Research progress in photothermal conversion mechanism and performance enhancement of the microencapsulated phase change materials
-
摘要: 微胶囊相变材料解决了相变材料易泄露、易腐蚀的问题,被广泛应用在太阳能利用、调温纤维与织物、节能建筑和传热流体等领域。但常规相变微胶囊由于芯壳结构,削弱了光热转换性能,存在光热转换性能差的问题,通过添加光热材料对相变微胶囊改性可以有效提高光热转换性能。本文首先总结了相变微胶囊芯材、壳材的选择及各类材料的特点。重点阐述了有机光热材料、碳基材料、半导体材料、金属基材料等光热材料的特点及其光热转换机制。同时,引入光热转换效率,概述了不同改性材料对相变微胶囊光热性能的提升。最后展望了光热转换改性相变微胶囊未来的发展方向。Abstract: Microencapsulated phase change materials (MPCM) can effectively prevent leakage and corrosion of phase change materials, which are widely utilized in the fields of solar energy utilization, thermo-regulated fibers and fabrics, energy saving buildings and heat transfer fluids. However, there is a problem that the core-shell structure of conventional MPCM weakens the photothermal conversion performance. The poor performance can be effectively improved by modifying MPCM with the addition of photothermal materials. In this paper, the materials of MPCM’s core and shell and their characteristics are summarized. The characteristics and photothermal conversion mechanisms of photothermal materials, including organic photothermal materials, carbon-based materials, semiconductor materials, metal-based materials and other photothermal materials, are illustrated. Additionally, photothermal conversion efficiency is introduced to evaluate the enhancement of photothermal properties of modified MPCM with different modified photothermal materials. Finally, future trend of modified MPCM with photothermal conversion is prospected.
-
图 5 (a) MPCM制备原理图;(b) 不同壳层SiO2 (SCN)、SiO2/聚多巴胺(SCN/PDA)、SiO2/聚吡咯(SCN/PPy)、SiO2/聚多巴胺掺杂聚吡咯(SCN/PAP)的MPCM光吸收强度曲线;(c) 不同比例的PAP∶ SCN的MPCM光吸收强度曲线[122]
CTAB—Cetyl trimethyl ammonium bromide; n-OD—n-octadecane; TEOS—Tetraethyl orthosilicate; PY—Pyrrole; DA—Dopamine; SCN micro-PCMs—n-OD@SiO2 microencapsulated phase change materials; PAP—Polydopamine-doped polypyrrole complexes
Figure 5. (a) Preparation principle of MPCM; (b) Light absorption intensity curves of MPCM with different shells n-OD@SiO2 (SCN), SCN/polydopamine (PDA), SCN/polypyrrole (PPy), SCN/polydopamine-doped polypyrrole complexes (PAP); (c) Light absorption intensity curves of PAP∶SCN MPCM with different ratios[122]
图 7 (a) 不同样品的紫外-可见光谱[134];(b) 不同量SiC的MPCM的时间-温度曲线[138];(c) 不同MPCM的温度-时间响应曲线;(d) 不同样品的各波段光响应曲线[139]
UVA—Ultraviolet visible A (400-320 nm); UVB—Ultraviolet visible B (320-280 nm); UVC—Ultraviolet visible C (100-280 nm); CA—Capric acid
Figure 7. (a) Ultraviolet visible spectra of the different samples[134]; (b) Time-temperature curves of the MPCM with different amount of SiC[138]; (c) Temperature-time response curves of different MPCM; (d) Light response curves of different samples at different wavelengths[139]
图 8 (a)样品M0(正十八烷@CuS-SiO2 MPCM)及其不同反应温度M4 (60℃)、M2 (70℃)、M5 (80℃)下的吸收光谱[145];(b)不同样品的吸收光谱[147]
NIR—Near-infrared
Figure 8. (a) Absorbance spectra of samples M0 (n-octadecane@CuS-SiO2 MPCM), different reaction temperature M4 (60℃), M2 (70℃), M5 (80℃)[145]; (b) Absorption spectra of different samples[147]
表 1 相变微胶囊(MPCM)常见的芯材材料
Table 1. Common core materials of microencapsulated phase change materials (MPCM)
Material Melting enthalpy/(J·g−1) Melting temperature/℃ Ref. Organic material Paraffin n-hexadecane 254.7 20.84 [23] n-octadecane 230.0 28.2 [24] n-eicosane 189.0 18-30 [25] Alcohol n-dodecanol 200.0 18-28 [26] Myristyl alcohol 220.0 38 [27] Fatty acid Palmitic acid 226.2 65 [28] Lauric acid 232.6 44.2 [29] Capric acid 177.0 31.84 [30] Inorganic material Carbonate $ {\text{Na}}_{2}{\text{CO}}_{3} $ 275.7 854 [31] Nitrate $ {\text{NaNO}}_{3} $ 180.0 300 [32] $ {\text{KNO}}_{3} $ 100.0 334 [33] Hydrated salt Na2SO4·10H2O 251.0 32.4 [34] Na2HPO4·12H2O 177.8 34.72 [35] CaCl2·6H2O 200.0 29.5 [36] Metal and alloy Li 433.78 186 [37] Ti 232.0 60.5 [37] Al-Mg-Zn (60/34/6wt%) 329.1 450.31 [38] Classification Representative category Material Semiconductor materials with defect structures Copper chalcogenide CuS, Cu7S4, Cu9S5 Transition metal oxide MoO3, WO3, CuO, Cu2O Semiconductor materials with intrinsic absorption band gap Transition metal compounds CdS, CdSe, MoS2, MoSe, WS2 Carbide SiC, ZrC Others ZnO, TiO2, NiO, Ti4O7 -
[1] KANNAN N, VAKEESAN D. Solar energy for future world: A review[J]. Renewable and Sustainable Energy Reviews,2016,62:1092-1105. doi: 10.1016/j.rser.2016.05.022 [2] 宋之平. 从可持续发展的战略高度重新审视热电联产[J]. 中国电机工程学报, 1998(4):2-7.SONG Zhiping. Rediscovering the combined heat and power in terms of the sustainable development[J]. Proceedings of the CSEE,1998(4):2-7(in Chinese). [3] 赵梦阳, 张宇昂, 唐炳涛. 聚氨酯型复合定形相变储能材料研究进展[J]. 精细化工, 2020, 37(11):2182-2192, 2215.ZHAO Mengyang, ZHANG Yu'ang, TANG Bingtao. Research process in polyurethane form-stable composite phase change materials[J]. Fine Chemicals,2020,37(11):2182-2192, 2215(in Chinese). [4] HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review[J]. Applied Thermal Engineering,2019,147:841-855. doi: 10.1016/j.applthermaleng.2018.11.007 [5] ZHANG Q, WANG H C, LING Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells,2015,140:158-166. doi: 10.1016/j.solmat.2015.04.008 [6] ZHOU H, LYU L Q, ZHANG Y Z, et al. Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,230:111244. doi: 10.1016/j.solmat.2021.111244 [7] PATIL N G, CHAUDHARI S S, MAHANWAR P A. Microencapsulation of polymeric phase change materials (MPCM) for thermal energy storage in industrial coating applications[J]. Journal of Polymer Engineering,2023,43(5):419-442. doi: 10.1515/polyeng-2022-0291 [8] 郝敏, 李忠辉, 吴秋芳, 等. 相变材料封装技术的研究进展[J]. 材料导报, 2014, 28(9):98-103.HAO Min, LI Zhonghui, WU Qiufang, et al. Research progress of encapsulation technology for phase change material[J]. Materials Reports,2014,28(9):98-103(in Chinese). [9] ZHENG H F, TIAN G J, YANG C W, et al. Experimental study on performance of phase change microcapsule cold storage solar composite refrigeration system[J]. Renewable Energy,2022,198:1176-1185. doi: 10.1016/j.renene.2022.08.133 [10] CHEN Y B, CUI S Q, JIN H, et al. Fabrication of phase change microcapsules with controllable size via regenerated nanochitin stabilized pickering and their applications for lyocell fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,655:130308. doi: 10.1016/j.colsurfa.2022.130308 [11] WANG Y B, LI Q, MIAO W J, et al. The thermal performances of cement-based materials with different types of microencapsulated phase change materials[J]. Construction and Building Materials,2022,345:128388. doi: 10.1016/j.conbuildmat.2022.128388 [12] KONG M, ALVARADO J L, TERRELL W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer,2016,101:901-914. doi: 10.1016/j.ijheatmasstransfer.2016.05.047 [13] ZHENG Z L, CHANG Z, XU G K, et al. Microencapsulated phase change materials in solar-thermal conversion systems: Understanding geometry-dependent heating efficiency and system reliability[J]. ACS Nano,2017,11(1):721-729. doi: 10.1021/acsnano.6b07126 [14] LIU J K, WULIU Y S, ZHU X B, et al. Synthesized acrylate monomers to improve photothermal conversion efficiency and fire safety of PEG/black phosphorus (BP) phase change composites[J]. Composites Science and Technology,2023,238:110028. doi: 10.1016/j.compscitech.2023.110028 [15] YE X Y, MA Y J, TIAN Z Y, et al. Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage[J]. Composites Science and Technology,2022,230:109794. doi: 10.1016/j.compscitech.2022.109794 [16] 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10):5554-5576.GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engi-neering Progress,2021,40(10):5554-5576(in Chinese). [17] CHEN R, GE X, LI X X, et al. Facile preparation method of phase change microcapsule with organic-inorganic silicone shell for battery thermal management[J]. Composites Science and Technology,2022,228:109662. doi: 10.1016/j.compscitech.2022.109662 [18] HAMAD G B, YOUNSI Z, NAJI H, et al. A comprehensive review of microencapsulated phase change materials synthesis for low-temperature energy storage applications[J]. Applied Sciences,2021,11:11900. doi: 10.3390/app112411900 [19] WANG K W, YAN T, PAN W G. Optimization strategies of microencapsulated phase change materials for thermal energy storage[J]. Journal of Energy Storage,2023,68:107844. doi: 10.1016/j.est.2023.107844 [20] 郝旭波, 牛宝联, 郭昊天, 等. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2):854-871. doi: 10.16085/j.issn.1000-6613.2022-0654HAO Xubo, NIU Baolian, GUO Haotian, et al. Modification of microencapsulated phase change material and its utilization in photothermal conversion[J]. Chemical Industry and Engineering Progress,2023,42(2):854-871(in Chinese). doi: 10.16085/j.issn.1000-6613.2022-0654 [21] AGBOSSOU A, ZHANG Q, SEBALD G, et al. Solar micro-energy harvesting based on thermoelectric and latent heat effects. Part I: Theoretical analysis[J]. Sensors and Actuators A: Physical,2010,163(1):277-283. doi: 10.1016/j.sna.2010.06.026 [22] FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management,2003,45(9):1597-1615. [23] JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/diatomite composites for enhancing thermal pro-perties[J]. International Journal of Heat and Mass Transfer,2013,62:711-717. doi: 10.1016/j.ijheatmasstransfer.2013.03.043 [24] 蔡迪, 李静. 硬脂醇改性的氧化石墨烯/正十八烷复合相变材料的热物性研究[J]. 化工学报, 2020, 71(10):4826-4835.CAI Di, LI Jing. Study on thermal properties of stearyl alcohol modified graphene oxide/n-octadecane compo-site phase change materials[J]. CIESC Journal,2020,71(10):4826-4835(in Chinese). [25] KARASZEWSKA A, KAMIŃSKA I, NEJMAN A, et al. Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer[J]. Materials Chemistry and Physics,2019,226:204-213. doi: 10.1016/j.matchemphys.2019.01.029 [26] 宋晓秋, 曹龙迪, 叶琳. 聚甲基丙烯酸甲酯包覆十二醇微胶囊的制备及表征[J]. 复合材料学报, 2017, 34(1):191-197.SONG Xiaoqiu, CAO Longdi, YE Lin. Preparation and characterization of n-dodecanol microcapsules in poly(methyl methacrylate)[J]. Acta Materiae Compositae Sinica,2017,34(1):191-197(in Chinese). [27] 黄云峰, 闵洁, 叶琳, 等. 聚苯乙烯包覆正十四醇微胶囊的制备及表征[J]. 高分子材料科学与工程, 2017, 33(11):139-144.HUANG Yunfeng, MIN Jie, YE Lin, et al. Preparation and characterization of myristyl alcohol microcapsules coated with polystyrene[J]. Polymer Materials Science and Engineering,2017,33(11):139-144(in Chinese). [28] ZENG J L, SUN S L, ZHOU L, et al. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells[J]. Journal of Thermal Analysis and Calorimetry,2017,129(3):1583-1592. doi: 10.1007/s10973-017-6352-y [29] YANG X, LIU Y, LYU Z H, et al. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage,2021,33:102059. doi: 10.1016/j.est.2020.102059 [30] 王信刚, 陈忠发, 徐伟, 等. 癸酸相变微胶囊的制备及热性能[J]. 精细化工, 2019, 36(11):2207-2212.WANG Xingang, CHEN Zhongfa, XU Wei, et al. Preparation and thermal properties of capric acid phase change microcapsules[J]. Fine Chemicals,2019,36(11):2207-2212(in Chinese). [31] 江羽, 王倩, 王冬, 等. 高温相变储能微胶囊研究进展[J]. 工程科学学报, 2021, 43(1):108-118.JIANG Yu, WANG Qian, WANG Dong, et al. Research progress of high-temperature phase change energy storage microcapsules[J]. Chinese Journal of Engineering,2021,43(1):108-118(in Chinese). [32] 吴凡, 莫丙忠, 何利娟, 等. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14):93-97.WU Fan, MO Bingzhong, HE Lijuan, et al. Synthesis and phase change performance of NaNO3@SiO2 microcapsules by using taguchi experimental design[J]. Materials Reports,2022,36(14):93-97(in Chinese). [33] ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering,2018,136:268-274. doi: 10.1016/j.applthermaleng.2018.02.050 [34] ZHANG Z S, LIAN Y D, XU X N, et al. Synthesis and characterization of microencapsulated sodium sulfate decahydrate as phase change energy storage materials[J]. Applied Energy,2019,255:113830. doi: 10.1016/j.apenergy.2019.113830 [35] HUANG J, WANG T Y, ZHU P P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials[J]. Thermochimica Acta,2013,557:1-6. doi: 10.1016/j.tca.2013.01.019 [36] HASSABO A G, MOHAMED A L, WANG H L, et al. Metal salts rented in silica microcapsules as inorganic phase change materials for textile usage[J]. Inorganic Che-mistry,2015,10(2):59-65. [37] SINAGA R, DARKWA J, OMER S A, et al. The microencapsulation, thermal enhancement, and applications of medium and high-melting temperature phase change materials: A review[J]. International Journal of Energy Research,2022,46(8):10259-10300. doi: 10.1002/er.7860 [38] SUN J Q, ZHANG R Y, LIU Z P, et al. Thermal reliability test of Al-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling[J]. Energy Conversion and Management,2007,48(2):619-624. doi: 10.1016/j.enconman.2006.05.017 [39] REDDY K S, MUDGAL V, MALLICK T K. Review of latent heat thermal energy storage for improved material stability and effective load management[J]. Journal of Energy Storage,2018,15:206-227. [40] SHARMA A, SHUKLA A, CHEN C R, et al. Development of phase change materials (PCMs) for low temperature energy storage applications[J]. Sustainable Energy Technologies and Assessments,2014,7:17-21. doi: 10.1016/j.seta.2014.02.009 [41] CHEN Z, FANG G Y. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review[J]. Renewable and Sustainable Energy Reviews,2011,15:4624-4632. doi: 10.1016/j.rser.2011.07.090 [42] ISHAK S, MANDAL S, LEE H S, et al. Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage[J]. Scientific Reports,2020,10(1):15023. doi: 10.1038/s41598-020-71940-9 [43] JIANG F Y, WANG X D, WU D Z. Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials[J]. Applied Energy,2014,134:456-468. doi: 10.1016/j.apenergy.2014.08.061 [44] FINCH C A. Polymer for microcapsule walls[J]. Chemistry and Industry,1985,75:2-56. [45] LI W T, ZHU X J, ZHAO N, et al. Preparation and properties of pelamine urea-formaldehyde microcapsules for self-healing of cementitious materials[J]. Materials,2016,9(3):1-17. [46] ZHANG G Q, CAI C W, WANG Y L, et al. Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials[J]. Textile Research Journal,2019,89(16):3387-3393. doi: 10.1177/0040517518813681 [47] BUCURESCU A, BLAGA A C, ESTEVINHO B N, et al. Microencapsulation of curcumin by a spray-drying technique using gum arabic as encapsulating agent and release studies[J]. Food and Bioprocess Technology,2018,1:1795-1806. [48] PEREIRA A R L, CATTELAN M G, NICOLETTI V R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,581:123806. doi: 10.1016/j.colsurfa.2019.123806 [49] LI D X, YAN Y D, OH D H, et al. Development of valsartan-loaded gelatin microcapsule without crystal change using hydroxypropylmethylcellulose as a stabilizer[J]. Drug Delivery, 2010, 17(5): 322-329. [50] MU X T, JU X J, ZHANG L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. Journal of Membrane Science,2019,590:117275. doi: 10.1016/j.memsci.2019.117275 [51] 张毅, 徐箐, 牛晓峰, 等. 不同乳化剂作用下三聚氰胺-甲醛@正十八烷微胶囊相变复合材料微观形貌和热性能[J]. 复合材料学报, 2017, 34(3):661-667.ZHANG Yi, XU Jing, NIU Xiaofeng, et al. Effect of different emulsifier on the microstructure and thermal properties of melamine-formaldehyde@n-octadecane microencapsulated phase change composites[J]. Acta Materiae Compositae Sinica,2017,34(3):661-667(in Chinese). [52] HUANG Q Z, GONG S, HAN W Q, et al. Preparation of TTO/UF resin microcapsule via in situ polymerisation and modelling of its slow release[J]. Journal of Microencapsulation,2020,37(4):297-304. doi: 10.1080/02652048.2020.1735548 [53] LU S F, SHEN T W, XING J W, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters,2018,211:36-39. doi: 10.1016/j.matlet.2017.09.074 [54] SHI T J, HU P, WANG J T. Preparation of polyurea microcapsules containing phase change materials using microfluidics[J]. Chemistry Select,2020,5(7):2342-2347. [55] SÁNCHEZ L, SÁNCHEZ P, LUCAS A D, et al. Microencapsulation of MPCM with a polystyrene shell[J]. Colloid and Polymer Science,2007,285:1377-1385. doi: 10.1007/s00396-007-1696-7 [56] QIAO Z, MAO J. Multifunctional poly(melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity[J]. Materials Science and Engineering: B,2017,226:86-93. doi: 10.1016/j.mseb.2017.08.016 [57] HAN P J, QIU X L, LU L X, et al. Fabrication and characterization of a new enhanced hybrid shell micro PCM for thermal energy storage[J]. Energy Conversion and Management,2016,126:673-685. doi: 10.1016/j.enconman.2016.08.052 [58] ZHAO A Q, AN J L, YANG J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy,2018,215:468-478. doi: 10.1016/j.apenergy.2018.02.057 [59] SALUNKHE P B, SHEMBEKAR P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy,2012,16:5603-5616. doi: 10.1016/j.rser.2012.05.037 [60] PAN L, TAO Q H, ZHANG S D, et al. Preparation, characterization and thermal properties of micro-encapsulated phase change materials[J]. Solar Energy Materials and Solar Cells,2012,98:66-70. doi: 10.1016/j.solmat.2011.09.020 [61] SARI A, SALEH T A, HEKIMOĞLU G, et al. Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage[J]. Journal of Molecular Liquids,2021,328:115508. doi: 10.1016/j.molliq.2021.115508 [62] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science: EES,2019,12(3):841-864. [63] MALEKI M, KARIMIAN H, SHOKOUHIMEHR M, et al. Development of graphitic domains in carbon foams for high efficient electro/photo-to-thermal energy conversion phase change composites[J]. Chemical Engineering Journal,2019,362:469-481. doi: 10.1016/j.cej.2019.01.032 [64] TAO P, CHANG C, TONG Z, et al. Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials[J]. Energy & Environmental Science,2019,12:1613-1621. [65] TANG Z D, GAO H Y, CHEN X, et al. Advanced multifunctional composite phase change materials based on photo-responsive materials[J]. Nano Energy,2021,80:1-21. [66] 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6):11-19. doi: 10.11868/j.issn.1001-4381.2018.000539ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering,2019,47(6):11-19(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000539 [67] WU X, CHEN G Y, ZHANG W, et al. A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced Sustainable Systems,2017,1(6):1700046. doi: 10.1002/adsu.201700046 [68] 陈瑞, 王晶晶, 乔宏志. 有机光热转换材料及其在光热疗法中的应用[J]. 化学进展, 2017, 29(Z2):329-336. doi: 10.7536/PC160638CHEN Rui, WANG Jingjing, QIAO Hongzhi. Organic photothermal conversion materials and their application in photothermal therapy[J]. Progress in Chemistry,2017,29(Z2):329-336(in Chinese). doi: 10.7536/PC160638 [69] JIE Y, DAVID J, YASEEN M A, et al. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules[J]. Journal of the American Chemical Society,2010,132(6):1929-1938. doi: 10.1021/ja908139y [70] LIANG X L, DENG Z J, JING L J, et al. Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging[J]. Chemical Communications,2013,49(94):11029-11031. doi: 10.1039/c3cc42510j [71] SAXENA V, SADOQI M, SHAO J. Degradation kinetics of indocyanine green in aqueous solution[J]. Journal of Pharmaceutical Sciences,2003,92(10):2090-2097. doi: 10.1002/jps.10470 [72] CHEN L, LI X, XIONG M M, et al. Development of novel nanoporphyrin biomaterials for NIR-II activated photothermal therapy against tumor in vivo[J]. Materials& Design,2023,225:111532. [73] LI X S, PENG X H, ZHENG B D, et al. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chemical Science,2018,9(8):2098-2104. doi: 10.1039/C7SC05115H [74] JIAO Y, LIU K, WANG G T, et al. Supramolecular free radicals: Near-infrared organic materials with enhanced photothermal conversion[J]. Chemical Science,2015,6(7):3975-3980. doi: 10.1039/C5SC01167A [75] WU Y J, LYU F H, KAN J L, et al. Near-infrared and metal-free tetra(butylamino) phthalocyanine nanoparticles for dual modal cancer phototherapy[J]. RSC Advances,2020,10(43):25958-25965. doi: 10.1039/D0RA03898A [76] LIU Y L, AI K L, LIU J H, et al. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials,2013,25(9):1353-1359. doi: 10.1002/adma.201204683 [77] ZHAO F, ZHOU X Y, SHI Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology,2018,13(6):489-495. doi: 10.1038/s41565-018-0097-z [78] YOU C Q, WU H H, WANG M X, et al. A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery[J]. Nanotechnology,2017,28(16):165102. doi: 10.1088/1361-6528/aa645f [79] CAI Y, SI W L, HUANG W, et al. Organic dye based nanoparticles for cancer phototheranostics[J]. Small,2018,14(25):1704247. doi: 10.1002/smll.201704247 [80] 梁国海, 邢达. 用于肿瘤光热治疗的有机纳米材料研究进展[J]. 中国激光, 2018, 45(2):247-256.LIANG Guohai, XING Da. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers,2018,45(2):247-256(in Chinese). [81] WU X H, JIANG Q S, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process[J]. Journal of Materials Chemistry A,2018,6(39):18799-18807. doi: 10.1039/C8TA05738A [82] TIAN Y, ZHANG J P, TANG S W, et al. Polypyrrole composite nanoparticles with morphology-dependent photothermal effect and immunological responses[J]. Small,2016,12(6):721-726. doi: 10.1002/smll.201503319 [83] YANG J, CHOI J, BANG D, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells[J]. Hyperthermia,2011,50:441-444. [84] 陈志钢, 匡兴羽, 宋琳琳, 等. 近红外光驱动的纳米材料和器件的研究进展[J]. 无机化学学报, 2013, 29(8):1574-1590.CHEN Zhigang, KUANG Xingyu, SONG Linlin, et al. Research progress in NIR-light-driven nanomaterials and nanodevices[J]. Chinese Journal of Inorganic Chemistry,2013,29(8):1574-1590(in Chinese). [85] QI J, FANG Y, KWOK R T K, et al. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice[J]. ACS Nano,2017,11(7):7177-7188. doi: 10.1021/acsnano.7b03062 [86] SONG X J, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Research,2015,8(2):340-354. doi: 10.1007/s12274-014-0620-y [87] WANG X, LIU Q C, WU S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716 [88] CAO R R, CHEN S, WANG Y Z, et al. Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances[J]. Carbon,2019,149:263-272. doi: 10.1016/j.carbon.2019.04.005 [89] ZHANG X G, WEN R L, HUANG Z H, et al. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials[J]. Energy and Buildings,2017,149:463-470. doi: 10.1016/j.enbuild.2017.05.037 [90] SIAVASH I M, BAITALLAH E, ROUMEN P. EBSD characterization of Al7075/graphene nanoplates/carbon nanotubes composites processed through post-deformation annealing[J]. Transactions of Nonferrous Metals Society of China,2021,31(8):2250-2263. doi: 10.1016/S1003-6326(21)65652-2 [91] WAN Y J, GONG L X, TANG L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites Part A: Applied Science and Manufacturing,2014,64:79-89. doi: 10.1016/j.compositesa.2014.04.023 [92] LI Z, YOUNG R J, WANG R G, et al. The role of functional groups on graphene oxide in epoxy nanocomposites[J]. Polymer,2013,54(21):5821-5829. doi: 10.1016/j.polymer.2013.08.026 [93] MEHRALI M, LATIBARI S T, MEHRALI M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide compo-site[J]. Energy Conversion and Management,2013,67:275-282. doi: 10.1016/j.enconman.2012.11.023 [94] CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023 [95] ZHOU L, LI X Q, NI G W, et al. The revival of thermal utilization from the sun: Interfacial solar vapor generation[J]. National Science Review,2019,6(3):562-578. doi: 10.1093/nsr/nwz030 [96] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-1483. doi: 10.1016/j.scib.2021.02.014 [97] WANG T Y, HUANG H B, LI H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5 [98] JAIN P K, HUANG X H, EL-SAYED I H, et al. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research,2008,41(12):1578-1586. doi: DOI:10.1021/ar7002804 [99] BRONGERSMA M L, HALAS N J, NORDLANDER P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology,2015,10:25-34. doi: 10.1038/nnano.2014.311 [100] PANG Y S, ZHANG J J, MA R M, et al. Solar-thermal water evaporation: A review[J]. Energy Letters,2020,5:437-456. doi: 10.1021/acsenergylett.9b02611 [101] SANGHAK P, JIN L W, SUNGMIN P, et al. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy[J]. Scientific Reports,2019,9(1):141-147. doi: 10.1038/s41598-018-37859-y [102] LUO W X, HU X W, CHE Y H, et al. Form-stable phase change materials enhanced photothermic conversion and thermal conductivity by Ag-expanded graphite[J]. Journal of Energy Storage,2022,52:105060. doi: 10.1016/j.est.2022.105060 [103] 张煜, 侯予, 陈良. 等离激元Au纳米流体集热器性能研究[J]. 西安交通大学学报, 2020, 54(8):44-49. doi: 10.7652/xjtuxb202008006ZHANG Yu, HOU Yu, CHEN Liang. Performance analysis of the collector of the nanofluid with plasmon Au[J]. Journal of Xi'an Jiao Tong University,2020,54(8):44-49(in Chinese). doi: 10.7652/xjtuxb202008006 [104] LIU G H, XU J L, WANG K Y. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005 [105] KANG M, KIM Y. Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,600:124957. doi: 10.1016/j.colsurfa.2020.124957 [106] CHANG C, YANG C, LIU Y M, et al. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation[J]. ACS Applied Materials & Interfaces,2016,8(35):21412-21418. [107] GUO A K, FU Y, WANG G, et al. Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation[J]. RSC Advances,2017,7(8):4815-4824. doi: 10.1039/C6RA26979F [108] YUAN H K, KHOURY C G, HWANG H G, et al. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging[J]. Nano technology,2012,23(7):075102. doi: 10.1088/0957-4484/23/7/075102 [109] IBRAHIM I, SEO D H, MCDONAGH A M, et al. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment[J]. Desalination,2021,500:114853. doi: 10.1016/j.desal.2020.114853 [110] 郭星星, 高航, 殷立峰, 等. 光热转换材料及其在脱盐领域的应用[J]. 化学进展, 2019, 31(4):580-596. doi: 10.7536/PC180908GUO Xingxing, GAO Hang, YIN Lifeng, et al. Photo-thermal conversion materials and their application in desalination[J]. Progress in Chemistry,2019,31(4):580-596(in Chinese). doi: 10.7536/PC180908 [111] TIAN Q W, JIANG F R, ZOU R J, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano,2011,5(12):9761-9771. doi: 10.1021/nn203293t [112] ZHANG C C, ZHANG Y Y, XIE W. Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion[J]. Journal of Energy Chemistry,2021,63:40-53. doi: 10.1016/j.jechem.2021.08.036 [113] UMLAUFF M, HOFFMANN J, KALT H, et al. Direct observation of free-exciton thermalization in quantum-well structures[J]. Physical Review B,1998,57(3):1390-1393. doi: 10.1103/PhysRevB.57.1390 [114] HUANG X J, ZHANG W L, GUAN G Q, et al. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics[J]. Accounts of Chemical Research,2017,50(10):2529-2538. doi: 10.1021/acs.accounts.7b00294 [115] WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29:1603730. doi: 10.1002/adma.201603730 [116] WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management,2019,196:1299-1305. doi: 10.1016/j.enconman.2019.06.084 [117] 黄玥铭, 吴子华, 王嘉伟, 等. 有机复合相变材料光热转换和储热性能的研究进展[J]. 材料导报, 2022, 36(S2):440-448.HUANG Yueming, WU Zihua, WANG Jiawei, et al. Research progress in photothermal conversion and heat storage capacity of organic composite phase change materials[J]. Materials Reports,2022,36(S2):440-448(in Chinese). [118] 吴京, 王先锋, 薛东, 等. 基于聚多巴胺包覆的光热相变微胶囊的制备及性能[J]. 精细化工, 2021, 38(3):489-495. doi: 10.13550/j.jxhg.20200755WU Jing, WANG Xianfeng, XUE Dong, et al. Preparation and properties of PDA-coated photothermal phase change microcapsules[J]. Fine Chemicals,2021,38(3):489-495(in Chinese). doi: 10.13550/j.jxhg.20200755 [119] YUAN S P, YAN R, REN B B, et al. Robust, double-layered phase-changing microcapsules with superior solar-thermal conversion capability and extremely high energy storage density for efficient solar energy storage[J]. Renewable Energy,2021,180:725-733. doi: 10.1016/j.renene.2021.08.128 [120] HAO D D, YANG Y D, XU B, et al. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10789-10797. [121] HU L C, LI X, DING L, et al. Flexible textiles with polypyrrole deposited phase change microcapsules for efficient photothermal energy conversion and storage[J]. Solar Energy Materials and Solar Cells,2021,224:110985. doi: 10.1016/j.solmat.2021.110985 [122] LI P, ZOU F W, WANG X F, et al. In-situ deposition preparation of n-octadecane@silica@polydopamine-doped polypyrrole microcapsules for photothermal conversion and thermal energy storage of full-spectrum solar radiation[J]. Solar Energy,2022,240:388-398. doi: 10.1016/j.solener.2022.05.052 [123] DREYER D R, PARK S J, BIELAWSKI C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240. doi: 10.1039/B917103G [124] MAITHYA O M, LI X, FENG X L, et al. Microencapsulated phase change material via pickering emulsion stabilized by graphene oxide for photothermal conversion[J]. Journal of Materials Science,2020,55:1-12. doi: 10.1007/s10853-019-03876-z [125] YUAN K J, WANG H C, LIU J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Mater and Solar Cells,2015 ,143:29-37. [126] MA X C, LIU Y J, LIU H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells,2018,188:73-80. doi: 10.1016/j.solmat.2018.08.021 [127] SHEN X N, JI M Z, ZHANG S M, et al. Fabrication of multi-walled carbon-nanotube-grafted polyvinyl-chloride composites with high solar-thermal-conversion performance[J]. Composites Science and Technology,2019,170:77-84. doi: 10.1016/j.compscitech.2018.11.029 [128] MA X C, LIU H, CHEN C, et al. Synthesis of novel microencapsulated phase change material with SnO2/CNTs shell for solar energy storage and photo-thermal conversion[J]. Materials Research Express,2020,7(1):015513. doi: 10.1088/2053-1591/ab657e [129] ZHANG X, ZHANG Y H, YAN Y R, et al. Synthesis and characterization of hydroxylated carbon nanotubes modified microencapsulated phase change materials with high latent heat and thermal conductivity for solar energy storage[J]. Solar Energy Materials and Solar Cells,2022,236:111546. doi: 10.1016/j.solmat.2021.111546 [130] WANG C L, ZHANG G L, ZHANG X S. Experimental and photothermal performance evaluation of multi-wall carbon-nanotube-enhanced microencapsulation phase change slurry for efficient photothermal conversion and storage[J]. Energies,2022,15(20):1-15. [131] GUO M X, WU J B, LI F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. doi: 10.1016/S1872-5805(20)60501-7 [132] KISLOV N, LAHIRI J, VERMA H, et al. Photocatalytic degradation of methyl orange over single crystalline ZnO: Orientation dependence of photoactivity and photostability of ZnO[J]. Langmuir,2009,25(5):3310-3315. doi: 10.1021/la803845f [133] ZHENG H R, JIANG Y R, YANG S Y, et al. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors[J]. Journal of Alloys and Compounds,2020,812:152158. doi: 10.1016/j.jallcom.2019.152158 [134] LIU L, MIAO X W, CHENG X, et al. Preparation and characterization of ZnO/SiO2@n-octadecane nanocapsule for ultraviolet absorbing and photothermal conversion energy storage[J]. Journal of Energy Storage,2022,54:105363. doi: 10.1016/j.est.2022.105363 [135] HUANG C W, LI Q T, YANG Y B, et al. A novel bifunctional microencapsulated phase change material loading with ZnO for thermal energy storage and light-thermal energy conversion[J]. Sustainable Energy & Fuels,2020,4(10):5203-5214. [136] ZHOU T, WANG X, CHENG P, et al. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles[J]. Express Polymer Letters,2013,7(7):585-594. doi: 10.3144/expresspolymlett.2013.56 [137] 何科林, 沈荣晨, 郝磊, 等. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11):27-50. doi: 10.3866/PKU.WHXB202201021HE Kelin, SHEN Rongchen, HAO Lei, et al. Advances in nanostructured silicon carbide phtocatalysts[J]. Acta Physico-Chimica Sinica,2022,38(11):27-50(in Chinese). doi: 10.3866/PKU.WHXB202201021 [138] WANG X F, LI C H, ZHAO T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells,2018,183:82-91. doi: 10.1016/j.solmat.2018.03.019 [139] WANG X G, ZHANG C Y, WANG K, et al. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde[J]. Journal of Colloid and Interface Science,2021,582:30-40. doi: 10.1016/j.jcis.2020.08.014 [140] SHAHED U M K, MOFAREH A S, WILLIAM B I. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245. doi: 10.1126/science.1075035 [141] TANG B T, WEI H P, ZHAO D F, et al. Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells,2017,161:183-189. doi: 10.1016/j.solmat.2016.12.003 [142] 马晨雨, 李晓禹, 张绘, 等. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23):4079-4083, 4099. doi: 10.11896/j.issn.1005-023X.2018.23.008MA Chenyu, LI Xiaoyu, ZHANG Hui, et al. Preparation and photothermal conversion performance characterization of submicron Ti4O7[J]. Materials Reports,2018,32(23):4079-4083, 4099(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.23.008 [143] ZHANG Y, LI X Y, LI J Q, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy,2018,53:579-586. doi: 10.1016/j.nanoen.2018.09.018 [144] PU H H, HE P X, YANG D, et al. Polydopamine modified CuS particles filled cellulose fiber for photothermal conversion performance[J]. Industrial Crops & Products,2023,193:116188. [145] LIU L, LIANG S Y, CHENG X, et al. Preparation and characterization of novel CuS/SiO2@n-octadecane phase-change nanocapsules enhanced photothermal conversion for solar energy utilization[J]. International Journal of Energy Research,2022,46(6):7411-7423. doi: 10.1002/er.7648 [146] REN Y W, LIU H P, LIU X M, et al. Photoresponsive materials for antibacterial applications[J]. Cell Reports Physical Science,2020,1(11):100245. doi: 10.1016/j.xcrp.2020.100245 [147] FAN X Y, QIU X L, LU L X, et al. Full-spectrum light-driven phase change microcapsules modified by CuS-GO nanoconverter for enhancing solar energy conversion and storage capability[J]. Solar Energy Materials and Solar Cells,2021,223:110937. doi: 10.1016/j.solmat.2020.110937