNAN N, VAKEESAN D. Solar energy for future world: A review[J]. Renewable and Sustainable Energy Reviews,2016,62:1092-1105. DOI: 10.1016/j.rser.2016.05.022

    [2] 宋之平. 从可持续发展的战略高度重新审视热电联产[J]. 中国电机工程学报, 1998(4):2-7.

    SONG Zhiping. Rediscovering the combined heat and power in terms of the sustainable development[J]. Proceedings of the CSEE,1998(4):2-7(in Chinese).

    [3] 赵梦阳, 张宇昂, 唐炳涛. 聚氨酯型复合定形相变储能材料研究进展[J]. 精细化工, 2020, 37(11):2182-2192, 2215.

    ZHAO Mengyang, ZHANG Yu'ang, TANG Bingtao. Research process in polyurethane form-stable composite phase change materials[J]. Fine Chemicals,2020,37(11):2182-2192, 2215(in Chinese).

    [4]

    HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review[J]. Applied Thermal Engineering,2019,147:841-855. DOI: 10.1016/j.applthermaleng.2018.11.007

    [5]

    ZHANG Q, WANG H C, LING Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells,2015,140:158-166. DOI: 10.1016/j.solmat.2015.04.008

    [6]

    ZHOU H, LYU L Q, ZHANG Y Z, et al. Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,230:111244. DOI: 10.1016/j.solmat.2021.111244

    [7]

    PATIL N G, CHAUDHARI S S, MAHANWAR P A. Microencapsulation of polymeric phase change materials (MPCM) for thermal energy storage in industrial coating applications[J]. Journal of Polymer Engineering,2023,43(5):419-442. DOI: 10.1515/polyeng-2022-0291

    [8] 郝敏, 李忠辉, 吴秋芳, 等. 相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(9):98-103.

    HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change material[J]. Materials Reports,2014,28(9):98-103(in Chinese).

    [9]

    ZHENG H F, TIAN G J, YANG C W, et al. Experimental study on performance of phase change microcapsule cold storage solar composite refrigeration system[J]. Renewable Energy,2022,198:1176-1185. DOI: 10.1016/j.renene.2022.08.133

    [10]

    CHEN Y B, CUI S Q, JIN H, et al. Fabrication of phase change microcapsules with controllable size via regenerated nanochitin stabilized pickering and their applications for lyocell fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,655:130308. DOI: 10.1016/j.colsurfa.2022.130308

    [11]

    WANG Y B, LI Q, MIAO W J, et al. The thermal performances of cement-based materials with different types of microencapsulated phase change materials[J]. Construction and Building Materials,2022,345:128388. DOI: 10.1016/j.conbuildmat.2022.128388

    [12]

    KONG M, ALVARADO J L, TERRELL W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer,2016,101:901-914. DOI: 10.1016/j.ijheatmasstransfer.2016.05.047

    [13]

    ZHENG Z L, CHANG Z, XU G K, et al. Microencapsulated phase change materials in solar-thermal conversion systems: Understanding geometry-dependent heating efficiency and system reliability[J]. ACS Nano,2017,11(1):721-729. DOI: 10.1021/acsnano.6b07126

    [14]

    LIU J K, WULIU Y S, ZHU X B, et al. Synthesized acrylate monomers to improve photothermal conversion efficiency and fire safety of PEG/black phosphorus (BP) phase change composites[J]. Composites Science and Technology,2023,238:110028. DOI: 10.1016/j.compscitech.2023.110028

    [15]

    YE X Y, MA Y J, TIAN Z Y, et al. Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage[J]. Composites Science and Technology,2022,230:109794. DOI: 10.1016/j.compscitech.2022.109794

    [16] 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10):5554-5576.

    GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engi-neering Progress,2021,40(10):5554-5576(in Chinese).

    [17]

    CHEN R, GE X, LI X X, et al. Facile preparation method of phase change microcapsule with organic-inorganic silicone shell for battery thermal management[J]. Composites Science and Technology,2022,228:109662. DOI: 10.1016/j.compscitech.2022.109662

    [18]

    HAMAD G B, YOUNSI Z, NAJI H, et al. A comprehensive review of microencapsulated phase change materials synthesis for low-temperature energy storage applications[J]. Applied Sciences,2021,11:11900. DOI: 10.3390/app112411900

    [19]

    WANG K W, YAN T, PAN W G. Optimization strategies of microencapsulated phase change materials for thermal energy storage[J]. Journal of Energy Storage,2023,68:107844. DOI: 10.1016/j.est.2023.107844

    [20] 郝旭波, 牛宝联, 郭昊天, 等. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2):854-871. DOI: 10.16085/j.issn.1000-6613.2022-0654

    HAO Xubo, NIU Baolian, GUO Haotian, et al. Modification of microencapsulated phase change material and its utilization in photothermal conversion[J]. Chemical Industry and Engineering Progress,2023,42(2):854-871(in Chinese). DOI: 10.16085/j.issn.1000-6613.2022-0654

    [21]

    AGBOSSOU A, ZHANG Q, SEBALD G, et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis[J]. Sensors and Actuators A: Physical,2010,163(1):277-283. DOI: 10.1016/j.sna.2010.06.026

    [22]

    FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management,2003,45(9):1597-1615.

    [23]

    JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/diatomite composites for enhancing thermal pro-perties[J]. International Journal of Heat and Mass Transfer,2013,62:711-717. DOI: 10.1016/j.ijheatmasstransfer.2013.03.043

    [24] 蔡迪, 李静. 硬脂醇改性的氧化石墨烯/正十八烷复合相变材料的热物性研究[J]. 化工学报, 2020, 71(10):4826-4835.

    CAI Di, LI Jing. Study on thermal properties of stearyl alcohol modified graphene oxide/n-octadecane compo-site phase change materials[J]. CIESC Journal,2020,71(10):4826-4835(in Chinese).

    [25]

    KARASZEWSKA A, KAMIŃSKA I, NEJMAN A, et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer[J]. Materials Chemistry and Physics,2019,226:204-213. DOI: 10.1016/j.matchemphys.2019.01.029

    [26] 宋晓秋, 曹龙迪, 叶琳. 聚甲基丙烯酸甲酯包覆十二醇微胶囊的制备及表征[J]. 复合材料学报, 2017, 34(1):191-197.

    SONG Xiaoqiu, CAO Longdi, YE Lin. Preparation and characterization of n-dodecanol microcapsules in poly(methyl methacrylate)[J]. Acta Materiae Compositae Sinica,2017,34(1):191-197(in Chinese).

    [27] 黄云峰, 闵洁, 叶琳, 等. 聚苯乙烯包覆正十四醇微胶囊的制备及表征[J]. 高分子材料科学与工程, 2017, 33(11):139-144.

    HUANG Yunfeng, MIN Jie, YE Lin, et al. Preparation and characterization of myristyl alcohol microcapsules coated with polystyrene[J]. Polymer Materials Science and Engineering,2017,33(11):139-144(in Chinese).

    [28]

    ZENG J L, SUN S L, ZHOU L, et al. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1583-1592. DOI: 10.1007/s10973-017-6352-y

    [29]

    YANG X, LIU Y, LYU Z H, et al. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage,2021,33:102059. DOI: 10.1016/j.est.2020.102059

    [30] 王信刚, 陈忠发, 徐伟, 等. 癸酸相变微胶囊的制备及热性能[J]. 精细化工, 2019, 36(11):2207-2212.

    WANG Xingang, CHEN Zhongfa, XU Wei, et al. Preparation and thermal properties of capric acid phase change microcapsules[J]. Fine Chemicals,2019,36(11):2207-2212(in Chinese).

    [31] 江羽, 王倩, 王冬, 等. 高温相变储能微胶囊研究进展[J]. 工程科学学报, 2021, 43(1):108-118.

    JIANG Yu, WANG Qian, WANG Dong, et al. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering,2021,43(1):108-118(in Chinese).

    [32] 吴凡, 莫丙忠, 何利娟, 等. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14):93-97.

    WU Fan, MO Bingzhong, HE Lijuan, et al. Synthesis and phase change performance of NaNO3@SiO2 microcapsules by using taguchi experimental design[J]. Materials Reports,2022,36(14):93-97(in Chinese).

    [33]

    ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering,2018,136:268-274. DOI: 10.1016/j.applthermaleng.2018.02.050

    [34]

    ZHANG Z S, LIAN Y D, XU X N, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials[J]. Applied Energy,2019,255:113830. DOI: 10.1016/j.apenergy.2019.113830

    [35]

    HUANG J, WANG T Y, ZHU P P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials[J]. Thermochimica Acta,2013,557:1-6. DOI: 10.1016/j.tca.2013.01.019

    [36]

    HASSABO A G, MOHAMED A L, WANG H L, et al. Metal salts rented in silica microcapsules as inorganic phase change materials for textile usage[J]. Inorganic Che-mistry,2015,10(2):59-65.

    [37]

    SINAGA R, DARKWA J, OMER S A, et al. The microencapsulation, thermal enhancement, and applications of medium and high-melting temperature phase change materials: A review[J]. International Journal of Energy Research,2022,46(8):10259-10300. DOI: 10.1002/er.7860

    [38]

    SUN J Q, ZHANG R Y, LIU Z P, et al. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling[J]. Energy Conversion and Management,2007,48(2):619-624. DOI: 10.1016/j.enconman.2006.05.017

    [39]

    REDDY K S, MUDGAL V, MALLICK T K. Review of latent heat thermal energy storage for improved material stability and effective load management[J]. Journal of Energy Storage,2018,15:206-227.

    [40]

    SHARMA A, SHUKLA A, CHEN C R, et al. Development of phase change materials (PCMs) for low temperature energy storage applications[J]. Sustainable Energy Technologies and Assessments,2014,7:17-21. DOI: 10.1016/j.seta.2014.02.009

    [41]

    CHEN Z, FANG G Y. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review[J]. Renewable and Sustainable Energy Reviews,2011,15:4624-4632. DOI: 10.1016/j.rser.2011.07.090

    [42]

    ISHAK S, MANDAL S, LEE H S, et al. Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage[J]. Scientific Reports,2020,10(1):15023. DOI: 10.1038/s41598-020-71940-9

    [43]

    JIANG F Y, WANG X D, WU D Z. Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials[J]. Applied Energy,2014,134:456-468. DOI: 10.1016/j.apenergy.2014.08.061

    [44]

    FINCH C A. Polymer for microcapsule walls[J]. Chemistry and Industry,1985,75:2-56.

    [45]

    LI W T, ZHU X J, ZHAO N, et al. Preparation and properties of pelamine urea-formaldehyde microcapsules for self-healing of cementitious materials[J]. Materials,2016,9(3):1-17.

    [46]

    ZHANG G Q, CAI C W, WANG Y L, et al. Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials[J]. Textile Research Journal,2019,89(16):3387-3393. DOI: 10.1177/0040517518813681

    [47]

    BUCURESCU A, BLAGA A C, ESTEVINHO B N, et al. Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies[J]. Food and Bioprocess Technology,2018,1:1795-1806.

    [48]

    PEREIRA A R L, CATTELAN M G, NICOLETTI V R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,581:123806. DOI: 10.1016/j.colsurfa.2019.123806

    [49]

    LI D X, YAN Y D, OH D H, et al. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer[J]. Drug Delivery, 2010, 17(5): 322-329.

    [50]

    MU X T, JU X J, ZHANG L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. Journal of Membrane Science,2019,590:117275. DOI: 10.1016/j.memsci.2019.117275

    [51] 张毅, 徐箐, 牛晓峰, 等. 不同乳化剂作用下三聚氰胺-甲醛@正十八烷微胶囊相变复合材料微观形貌和热性能[J]. 复合材料学报, 2017, 34(3):661-667.

    ZHANG Yi, XU Jing, NIU Xiaofeng, et al. Effect of different emulsifier on the microstructure and thermal properties of melamine-formaldehyde@n-octadecane microencapsulated phase change composites[J]. Acta Materiae Compositae Sinica,2017,34(3):661-667(in Chinese).

    [52]

    HUANG Q Z, GONG S, HAN W Q, et al. Preparation of TTO/UF resin microcapsule via in situ polymerisation and modelling of its slow release[J]. Journal of Microencapsulation,2020,37(4):297-304. DOI: 10.1080/02652048.2020.1735548

    [53]

    LU S F, SHEN T W, XING J W, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters,2018,211:36-39. DOI: 10.1016/j.matlet.2017.09.074

    [54]

    SHI T J, HU P, WANG J T. Preparation of polyurea microcapsules containing phase change materials using microfluidics[J]. Chemistry Select,2020,5(7):2342-2347.

    [55]

    SÁNCHEZ L, SÁNCHEZ P, LUCAS A D, et al. Microencapsulation of MPCM with a polystyrene shell[J]. Colloid and Polymer Science,2007,285:1377-1385. DOI: 10.1007/s00396-007-1696-7

    [56]

    QIAO Z, MAO J. Multifunctional poly(melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science and Engineering: B,2017,226:86-93. DOI: 10.1016/j.mseb.2017.08.016

    [57]

    HAN P J, QIU X L, LU L X, et al. Fabrication and characterization of a new enhanced hybrid shell micro PCM for thermal energy storage[J]. Energy Conversion and Management,2016,126:673-685. DOI: 10.1016/j.enconman.2016.08.052

    [58]

    ZHAO A Q, AN J L, YANG J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy,2018,215:468-478. DOI: 10.1016/j.apenergy.2018.02.057

    [59]

    SALUNKHE P B, SHEMBEKAR P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy,2012,16:5603-5616. DOI: 10.1016/j.rser.2012.05.037

    [60]

    PAN L, TAO Q H, ZHANG S D, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells,2012,98:66-70. DOI: 10.1016/j.solmat.2011.09.020

    [61]

    SARI A, SALEH T A, HEKIMOĞLU G, et al. Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage[J]. Journal of Molecular Liquids,2021,328:115508. DOI: 10.1016/j.molliq.2021.115508

    [62]

    GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science: EES,2019,12(3):841-864.

    [63]

    MALEKI M, KARIMIAN H, SHOKOUHIMEHR M, et al. Development of graphitic domains in carbon foams for high efficient electro/photo-to-thermal energy conversion phase change composites[J]. Chemical Engineering Journal,2019,362:469-481. DOI: 10.1016/j.cej.2019.01.032

    [64]

    TAO P, CHANG C, TONG Z, et al. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials[J]. Energy & Environmental Science,2019,12:1613-1621.

    [65]

    TANG Z D, GAO H Y, CHEN X, et al. Advanced multifunctional composite phase change materials based on photo-responsive materials[J]. Nano Energy,2021,80:1-21.

    [66] 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19. DOI: 10.11868/j.issn.1001-4381.2018.000539

    ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering,2019,47(6):11-19(in Chinese). DOI: 10.11868/j.issn.1001-4381.2018.000539

    [67]

    WU X, CHEN G Y, ZHANG W, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems,2017,1(6):1700046. DOI: 10.1002/adsu.201700046

    [68] 陈瑞, 王晶晶, 乔宏志. 有机光热转换材料及其在光热疗法中的应用[J]. 化学进展, 2017, 29(Z2):329-336. DOI: 10.7536/PC160638

    CHEN Rui, WANG Jingjing, QIAO Hongzhi. Organic photothermal conversion materials and their application in photothermal therapy[J]. Progress in Chemistry,2017,29(Z2):329-336(in Chinese). DOI: 10.7536/PC160638

    [69]

    JIE Y, DAVID J, YASEEN M A, et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society,2010,132(6):1929-1938. DOI: 10.1021/ja908139y

    [70]

    LIANG X L, DENG Z J, JING L J, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chemical Communications,2013,49(94):11029-11031. DOI: 10.1039/c3cc42510j

    [71]

    SAXENA V, SADOQI M, SHAO J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences,2003,92(10):2090-2097. DOI: 10.1002/jps.10470

    [72]

    CHEN L, LI X, XIONG M M, et al. Development of novel nanoporphyrin biomaterials for NIR-II activated photothermal therapy against tumor in vivo[J]. Materials& Design,2023,225:111532.

    [73]

    LI X S, PENG X H, ZHENG B D, et al. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chemical Science,2018,9(8):2098-2104. DOI: 10.1039/C7SC05115H

    [74]

    JIAO Y, LIU K, WANG G T, et al. Supramolecular free radicals: Near-infrared organic materials with enhanced photothermal conversion[J]. Chemical Science,2015,6(7):3975-3980. DOI: 10.1039/C5SC01167A

    [75]

    WU Y J, LYU F H, KAN J L, et al. Near-infrared and metal-free tetra(butylamino) phthalocyanine nanoparticles for dual modal cancer phototherapy[J]. RSC Advances,2020,10(43):25958-25965. DOI: 10.1039/D0RA03898A

    [76]

    LIU Y L, AI K L, LIU J H, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials,2013,25(9):1353-1359. DOI: 10.1002/adma.201204683

    [77]

    ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. DOI: 10.1038/s41565-018-0097-z

    [78]

    YOU C Q, WU H H, WANG M X, et al. A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery[J]. Nanotechnology,2017,28(16):165102. DOI: 10.1088/1361-6528/aa645f

    [79]

    CAI Y, SI W L, HUANG W, et al. Organic dye based nanoparticles for cancer phototheranostics[J]. Small,2018,14(25):1704247. DOI: 10.1002/smll.201704247

    [80] 梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2):247-256.

    LIANG Guohai, XING Da. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers,2018,45(2):247-256(in Chinese).

    [81]

    WU X H, JIANG Q S, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process[J]. Journal of Materials Chemistry A,2018,6(39):18799-18807. DOI: 10.1039/C8TA05738A

    [82]

    TIAN Y, ZHANG J P, TANG S W, et al. Polypyrrole composite nanoparticles with morphology-dependent photothermal effect and immunological responses[J]. Small,2016,12(6):721-726. DOI: 10.1002/smll.201503319

    [83]

    YANG J, CHOI J, BANG D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Hyperthermia,2011,50:441-444.

    [84] 陈志钢, 匡兴羽, 宋琳琳, 等. 近红外光驱动的纳米材料和器件的研究进展[J]. 无机化学学报, 2013, 29(8):1574-1590.

    CHEN Zhigang, KUANG Xingyu, SONG Linlin, et al. Research progress in NIR-light-driven nanomaterials and nanodevices[J]. Chinese Journal of Inorganic Chemistry,2013,29(8):1574-1590(in Chinese).

    [85]

    QI J, FANG Y, KWOK R T K, et al. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice[J]. ACS Nano,2017,11(7):7177-7188. DOI: 10.1021/acsnano.7b03062

    [86]

    SONG X J, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research,2015,8(2):340-354. DOI: 10.1007/s12274-014-0620-y

    [87]

    WANG X, LIU Q C, WU S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials,2019,31(19):1807716. DOI: 10.1002/adma.201807716

    [88]

    CAO R R, CHEN S, WANG Y Z, et al. Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances[J]. Carbon,2019,149:263-272. DOI: 10.1016/j.carbon.2019.04.005

    [89]

    ZHANG X G, WEN R L, HUANG Z H, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials[J]. Energy and Buildings,2017,149:463-470. DOI: 10.1016/j.enbuild.2017.05.037

    [90]

    SIAVASH I M, BAITALLAH E, ROUMEN P. EBSD characterization of Al7075/graphene nanoplates/carbon nanotubes composites processed through post-deformation annealing[J]. Transactions of Nonferrous Metals Society of China,2021,31(8):2250-2263. DOI: 10.1016/S1003-6326(21)65652-2

    [91]

    WAN Y J, GONG L X, TANG L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites Part A: Applied Science and Manufacturing,2014,64:79-89. DOI: 10.1016/j.compositesa.2014.04.023

    [92]

    LI Z, YOUNG R J, WANG R G, et al. The role of functional groups on graphene oxide in epoxy nanocomposites[J]. Polymer,2013,54(21):5821-5829. DOI: 10.1016/j.polymer.2013.08.026

    [93]

    MEHRALI M, LATIBARI S T, MEHRALI M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide compo-site[J]. Energy Conversion and Management,2013,67:275-282. DOI: 10.1016/j.enconman.2012.11.023

    [94]

    CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718. DOI: 10.1016/j.joule.2018.12.023

    [95]

    ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578. DOI: 10.1093/nsr/nwz030

    [96]

    HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-1483. DOI: 10.1016/j.scib.2021.02.014

    [97]

    WANG T Y, HUANG H B, LI H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. DOI: 10.1016/S1872-5805(21)60066-5

    [98]

    JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research,2008,41(12):1578-1586. DOI: DOI:10.1021/ar7002804

    [99]

    BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology,2015,10:25-34. DOI: 10.1038/nnano.2014.311

    [100]

    PANG Y S, ZHANG J J, MA R M, et al. Solar-thermal water evaporation: A review[J]. Energy Letters,2020,5:437-456. DOI: 10.1021/acsenergylett.9b02611

    [101]

    SANGHAK P, JIN L W, SUNGMIN P, et al. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy[J]. Scientific Reports,2019,9(1):141-147. DOI: 10.1038/s41598-018-37859-y

    [102]

    LUO W X, HU X W, CHE Y H, et al. Form-stable phase change materials enhanced photothermic conversion and thermal conductivity by Ag-expanded graphite[J]. Journal of Energy Storage,2022,52:105060. DOI: 10.1016/j.est.2022.105060

    [103] 张煜, 侯予, 陈良. 等离激元Au纳米流体集热器性能研究[J]. 西安交通大学学报, 2020, 54(8):44-49. DOI: 10.7652/xjtuxb202008006

    ZHANG Yu, HOU Yu, CHEN Liang. Performance analysis of the collector of the nanofluid with plasmon Au[J]. Journal of Xi'an Jiao Tong University,2020,54(8):44-49(in Chinese). DOI: 10.7652/xjtuxb202008006

    [104]

    LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. DOI: 10.1016/j.nanoen.2017.09.005

    [105]

    KANG M, KIM Y. Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,600:124957. DOI: 10.1016/j.colsurfa.2020.124957

    [106]

    CHANG C, YANG C, LIU Y M, et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation[J]. ACS Applied Materials & Interfaces,2016,8(35):21412-21418.

    [107]

    GUO A K, FU Y, WANG G, et al. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation[J]. RSC Advances,2017,7(8):4815-4824. DOI: 10.1039/C6RA26979F

    [108]

    YUAN H K, KHOURY C G, HWANG H G, et al. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging[J]. Nano technology,2012,23(7):075102. DOI: 10.1088/0957-4484/23/7/075102

    [109]

    IBRAHIM I, SEO D H, MCDONAGH A M, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination,2021,500:114853. DOI: 10.1016/j.desal.2020.114853

    [110] 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4):580-596. DOI: 10.7536/PC180908

    GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry,2019,31(4):580-596(in Chinese). DOI: 10.7536/PC180908

    [111]

    TIAN Q W, JIANG F R, ZOU R J, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano,2011,5(12):9761-9771. DOI: 10.1021/nn203293t

    [112]

    ZHANG C C, ZHANG Y Y, XIE W. Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion[J]. Journal of Energy Chemistry,2021,63:40-53. DOI: 10.1016/j.jechem.2021.08.036

    [113]

    UMLAUFF M, HOFFMANN J, KALT H, et al. Direct observation of free-exciton thermalization in quantum-well structures[J]. Physical Review B,1998,57(3):1390-1393. DOI: 10.1103/PhysRevB.57.1390

    [114]

    HUANG X J, ZHANG W L, GUAN G Q, et al. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics[J]. Accounts of Chemical Research,2017,50(10):2529-2538. DOI: 10.1021/acs.accounts.7b00294

    [115]

    WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29:1603730. DOI: 10.1002/adma.201603730

    [116]

    WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management,2019,196:1299-1305. DOI: 10.1016/j.enconman.2019.06.084

    [117] 黄玥铭, 吴子华, 王嘉伟, 等. 有机复合相变材料光热转换和储热性能的研究进展[J]. 材料导报, 2022, 36(S2):440-448.

    HUANG Yueming, WU Zihua, WANG Jiawei, et al. Research progress in photothermal conversion and heat storage capacity of organic composite phase change materials[J]. Materials Reports,2022,36(S2):440-448(in Chinese).

    [118] 吴京, 王先锋, 薛东, 等. 基于聚多巴胺包覆的光热相变微胶囊的制备及性能[J]. 精细化工, 2021, 38(3):489-495. DOI: 10.13550/j.jxhg.20200755

    WU Jing, WANG Xianfeng, XUE Dong, et al. Preparation and properties of PDA-coated photothermal phase change microcapsules[J]. Fine Chemicals,2021,38(3):489-495(in Chinese). DOI: 10.13550/j.jxhg.20200755

    [119]

    YUAN S P, YAN R, REN B B, et al. Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage[J]. Renewable Energy,2021,180:725-733. DOI: 10.1016/j.renene.2021.08.128

    [120]

    HAO D D, YANG Y D, XU B, et al. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10789-10797.

    [121]

    HU L C, LI X, DING L, et al. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage[J]. Solar Energy Materials and Solar Cells,2021,224:110985. DOI: 10.1016/j.solmat.2021.110985

    [122]

    LI P, ZOU F W, WANG X F, et al. In-situ deposition preparation of n-octadecane@silica@polydopamine-doped polypyrrole microcapsules for photothermal conversion and thermal energy storage of full-spectrum solar radiation[J]. Solar Energy,2022,240:388-398. DOI: 10.1016/j.solener.2022.05.052

    [123]

    DREYER D R, PARK S J, BIELAWSKI C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240. DOI: 10.1039/B917103G

    [124]

    MAITHYA O M, LI X, FENG X L, et al. Microencapsulated phase change material via pickering emulsion stabilized by graphene oxide for photothermal conversion[J]. Journal of Materials Science,2020,55:1-12. DOI: 10.1007/s10853-019-03876-z

    [125]

    YUAN K J, WANG H C, LIU J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Mater and Solar Cells,2015 ,143:29-37.

    [126]

    MA X C, LIU Y J, LIU H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells,2018,188:73-80. DOI: 10.1016/j.solmat.2018.08.021

    [127]

    SHEN X N, JI M Z, ZHANG S M, et al. Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance[J]. Composites Science and Technology,2019,170:77-84. DOI: 10.1016/j.compscitech.2018.11.029

    [128]

    MA X C, LIU H, CHEN C, et al. Synthesis of novel microencapsulated phase change material with SnO2/CNTs shell for solar energy storage and photo-thermal conversion[J]. Materials Research Express,2020,7(1):015513. DOI: 10.1088/2053-1591/ab657e

    [129]

    ZHANG X, ZHANG Y H, YAN Y R, et al. Synthesis and characterization of hydroxylated carbon nanotubes modified microencapsulated phase change materials with high latent heat and thermal conductivity for solar energy storage[J]. Solar Energy Materials and Solar Cells,2022,236:111546. DOI: 10.1016/j.solmat.2021.111546

    [130]

    WANG C L, ZHANG G L, ZHANG X S. Experimental and photothermal performance evaluation of multi-wall carbon-nanotube-enhanced microencapsulation phase change slurry for efficient photothermal conversion and storage[J]. Energies,2022,15(20):1-15.

    [131]

    GUO M X, WU J B, LI F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. DOI: 10.1016/S1872-5805(20)60501-7

    [132]

    KISLOV N, LAHIRI J, VERMA H, et al. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO[J]. Langmuir,2009,25(5):3310-3315. DOI: 10.1021/la803845f

    [133]

    ZHENG H R, JIANG Y R, YANG S Y, et al. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors[J]. Journal of Alloys and Compounds,2020,812:152158. DOI: 10.1016/j.jallcom.2019.152158

    [134]

    LIU L, MIAO X W, CHENG X, et al. Preparation and characterization of ZnO/SiO2@n-octadecane nanocapsule for ultraviolet absorbing and photothermal conversion energy storage[J]. Journal of Energy Storage,2022,54:105363. DOI: 10.1016/j.est.2022.105363

    [135]

    HUANG C W, LI Q T, YANG Y B, et al. A novel bifunctional microencapsulated phase change material loading with ZnO for thermal energy storage and light-thermal energy conversion[J]. Sustainable Energy & Fuels,2020,4(10):5203-5214.

    [136]

    ZHOU T, WANG X, CHENG P, et al. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles[J]. Express Polymer Letters,2013,7(7):585-594. DOI: 10.3144/expresspolymlett.2013.56

    [137] 何科林, 沈荣晨, 郝磊, 等. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11):27-50. DOI: 10.3866/PKU.WHXB202201021

    HE Kelin, SHEN Rongchen, HAO Lei, et al. Advances in nanostructured silicon carbide phtocatalysts[J]. Acta Physico-Chimica Sinica,2022,38(11):27-50(in Chinese). DOI: 10.3866/PKU.WHXB202201021

    [138]

    WANG X F, LI C H, ZHAO T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells,2018,183:82-91. DOI: 10.1016/j.solmat.2018.03.019

    [139]

    WANG X G, ZHANG C Y, WANG K, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science,2021,582:30-40. DOI: 10.1016/j.jcis.2020.08.014

    [140]

    SHAHED U M K, MOFAREH A S, WILLIAM B I. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245. DOI: 10.1126/science.1075035

    [141]

    TANG B T, WEI H P, ZHAO D F, et al. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells,2017,161:183-189. DOI: 10.1016/j.solmat.2016.12.003

    [142] 马晨雨, 李晓禹, 张绘, 等. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23):4079-4083, 4099. DOI: 10.11896/j.issn.1005-023X.2018.23.008

    MA Chenyu, LI Xiaoyu, ZHANG Hui, et al. Preparation and photothermal conversion performance characterization of submicron Ti4O7[J]. Materials Reports,2018,32(23):4079-4083, 4099(in Chinese). DOI: 10.11896/j.issn.1005-023X.2018.23.008

    [143]

    ZHANG Y, LI X Y, LI J Q, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy,2018,53:579-586. DOI: 10.1016/j.nanoen.2018.09.018

    [144]

    PU H H, HE P X, YANG D, et al. Polydopamine modified CuS particles filled cellulose fiber for photothermal conversion performance[J]. Industrial Crops & Products,2023,193:116188.

    [145]

    LIU L, LIANG S Y, CHENG X, et al. Preparation and characterization of novel CuS/SiO2@n-octadecane phase-change nanocapsules enhanced photothermal conversion for solar energy utilization[J]. International Journal of Energy Research,2022,46(6):7411-7423. DOI: 10.1002/er.7648

    [146]

    REN Y W, LIU H P, LIU X M, et al. Photoresponsive materials for antibacterial applications[J]. Cell Reports Physical Science,2020,1(11):100245. DOI: 10.1016/j.xcrp.2020.100245

    [147]

    FAN X Y, QIU X L, LU L X, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability[J]. Solar Energy Materials and Solar Cells,2021,223:110937. DOI: 10.1016/j.solmat.2020.110937

  • 期刊类型引用(16)

    1. 杨小刚,孔明洁,赵家玉,李斌. 硫酸二次掺杂聚苯胺/石墨烯/碳纳米管复合材料制备及其防腐性能. 复合材料学报. 2025(02): 924-936 . 本站查看
    2. 戴丽艳. 复合催化剂Ag-Ti/碳纤维的制备及光催化降解罗丹明B. 化学工程师. 2024(03): 11-13+18 . 百度学术
    3. 方媛,闫嘉琪,孙景齐,韩鹏辉,赵顺强,曾立军,杨杰,朱建锋. Ti_3C_2T_x改性环氧树脂涂层的制备及其在人工海水环境下的摩擦学性能研究. 陕西科技大学学报. 2024(03): 135-143 . 百度学术
    4. 陈明锴,陈磊,马彦军,张定军,周惠娣,陈建敏. 润滑耐磨耐蚀功能一体化有机黏结涂层的研究进展. 高分子材料科学与工程. 2024(04): 182-190 . 百度学术
    5. 查向浩,安旭霞,李飞星,李有文,张玉才. 二维纳米材料的研究进展. 化工新型材料. 2024(09): 31-35+42 . 百度学术
    6. 闫圣刚,周宇,许豪,宋光磊,于良民. 基于Ce-MOF@MXene复合材料涂层的防腐性能研究. 材料科学与工艺. 2024(06): 76-86 . 百度学术
    7. 谢煜彬,胡国梁,张笑晴,雷彩红. 磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能. 复合材料学报. 2024(12): 6545-6558 . 本站查看
    8. 董邯海,程勇,程庆利,杨珂,周日峰,毕伟扬. 六亚甲基二异氰酸酯微胶囊的制备及其在自修复涂料中的应用. 表面技术. 2023(04): 272-284 . 百度学术
    9. 何阳,李思盈,李传强,袁小亚,郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能. 化工进展. 2023(04): 1983-1994 . 百度学术
    10. 李翊,刘杰,刘长沙,邹阳,蒋俊,孙敬庭. 基于阴极电位保护的覆土式储罐化学稳定性与耐腐蚀试验. 粘接. 2023(05): 126-129 . 百度学术
    11. 苏新悦,孔存辉,庆达,赵英娜,王建省. Ti_3C_2/SrTiO_3复合材料的制备及其光电化学阴极保护性能. 复合材料学报. 2023(07): 3964-3972 . 本站查看
    12. 田经纬,白艳博,李承高,咸贵军. 尼龙6填料对碳纤维-环氧树脂复合材料力学与摩擦磨损性能的提升机制. 复合材料学报. 2023(09): 5011-5025 . 本站查看
    13. 刘嘉源,张宏亮,左晓宝,邹欲晓. 纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响. 复合材料学报. 2023(09): 5046-5056 . 本站查看
    14. 张泽旭,王睿,白旭秋,郑峻,袁才登. 氧化石墨烯改性EP/PU防腐涂料的制备及性能. 塑料. 2023(05): 6-10+15 . 百度学术
    15. 栗洋,牛永平,杨康,杜三明,杨璐璐. 二硫化钼/硫化铜纳米杂化材料改性环氧树脂摩擦学性能研究. 化工新型材料. 2023(12): 133-137+142 . 百度学术
    16. 郑天麒. 碳纤维改性环氧树脂基复合材料的制备及性能研究. 功能材料. 2022(12): 12147-12151 . 百度学术

    其他类型引用(12)

  • 目的 

    微胶囊相变材料解决了相变材料易泄露、易腐蚀的问题,被广泛应用在太阳能利用、调温纤维与织物、节能建筑和传热流体等领域。通过添加光热材料对相变微胶囊进行改性,可以将储热功能和吸光能力结合起来,不仅能够实现太阳热能的高效转换和储存,而且拓展了相变材料的应用范围。本文综述了相变微胶囊光热改性的材料选择和转换机制,为进一步开发功能性相变微胶囊提供参考。

    方法 

    归纳了相变微胶囊芯材和壳材的选择;从光热转换机制角度,综述了有机光热材料和无机光热材料(碳基材料、金属基材料、半导体材料)的光热特性和应用中存在的限制。引入光热转换效率描述使用不同光热材料制备的相变微胶囊太阳光吸收和光热转化能力,总结了轨道跃迁效应、能带效应和LSPR效应下对相变微胶囊光热性能的提升效果。

    结果 

    有机光热材料具有良好的生物相容性、生物降解性、低毒性,但易发生光降解;碳基材料种类丰富、易获得,但易发生反射和透射;金属基材料,有极低的光量子产率,但成本高、制备复杂、污染环境;半导体光热材料不易发生光漂白和光降解,但红外光区光吸收能力较差。轨道跃迁效应:聚多巴胺(PDA)和聚吡咯(PPy)有相似的π共轭结构,能有效提高相变微胶囊太阳辐射吸收能力,在PDA和PPy复合作用下,相变微胶囊光热转换效率提高至97.31%。氧化石墨烯(GO)具有π共轭结构及丰富的含氧官能团,GO改性SiO壳的相变微胶囊值提高至85%。碳纳米管(CNTs)与黑体特性相似,易发生轨道跃迁效应将吸收光能转换为热能,CNTs改性SnO壳的相变微胶囊值从50%提高至91.79%。能带效应:半导体材料ZnO对紫外光具有较高的折射率,ZnO改性三聚氰胺-甲醛壳的相变微胶囊值提高至75.2%。SiC在紫外光、可见光、近红外光范围内具有很高的太阳光吸收率,SiC改性三聚氰胺-脲醛壳的相变微胶囊值提高至74.4%。TiO具有较小的带隙(1.06 eV),价带-导带跃迁能力较强,TiO改性SiO壳相变微胶囊的值从40.26%提高到85.36%。LSPR效应:半导体材料CuS晶格缺陷形成空穴掺杂结构,易产生LSPR效应,添加CuS-GO在LSPR效应和能带跃迁效应协同作用下,改性相变微胶囊值可提高至97.1%。

    结论 

    引入光热材料,能够有效增强相变微胶囊的光热转换性能。未来可针对以下几方面深入研究:(1)研究实现全光谱利用的方法;(2)提高生物可降解性;(3)探索光热相变微胶囊的高效规模化生产路径。

图(8)  /  表(2)
计量
  • 文章访问数:  999
  • HTML全文浏览量:  606
  • PDF下载量:  79
  • 被引次数: 28
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-07-01
  • 录用日期:  2023-07-22
  • 网络出版日期:  2023-08-01
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回