留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

勃姆石溶胶改性HGMs的制备及其水性复合涂层的性能

王召阳 巩桂芬 崔巍巍 王一迪 楼晨霞

王召阳, 巩桂芬, 崔巍巍, 等. 勃姆石溶胶改性HGMs的制备及其水性复合涂层的性能[J]. 复合材料学报, 2024, 41(2): 775-786. doi: 10.13801/j.cnki.fhclxb.20230614.007
引用本文: 王召阳, 巩桂芬, 崔巍巍, 等. 勃姆石溶胶改性HGMs的制备及其水性复合涂层的性能[J]. 复合材料学报, 2024, 41(2): 775-786. doi: 10.13801/j.cnki.fhclxb.20230614.007
WANG Zhaoyang, GONG Guifen, CUI Weiwei, et al. Preparation of boehmite sol modified HGMs and properties of water-based composite coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 775-786. doi: 10.13801/j.cnki.fhclxb.20230614.007
Citation: WANG Zhaoyang, GONG Guifen, CUI Weiwei, et al. Preparation of boehmite sol modified HGMs and properties of water-based composite coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 775-786. doi: 10.13801/j.cnki.fhclxb.20230614.007

勃姆石溶胶改性HGMs的制备及其水性复合涂层的性能

doi: 10.13801/j.cnki.fhclxb.20230614.007
基金项目: 国家自然科学基金(51603057)
详细信息
    通讯作者:

    巩桂芬,博士,教授,硕士生导师,研究方向为保温复合材料、锂离子电池隔膜材料 E-mail:ggf-hust@163.com

  • 中图分类号: TB332;TQ619.6

Preparation of boehmite sol modified HGMs and properties of water-based composite coatings

Funds: National Natural Science Foundation of China (51603057)
  • 摘要: 保温隔热对节能减排、减少能源消耗有着重大战略意义。本文以勃姆石溶胶对空心玻璃微球(Hollow glass microspheres,HGMs)进行表面改性,引入气腔结构以提高涂层保温隔热性能,制备可连续生产的高性能水性复合涂层。通过FTIR、XRD、SEM等表征手段对复合微球的微观形貌及结构进行分析。采用热失重分析、热导率、红外热成像等技术手段,系统研究涂层的微观结构、综合性能、保温隔热机制。结果表明:勃姆石溶胶成功对HGMs进行表面改性,HGMs@Al2O3保留HGMs的基本结构与特征,增强与水性聚合物基体的界面相容性,解决HGMs与水性基体界面粘结性差、致使其热导率波动大的实际问题。与未添加隔热填料的复合涂层相比,当HGMs@Al2O3含量为7wt%时达逾渗阈值,涂层综合性能最佳,显著提高复合涂层保温隔热性,导热系数降低58.7%;复合涂层最大热分解温度提高11%,在100℃热场环境下,能达到温度差为18.1℃的隔热效果,应用潜力及商业化前景巨大。

     

  • 图  1  空心玻璃微球(HGMs)@Al2O3水性复合涂层的制备示意图

    PVP—Polyvinylpyrrolidone; AIP—Aluminium isopropoxide

    Figure  1.  Preparation diagram of hollow glass microspheres (HGMs)@Al2O3 water-based composite coating

    图  2  聚乙烯吡咯烷酮(PVP)改性HGMs的FTIR图谱

    Figure  2.  FTIR spectra of polyvinylpyrrolidone (PVP) modified HGMs

    图  3  HGMs@Al2O3复合微球的XRD图谱

    Figure  3.  XRD patterns of HGMs@Al2O3 composite microspheres

    图  4  HGMs与HGMs@Al2O3微球的SEM及TEM图像:(a) 纯HGMs;(b) PVP活化HGMs;(c) HGMs@Al2O3微球;(d) HGMs@Al2O3的TEM图像

    Figure  4.  SEM and TEM images of HGMs and HGMs@Al2O3 microspheres: (a) Pure HGMs; (b) PVP activated HGMs; (c) HGMs@Al2O3 microspheres; (d) TEM image of HGMs@Al2O3

    图  5  HGMs、HGMs@Al2O3涂层的硬度(a)及耐冲击高度(b)测试

    Figure  5.  Hardness (a) and impact resistance height (b) tests of HGMs and HGMs@Al2O3 coatings

    图  6  HGMs和HGMs@Al2O3涂层水接触角(CA)照片

    Figure  6.  Photographs of water contact angle (CA) of HGMs and HGMs@Al2O3 coatings

    图  7  7wt%HGMs@Al2O3含量的涂层浸水前后照片

    Figure  7.  Photos of coating with 7wt%HGMs@Al2O3 content before and after immersed in water

    图  8  HGMs、HGMs@Al2O3涂层的耐洗刷性

    Figure  8.  Scrub resistance of HGMs and HGMs@Al2O3 coatings

    图  9  HGMs、HGMs@Al2O3涂层的磨损质量(a)及摩擦系数(b)

    Figure  9.  Wear quality (a) and friction coefficient (b) of HGMs and HGMs@Al2O3 coatings

    图  10  HGMs、HGMs@Al2O3涂层的拉伸强度(a)及断裂伸长率(b)

    Figure  10.  Tensile strength (a) and elongation at break (b) of HGMs and HGMs@Al2O3 coatings

    图  11  HGMs@Al2O3涂层的TG曲线(a)及DTG曲线(b)

    Figure  11.  TG curves (a) and DTG curves (b) of HGMs@Al2O3 coating

    图  12  不同HGMs@Al2O3含量复合涂层的断口SEM图像:(a) 0wt%;(b) 4wt%;(c) 5wt%;(d) 6wt%;(e) 7wt%;(f) 8wt%

    Figure  12.  SEM images of fracture of composite coatings with different HGMs@Al2O3 contents: (a) 0wt%; (b) 4wt%; (c) 5wt%; (d) 6wt%; (e) 7wt%; (f) 8wt%

    图  13  HGMs、HGMs@Al2O3涂层的导热系数(a)及热导率变化指数(b)

    Figure  13.  Thermal conductivity (a) and thermal conductivity change index (b) of HGMs and HGMs@Al2O3 coatings

    图  14  HGMs、HGMs@Al2O3涂层的红外热成像图(a)及温度平衡时3D图(b)

    Figure  14.  Infrared thermograms (a) and 3D diagrams at temperature equilibrium (b) for HGMs and HGMs@Al2O3 coatings

    图  15  HGMs@Al2O3涂层圆片中心点温度随时间变化曲线

    Figure  15.  Temperature variation curves of HGMs@Al2O3 coated disc center point with time

    表  1  添加不同隔热填料及含量的水性复合涂层在马口铁片镀锡板上的基本性能

    Table  1.   Basic properties of composite coatings with different fillers and contents at normal temperature and pressure

    Test item Thickness/μm Adhesive force (ISO) Pencil hardness Bending strength/mm Impact resistance/cm
    0wt% 300±2.7 1 HB ≤ 2 <50
    4wt%HGMs 308±1.7 0 2H ≤ 2 <50
    4wt%HGMs@Al2O3 307±3.2 0 3H ≤ 2 >50
    5wt%HGMs 305±2.1 0 3H ≤ 2 <50
    5wt%HGMs@Al2O3 307±1.8 0 4H ≤ 2 >50
    6wt%HGMs 304±2.8 0 3H 5 50
    6wt%HGMs@Al2O3 305±1.2 0 5H ≤ 2 >50
    7wt%HGMs 306±1.5 0 3H 5 50
    7wt%HGMs@Al2O3 304±1.8 0 6H ≤ 2 >50
    8wt%HGMs 307±1.5 1 3H 5 50
    8wt%HGMs@Al2O3 307±0.7 1 6H 5 >50
    下载: 导出CSV
  • [1] ADEKOYA O B, OLIYIDE J A, FASANYA I O. Renewable and non-renewable energy consumption-ecological footprint nexus in net-oil exporting and net-oil importing countries: Policy implications for a sustainable environment[J]. Renewable Energy,2022,189:524-534. doi: 10.1016/j.renene.2022.03.036
    [2] DOUGLAS L D, RIVERA-GONZALEZ N, COOL N, et al. A materials science perspective of midstream challenges in the utilization of heavy crude oil[J]. ACS Omega,2022,7(2):1547-1574. doi: 10.1021/acsomega.1c06399
    [3] SU C W, PANG L D, TAO R, et al. Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions[J]. Technological Forecasting and Social Change,2022,182:121798. doi: 10.1016/j.techfore.2022.121798
    [4] RABBAT C, AWAD S, VILLOT A, et al. Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials[J]. Renewable and Sustainable Energy Reviews,2022,156:111962. doi: 10.1016/j.rser.2021.111962
    [5] TIAN J, YANG Y, XUE T, et al. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy[J]. Journal of Materials Science & Technology,2022,105:194-202.
    [6] YANG S J, ZHANG L W. Research on properties of rock-mineral wool as thermal insulation material for construction[J]. Advanced Materials Research,2012,450:618-622.
    [7] KOWALCZYK Ł, KOROL J, CHMIELNICKI B, et al. One more step towards a circular economy for thermal insulation materials—Development of composites highly filled with waste polyurethane (PU) foam for potential use in the building industry[J]. Materials,2023,16(2):782. doi: 10.3390/ma16020782
    [8] OUYANG D, YAN H, SONG J, et al. Combustion characteristics and fire hazard of polystyrene exterior wall thermal insulation materials[J]. Journal of Applied Polymer Science,2023,140(8):e53503.
    [9] SHAO H, XU H, ZHU W, et al. Thermal-mechanical properties of polystyrene insulation board under defect condition and their influence on lining structure of conveyance channel[J]. Cold Regions Science and Technology,2023,206:103752. doi: 10.1016/j.coldregions.2022.103752
    [10] ZHANG H, WANG F, LIANG J S, et al. Current situation and development trend in thermal insulation coatings[C]//4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris: Atlantis Press, 2016: 340-345.
    [11] WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings[J]. Journal of Advanced Ceramics,2022,11(7):985-1068. doi: 10.1007/s40145-022-0581-7
    [12] DAROLIA R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews,2013,58(6):315-348. doi: 10.1179/1743280413Y.0000000019
    [13] LI T T, CHUANG Y C, HUANG C H, et al. Applying vermiculite and perlite fillers to sound-absorbing/thermal-insulating resilient PU foam composites[J]. Fibers and Polymers,2015,16:691-698. doi: 10.1007/s12221-015-0691-8
    [14] FRALEONI-MORGERA A, CHHIKARA M. Polymer-based nano-composites for thermal insulation[J]. Advanced Engineering Materials,2019,21(7):1801162. doi: 10.1002/adem.201801162
    [15] ZHAO C, DIAO S, YUAN Y, et al. Preparation and properties of hollow glass microsphere/silicone rubber compo-site material with the transition layer of silicone resin[J]. Silicon,2021,13:517-522. doi: 10.1007/s12633-020-00472-8
    [16] LU X, QU J, HUANG J. Mechanical, thermal and rheological properties of hollow glass microsphere filled thermoplastic polyurethane composites blended by normal vane extruder[J]. Plastics, Rubber and Composites,2015,44(8):306-313. doi: 10.1179/1743289815Y.0000000018
    [17] ZHANG Z, WANG K, MO B, et al. Preparation and characterization of a reflective and heat insulative coating based on geopolymers[J]. Energy and Buildings,2015,87:220-225. doi: 10.1016/j.enbuild.2014.11.028
    [18] WINKEL D, SCHNETTLER A. Investigations on the dielectric strength of syntactic foam at cryogenic temperature and the impact of the filler material on the volume shrinkage[C]//2012 IEEE International Symposium on Electrical Insulation. San Juan: IEEE, 2012: 582-586.
    [19] FLYNN BOLTE K T, BALARAMAN R P, JIAO K, et al. Probing liquid-solid and vapor-liquid-solid interfaces of hierarchical surfaces using high-resolution microscopy[J]. Langmuir,2018,34(12):3720-3730. doi: 10.1021/acs.langmuir.8b00298
    [20] HU Y, MEI R, AN Z, et al. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation pro-perty[J]. Composites Science and Technology,2013,79:64-69. doi: 10.1016/j.compscitech.2013.02.015
    [21] SWETHA C, KUMAR R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-4163.
    [22] BANG J H, LIM S H, PARK E, et al. Chemically responsive nanoporous pigments: Colorimetric sensor arrays and the identification of aliphatic amines[J]. Langmuir,2008,24(22):13168-13172. doi: 10.1021/la802029m
    [23] SONG L, ZONG L S, WANG J Y, et al. Preparation and performance of HGM/PPENK-based high temperature-resistant thermal insulating coatings[J]. Chinese Journal of Polymer Science,2021,39(6):770-778. doi: 10.1007/s10118-021-2551-x
    [24] GAO J, ZHU T, ZHANG Z, et al. Research on Interface modification and thermal insulation/anticorrosive properties of vacuum ceramic bead coating[J]. Coatings,2022,12(3):304. doi: 10.3390/coatings12030304
    [25] NIAZI P, KAREVAN M, JAVANBAKHT M. Mechanical and thermal insulation performance of hollow glass microsphere (HGMS)/fumed silica/polyester microcomposite coating[J]. Progress in Organic Coatings,2023,176:107387. doi: 10.1016/j.porgcoat.2022.107387
    [26] SHARMA J, POLIZOS G. Hollow silica particles: Recent progress and future perspectives[J]. Nanomaterials,2020,10(8):1599. doi: 10.3390/nano10081599
    [27] 全国涂料和颜料标准化技术委员会. 色漆和清漆漆膜的划格试验: GB/T 9286—1998[S]. 北京: 中国标准出版社, 1998.

    National Technical Committee for Standardization of Coatings and Pigments. Scratch test for color and varnish films: GB/T 9286—1998[S]. Beijing: China Standard Press, 1998.
    [28] 全国涂料和颜料标准化技术委员会. 色漆和清漆: 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.

    National Technical Committee for Standardization of Coatings and Pigments. Colored paints and varnishes: Determination of film hardness by the pencil method: GB/T 6739—2006[S]. Beijing: China Standard Press, 2006.
    [29] 全国涂料和颜料标准化技术委员会. 色漆和清漆弯曲实验(圆柱轴): GB/T 6742—2007[S]. 北京: 中国标准出版社, 2007.

    National Technical Committee for Standardization of Coatings and Pigments. Color paint and varnish bending test (cylindrical shaft): GB/T 6742—2007[S]. Beijing: China Standard Press, 2007.
    [30] 全国涂料和颜料标准化技术委员会. 漆膜耐冲击测定法: GB/T 1732—2020[S]. 北京: 中国标准出版社, 2020.

    National Technical Committee for Standardization of Coatings and Pigments. Paint impact resistance measurement method: GB/T 1732—2020[S]. Beijing: China Standard Press, 2020.
    [31] TAGLIARO I, COBANI E, CARIGNANI E, et al. The self-assembly of sepiolite and silica fillers for advanced rubber materials: The role of collaborative filler network[J]. Applied Clay Science,2022,218:106383. doi: 10.1016/j.clay.2021.106383
    [32] DI Z, MA S, WANG H, et al. Modulation of thermal insulation and mechanical property of silica aerogel thermal insulation coatings[J]. Coatings,2022,12(10):1421. doi: 10.3390/coatings12101421
    [33] ZHANG S, LI Z, YAO Y, et al. Heat transfer characteristics and compatibility of molten salt/ceramic porous compo-site phase change material[J]. Nano Energy,2022,100:107476. doi: 10.1016/j.nanoen.2022.107476
    [34] HE Y L, XIE T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering,2015,81:28-50. doi: 10.1016/j.applthermaleng.2015.02.013
    [35] HAN T L, GUO B F, ZHANG G D, et al. Facile synthesis of hollow glass microsphere filled PDMS foam composites with exceptional lightweight, mechanical flexibility, and thermal insulating property[J]. Molecules,2023,28(6):2614. doi: 10.3390/molecules28062614
    [36] MA Z, ZHANG J, MALUK C, et al. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating[J]. Matter,2022,5(3):911-932. doi: 10.1016/j.matt.2021.12.009
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  283
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-29
  • 录用日期:  2023-06-02
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回