Preparation of boehmite sol modified HGMs and properties of water-based composite coatings
-
摘要: 保温隔热对节能减排、减少能源消耗有着重大战略意义。本文以勃姆石溶胶对空心玻璃微球(Hollow glass microspheres,HGMs)进行表面改性,引入气腔结构以提高涂层保温隔热性能,制备可连续生产的高性能水性复合涂层。通过FTIR、XRD、SEM等表征手段对复合微球的微观形貌及结构进行分析。采用热失重分析、热导率、红外热成像等技术手段,系统研究涂层的微观结构、综合性能、保温隔热机制。结果表明:勃姆石溶胶成功对HGMs进行表面改性,HGMs@Al2O3保留HGMs的基本结构与特征,增强与水性聚合物基体的界面相容性,解决HGMs与水性基体界面粘结性差、致使其热导率波动大的实际问题。与未添加隔热填料的复合涂层相比,当HGMs@Al2O3含量为7wt%时达逾渗阈值,涂层综合性能最佳,显著提高复合涂层保温隔热性,导热系数降低58.7%;复合涂层最大热分解温度提高11%,在100℃热场环境下,能达到温度差为18.1℃的隔热效果,应用潜力及商业化前景巨大。Abstract: Thermal insulation is of great strategic importance for energy saving and emission reduction, and energy consumption. In this paper, the surface modification of hollow glass microbeads (HGMs) with boehmite sol was used to introduce the air cavity structure to improve the thermal insulation performance of the coating and to prepare a high-performance water-based composite coating that can be produced continuously. The microscopic morphology and structure of the composite microspheres were analyzed by FTIR, XRD, SEM and other characterization methods. Thermal weight loss analysis, thermal conductivity, infrared thermography and other technical means were used to systematically study the microstructure, comprehensive performance, thermal insulation and heat preservation mechanism of the coating. The results show that the surface modification of HGMs is successfully carried out by boehmite sol, and HGMs@Al2O3 retains the basic structure and characteristics of HGMs, enhances the interfacial compatibility with the aqueous polymer matrix, and solves the practical problem of poor interfacial bonding between HGMs and the aqueous matrix, resulting in large fluctuations of its thermal conductivity. Compared with the composite coating without added thermal insulation filler, when the content of HGMs@Al2O3 is 7wt%, it reaches the over-permeability threshold, and the comprehensive performance of the coating is the best, which significantly improves the thermal insulation of the composite coating and reduces the thermal conductivity by 58.7%. The application potential and commercialization prospect are huge.
-
表 1 添加不同隔热填料及含量的水性复合涂层在马口铁片镀锡板上的基本性能
Table 1. Basic properties of composite coatings with different fillers and contents at normal temperature and pressure
Test item Thickness/μm Adhesive force (ISO) Pencil hardness Bending strength/mm Impact resistance/cm 0wt% 300±2.7 1 HB ≤ 2 <50 4wt%HGMs 308±1.7 0 2H ≤ 2 <50 4wt%HGMs@Al2O3 307±3.2 0 3H ≤ 2 >50 5wt%HGMs 305±2.1 0 3H ≤ 2 <50 5wt%HGMs@Al2O3 307±1.8 0 4H ≤ 2 >50 6wt%HGMs 304±2.8 0 3H 5 50 6wt%HGMs@Al2O3 305±1.2 0 5H ≤ 2 >50 7wt%HGMs 306±1.5 0 3H 5 50 7wt%HGMs@Al2O3 304±1.8 0 6H ≤ 2 >50 8wt%HGMs 307±1.5 1 3H 5 50 8wt%HGMs@Al2O3 307±0.7 1 6H 5 >50 -
[1] ADEKOYA O B, OLIYIDE J A, FASANYA I O. Renewable and non-renewable energy consumption-ecological footprint nexus in net-oil exporting and net-oil importing countries: Policy implications for a sustainable environment[J]. Renewable Energy,2022,189:524-534. doi: 10.1016/j.renene.2022.03.036 [2] DOUGLAS L D, RIVERA-GONZALEZ N, COOL N, et al. A materials science perspective of midstream challenges in the utilization of heavy crude oil[J]. ACS Omega,2022,7(2):1547-1574. doi: 10.1021/acsomega.1c06399 [3] SU C W, PANG L D, TAO R, et al. Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions[J]. Technological Forecasting and Social Change,2022,182:121798. doi: 10.1016/j.techfore.2022.121798 [4] RABBAT C, AWAD S, VILLOT A, et al. Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials[J]. Renewable and Sustainable Energy Reviews,2022,156:111962. doi: 10.1016/j.rser.2021.111962 [5] TIAN J, YANG Y, XUE T, et al. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy[J]. Journal of Materials Science & Technology,2022,105:194-202. [6] YANG S J, ZHANG L W. Research on properties of rock-mineral wool as thermal insulation material for construction[J]. Advanced Materials Research,2012,450:618-622. [7] KOWALCZYK Ł, KOROL J, CHMIELNICKI B, et al. One more step towards a circular economy for thermal insulation materials—Development of composites highly filled with waste polyurethane (PU) foam for potential use in the building industry[J]. Materials,2023,16(2):782. doi: 10.3390/ma16020782 [8] OUYANG D, YAN H, SONG J, et al. Combustion characteristics and fire hazard of polystyrene exterior wall thermal insulation materials[J]. Journal of Applied Polymer Science,2023,140(8):e53503. [9] SHAO H, XU H, ZHU W, et al. Thermal-mechanical properties of polystyrene insulation board under defect condition and their influence on lining structure of conveyance channel[J]. Cold Regions Science and Technology,2023,206:103752. doi: 10.1016/j.coldregions.2022.103752 [10] ZHANG H, WANG F, LIANG J S, et al. Current situation and development trend in thermal insulation coatings[C]//4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris: Atlantis Press, 2016: 340-345. [11] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. Journal of Advanced Ceramics,2022,11(7):985-1068. doi: 10.1007/s40145-022-0581-7 [12] DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews,2013,58(6):315-348. doi: 10.1179/1743280413Y.0000000019 [13] LI T T, CHUANG Y C, HUANG C H, et al. Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites[J]. Fibers and Polymers,2015,16:691-698. doi: 10.1007/s12221-015-0691-8 [14] FRALEONI-MORGERA A, CHHIKARA M. Polymer-based nano-composites for thermal insulation[J]. Advanced Engineering Materials,2019,21(7):1801162. doi: 10.1002/adem.201801162 [15] ZHAO C, DIAO S, YUAN Y, et al. Preparation and properties of hollow glass microsphere/silicone rubber compo-site material with the transition layer of silicone resin[J]. Silicon,2021,13:517-522. doi: 10.1007/s12633-020-00472-8 [16] LU X, QU J, HUANG J. Mechanical, thermal and rheological properties of hollow glass microsphere filled thermoplastic polyurethane composites blended by normal vane extruder[J]. Plastics, Rubber and Composites,2015,44(8):306-313. doi: 10.1179/1743289815Y.0000000018 [17] ZHANG Z, WANG K, MO B, et al. Preparation and characterization of a reflective and heat insulative coating based on geopolymers[J]. Energy and Buildings,2015,87:220-225. doi: 10.1016/j.enbuild.2014.11.028 [18] WINKEL D, SCHNETTLER A. Investigations on the dielectric strength of syntactic foam at cryogenic temperature and the impact of the filler material on the volume shrinkage[C]//2012 IEEE International Symposium on Electrical Insulation. San Juan: IEEE, 2012: 582-586. [19] FLYNN BOLTE K T, BALARAMAN R P, JIAO K, et al. Probing liquid-solid and vapor-liquid-solid interfaces of hierarchical surfaces using high-resolution microscopy[J]. Langmuir,2018,34(12):3720-3730. doi: 10.1021/acs.langmuir.8b00298 [20] HU Y, MEI R, AN Z, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation pro-perty[J]. Composites Science and Technology,2013,79:64-69. doi: 10.1016/j.compscitech.2013.02.015 [21] SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-4163. [22] BANG J H, LIM S H, PARK E, et al. Chemically responsive nanoporous pigments: Colorimetric sensor arrays and the identification of aliphatic amines[J]. Langmuir,2008,24(22):13168-13172. doi: 10.1021/la802029m [23] SONG L, ZONG L S, WANG J Y, et al. Preparation and performance of HGM/PPENK-based high temperature-resistant thermal insulating coatings[J]. Chinese Journal of Polymer Science,2021,39(6):770-778. doi: 10.1007/s10118-021-2551-x [24] GAO J, ZHU T, ZHANG Z, et al. Research on Interface modification and thermal insulation/anticorrosive properties of vacuum ceramic bead coating[J]. Coatings,2022,12(3):304. doi: 10.3390/coatings12030304 [25] NIAZI P, KAREVAN M, JAVANBAKHT M. Mechanical and thermal insulation performance of hollow glass microsphere (HGMS)/fumed silica/polyester microcomposite coating[J]. Progress in Organic Coatings,2023,176:107387. doi: 10.1016/j.porgcoat.2022.107387 [26] SHARMA J, POLIZOS G. Hollow silica particles: Recent progress and future perspectives[J]. Nanomaterials,2020,10(8):1599. doi: 10.3390/nano10081599 [27] 全国涂料和颜料标准化技术委员会. 色漆和清漆漆膜的划格试验: GB/T 9286—1998[S]. 北京: 中国标准出版社, 1998.National Technical Committee for Standardization of Coatings and Pigments. Scratch test for color and varnish films: GB/T 9286—1998[S]. Beijing: China Standard Press, 1998. [28] 全国涂料和颜料标准化技术委员会. 色漆和清漆: 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.National Technical Committee for Standardization of Coatings and Pigments. Colored paints and varnishes: Determination of film hardness by the pencil method: GB/T 6739—2006[S]. Beijing: China Standard Press, 2006. [29] 全国涂料和颜料标准化技术委员会. 色漆和清漆弯曲实验(圆柱轴): GB/T 6742—2007[S]. 北京: 中国标准出版社, 2007.National Technical Committee for Standardization of Coatings and Pigments. Color paint and varnish bending test (cylindrical shaft): GB/T 6742—2007[S]. Beijing: China Standard Press, 2007. [30] 全国涂料和颜料标准化技术委员会. 漆膜耐冲击测定法: GB/T 1732—2020[S]. 北京: 中国标准出版社, 2020.National Technical Committee for Standardization of Coatings and Pigments. Paint impact resistance measurement method: GB/T 1732—2020[S]. Beijing: China Standard Press, 2020. [31] TAGLIARO I, COBANI E, CARIGNANI E, et al. The self-assembly of sepiolite and silica fillers for advanced rubber materials: The role of collaborative filler network[J]. Applied Clay Science,2022,218:106383. doi: 10.1016/j.clay.2021.106383 [32] DI Z, MA S, WANG H, et al. Modulation of thermal insulation and mechanical property of silica aerogel thermal insulation coatings[J]. Coatings,2022,12(10):1421. doi: 10.3390/coatings12101421 [33] ZHANG S, LI Z, YAO Y, et al. Heat transfer characteristics and compatibility of molten salt/ceramic porous compo-site phase change material[J]. Nano Energy,2022,100:107476. doi: 10.1016/j.nanoen.2022.107476 [34] HE Y L, XIE T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering,2015,81:28-50. doi: 10.1016/j.applthermaleng.2015.02.013 [35] HAN T L, GUO B F, ZHANG G D, et al. Facile synthesis of hollow glass microsphere filled PDMS foam composites with exceptional lightweight, mechanical flexibility, and thermal insulating property[J]. Molecules,2023,28(6):2614. doi: 10.3390/molecules28062614 [36] MA Z, ZHANG J, MALUK C, et al. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating[J]. Matter,2022,5(3):911-932. doi: 10.1016/j.matt.2021.12.009