Effect of freeze-thaw cycles on thermoelectric properties of expanded graphite-boron-doped carbon nanotubes/cement composites
-
摘要: 利用温差发电的热电水泥基复合材料可以实现热能与电能的相互转换来降低城市环境温度和资源消耗,但热电转换效率过低及易受环境影响等问题制约了它的大规模应用。针对这个问题,本文提出了在高Seebeck系数的硼掺杂碳纳米管(Boron-doped carbon nanotubes,B-CNTs)基础上,添加高导电的膨胀石墨(Expanded graphite,EG),通过B-CNTs和EG多尺度混杂协同作用,整体提高水泥基复合材料的功率因数,相比于未添加膨胀石墨的水泥基复合材料功率因数提升了10倍,为1.49 μW·m−1·℃−2。冻融循环后的EG-B-CNTs/水泥复合材料导致孔隙率增加和水分的存在,引入了固-固、液-固等高密度缺陷界面,使载流子散射强度增加,出现水泥基复合材料冻融循环Seebeck系数强化现象。当冻融循环15次时,10.0wt%EG-5.0wt%B-CNTs/水泥复合材料功率因数为1.54 μW·m−1·℃−2。本文研究为改善热电水泥基复合材料性能及环境条件对于未来可行性应用提供了理论基础。Abstract: Thermoelectric cementitious composites using temperature difference power generation can realize the mutual conversion of thermal and electrical energy to reduce urban environmental temperature and resource consumption, but the low efficiency of thermoelectric conversion and vulnerability to environmental impact have restricted its large-scale application. To address this issue, this study proposes the addition of highly conductive expanded graphite (EG) to boron-doped carbon nanotubes (B-CNTs) with high Seebeck coefficients to improve the overall power factor of cementitious composites by the synergistic effect of multi-scale hybridization of B-CNTs and EG. The power factor of the cementitious composites was improved by 10 times to 1.49 μW·m−1·℃−2 compared with that of the cementitious composites without the addition of expanded graphite. The EG-B-CNTs/cement composites after freeze-thaw cycling result in increased porosity and the presence of moisture, which introduce high-density defect interfaces such as solid-solid and liquid-solid, resulting in an increase in carrier scattering intensity and an enhanced Seebeck coefficient for freeze-thaw cycling of cement matrix composites. The power factor of 10.0wt%EG-5.0wt%B-CNTs/cement composite is 1.54 μW·m−1·℃−2 when freeze-thaw cycles are performed 15 times. The research in this paper provides a theoretical basis for improving the performance and environmental conditions of thermoelectric cement matrix composites for future viable applications.
-
图 10 不同冻融循环次数的10.0wt%EG-5.0wt%B-CNTs/水泥复合材料进行抗压强度测试的破碎形态:(a) 0次;(b) 5次;(c) 15次;(d) 25次;(e) 35次
Figure 10. Crushing morphology of 10.0wt%EG-5.0wt%B-CNTs/cement composites with different numbers of freeze-thaw cycles for compressive strength testing: (a) 0 times; (b) 5 times; (c) 15 times; (d) 25 times; (e) 35 times
图 13 10.0wt%EG-5.0wt%B-CNTs/水泥复合材料的热电性能与冻融循环的关系:(a) Seebeck系数;(b) 电导率;(c) 功率因数;(d) 最佳优值(ZT)
Figure 13. Relationship between thermoelectric properties of 10.0wt%EG-5.0wt%B-CNTs/cement composites and freeze-thaw cycles: (a) Seebeck coefficient; (b) Conductivity; (c) Power factor; (d) Optimum value (ZT)
表 1 膨胀石墨(EG)-硼掺杂碳纳米管(B-CNTs)/水泥复合材料的材料组成
Table 1. Material composition of expanded graphite (EG)-boron-doped carbon nanotube (B-CNTs)/cement composites
Sample EG content/g B-CNTs content/g Cement content/g 5.0wt%B-CNTs/cement 0.0 1.0 (5.0wt%) 20.0 5.0wt%EG/cement 1.0 (5.0wt%) 0.0 20.0 5.0wt%EG-5.0wt%B-CNTs/cement 1.0 (5.0wt%) 1.0 (5.0wt%) 20.0 7.0wt%EG-5.0wt%B-CNTs/cement 1.4 (7.0wt%) 1.0 (5.0wt%) 20.0 10.0wt%EG-5.0wt%B-CNTs/cement 2.0 (10.0wt%) 1.0 (5.0wt%) 20.0 表 2 水泥试样冻融循环前浸泡不同时间的质量变化
Table 2. Changes in mass of cement specimens immersed for different time before freeze-thaw cycles
Sample Changes in mass of cement specimens/g 0 h 8 h 16 h 24 h 32 h 40 h 48 h 1 7.766 8.636 8.639 8.640 8.639 8.640 8.640 2 7.712 8.897 8.899 8.899 8.890 8.892 8.891 3 7.896 9.140 9.141 9.141 9.142 9.144 9.145 4 7.643 8.731 8.734 8.736 8.738 8.737 8.738 Note: Samples 1, 2, 3, 4 represent 5, 15, 25, 35 freeze-thaw cycles, respectively. -
[1] 崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9):2077-2093.CUI Yiwei, WEI Ya. A review of the thermoelectric effect of cement matrix composites: Mechanisms, materials, influencing factors and applications[J]. Acta Materiae Compositae Sinica,2020,37(9):2077-2093(in Chinese). [2] HAN B, DING S, WANG J, et al. Nano-engineered cementitious composites: Principles and practices[M]. Dalian: Nano-Engineered Cementitious Composites: Principles and Practices, 2018: 1-10. [3] JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials,2016,115:576-581. doi: 10.1016/j.conbuildmat.2016.04.035 [4] YANG L, CHEN Z G, DARGUSCH M S, et al. High performance thermoelectric materials: Progress and their applications[J]. Advanced Energy Materials,2018,8(6):1701797. doi: 10.1002/aenm.201701797 [5] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023(17):1-51.FAN Yucheng, FENG Chuang. Current status and prospects of thermoelectric cement matrix composites[J]. Material Review,2023(17):1-51(in Chinese). [6] HAN B, ZHANG L, OU J. Smart and multifunctional concrete toward sustainable infrastructures[M]. Singapore: Springer, 2017: 10-15. [7] SINGH V P, KUMAR M, SRIVASTAVA R S, et al. Thermoelectric energy harvesting using cement-based composites: A review[J]. Materials Today Energy,2021,21(3-4):100714. [8] JALDURGAM F F, AHMAD Z, TOUATI F. Low-toxic, earth-abundant nanostructured materials for thermoelectric applications[J]. Nanomaterials,2021,11(4):895. doi: 10.3390/nano11040895 [9] SUN M, LI Z, MAO Q, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(4):549-554. doi: 10.1016/S0008-8846(98)00011-8 [10] WEN S, CHUNG D D L. Erratum to "Seebeck effect in carbon fiber reinforced cement"[J]. Cement and Concrete Research,2004,34(12):2341-2342. doi: 10.1016/j.cemconres.2004.01.010 [11] ZUO J, YAO W, WU K. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2015,23(5):383-391. doi: 10.1080/1536383X.2013.863760 [12] WEI J, ZHAO L, ZHANG Q, et al. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting[J]. Energy and Buildings,2018,159:66-74. doi: 10.1016/j.enbuild.2017.10.032 [13] WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi: 10.1016/j.ceramint.2018.01.074 [14] TZOUNIS L, LIEBSCHER M, FUGE R, et al. p- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi: 10.1016/j.enbuild.2019.03.027 [15] WEI J, MIAO Z, WANG Y, et al. Boosting power factor of thermoelectric cementitious composites by a unique CNT pretreatment process with low carbon content[J]. Energy and Buildings,2022,254:111671. [16] LI Y, ZHAI Y, LIU X, et al. Research on fractal characteristics and energy dissipation of concrete suffered freeze-thaw cycle action and impact loading[J]. Materials,2019,12(16):2585. doi: 10.3390/ma12162585 [17] CAO J, CHUNG D. Role of moisture in the Seebeck effect in cement-based materials[J]. Cement & Concrete Research,2005,35(4):810-812. [18] 魏剑, 薛飞, 王佳敏, 等. 低温循环载荷对碳纤维增强硫铝酸盐水泥基复合材料热电性能的影响研究[J]. 硅酸盐通报, 2018, 37(11):3503-3509. doi: 10.16552/j.cnki.issn1001-1625.2018.11.023WEI Jian, XUE Fei, WANG Jiamin, et al. Study on the effect of low temperature cyclic loading on the thermoelectric properties of carbon fiber reinforced sulfoaluminate cement matrix composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3503-3509(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2018.11.023 [19] WEI J, WANG Y, LI X, et al. Effect of porosity and crack on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement-based composite[J]. International Journal of Energy Research,2020,44(89):6885-6893. [20] WEI J, ZHANG Q, ZHAO L, et al. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites[J]. Ceramics International, 2017, 43(14): 10763-10769. [21] WEI J, ZHAO L L, HAO L. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting[J]. Energy & Buildings,2018,159:66-74. [22] 张坤, 王毅红, 卜永红, 等. 尺寸效应对生土立方体试件抗压强度的影响[J]. 兰州理工大学学报, 2021, 47(2):107-112. doi: 10.3969/j.issn.1673-5196.2021.02.016ZHANG Kun, WANG Yihong, BU Yonghong, et al. Effect of dimensional effect on compressive strength of raw soil cubic specimens[J]. Journal of Lanzhou University of Technology,2021,47(2):107-112(in Chinese). doi: 10.3969/j.issn.1673-5196.2021.02.016 [23] HOU Z, XIAO Y, ZHAO L D. Investigation on carrier mobility when comparing nanostructures and bands manipulation[J]. Nanoscale,2020,12(24):12741-12747. doi: 10.1039/D0NR02649B [24] 王峰. 硫酸盐侵蚀与冻融循环耦合作用下碳纳米管混凝土力学性能及损伤机理研究[D]. 西安: 长安大学, 2020.WANG Feng. Mechanical properties and damage mechanism of carbon nanotube concrete under the coupling effect of sulfate erosion and freeze-thaw cycles[D]. Xi'an: Chang'an University, 2020(in Chinese). [25] DING S, XIANG Y, NI Y Q, et al. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures[J]. Nano Today,2022,43:101438. doi: 10.1016/j.nantod.2022.101438 [26] WANG H, SUN Q. Effect of freeze-thaw damage at curing time on mechanical properties of polyurethane concrete[J]. Multidiscipline Modeling in Materials and Structures,2022,18(5):772-792. doi: 10.1108/MMMS-06-2022-0112 [27] WANG X G, RHEE I, WANG Y, et al. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments[J]. The Scientific World Journal, 2014, 2014: 572102. [28] 李相国, 明添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(5):1497-1502. doi: 10.16552/j.cnki.issn1001-1625.2018.05.001LI Xiangguo, MING Tian, LIU Zhuolin, et al. Study on the durability and mechanical properties of carbon nanotube cement matrix composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(5):1497-1502(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2018.05.001 [29] 张誉. 混凝土结构耐久性概论[M]. 上海: 上海科学技术出版社, 2003: 25-40.ZHANG Yu. Introduction to the durability of concrete structures[M]. Shanghai: Shanghai Science and Technology Press, 2003: 25-40(in Chinese). [30] FAN W, ZHANG Y, GUO C Y, et al. Toward high thermoelectric performance for polypyrrole composites by dynamic 3-phase interfacial electropolymerization and chemical doping of carbon nanotubes[J]. Composites Science and Technology,2019,183(20):107794. [31] VIGOLO D, BUZZACCARO S, PIAZZA R. Thermophoresis and thermoelectricity in surfactant solutions[J]. Langmuir: The ACS Journal of Surfaces and Colloids,2010,26(11):7792-7801. doi: 10.1021/la904588s [32] CUI Y, WEI Y. Mixed "ionic-electronic" thermoelectric effect of reduced graphene oxide reinforced cement-based composites[J]. Cement and Concrete Composites,2022,128:104442. doi: 10.1016/j.cemconcomp.2022.104442 [33] WEI J, LI X T, WANG Y, et al. Record high thermoelectric performance of expanded graphite/carbon fiber cement composites enhanced by ionic liquid 1-butyl-3-methylimidazolium bromide for building energy harvesting[J]. Journal of Materials Chemistry C, 2021, 9(10): 3682-3691. [34] 薛飞. 环境载荷对膨胀石墨/碳纤维增强水泥基复合材料热电性能的影响研究[D]. 西安: 西安建筑科技大学, 2018.XUE Fei. Study on the effect of environmental loading on the thermoelectric properties of expanded graphite/carbon fiber reinforced cement matrix composites[D]. Xi'an: Xi'an University of Architecture and Technology, 2018(in Chinese). [35] LIU M, QIN X Y. Enhanced thermoelectric performance through energy-filtering effects in nanocomposites dispersed with metallic particles[J]. Applied Physics Letters,2012,101(13):16631. [36] 赵树青, 董春晖, 宋元金. 含水量对碳纤维水泥砂浆导电性能影响的试验研究[J]. 公路, 2020, 65(10):303-305.ZHAO Shuqing, DONG Chunhui, SONG Yuanjin. Experimental study on the effect of water content on the electrical conductivity of carbon fiber cement mortar[J]. Highway,2020,65(10):303-305(in Chinese). [37] WANG Y, ZHAO X, ZHAO Y. Piezoresistivity of cement matrix composites incorporating multiwalled carbon nanotubes due to moisture variation[J]. Advances in Civil Engineering, 2020, 2020: 5476092. [38] WEI J, WANG Y, LI X, et al. Dramatically improved thermoelectric properties by defect engineering in cement-based composites[J]. ACS Applied Materials & Interfaces,2021,13(3):3919-3929. [39] GAURAV K, PANDEY S K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials[J]. Journal of Renewable and Sustainable Energy,2017,9(1):014701. doi: 10.1063/1.4976125 [40] GHOSH S, HARISH S, ROCKY K A, et al. Graphene enhanced thermoelectric properties of cement-based composites for building energy harvesting[J]. Energy and Buildings,2019,202(11):109419.