Probabilistic residual strength model for composite materials considering stress levels
-
摘要: 针对当前大多数复合材料剩余强度模型通用化程度低、试验成本高的问题,本文提出了一个计及应力水平效应且独立于应力水平的剩余强度概率模型。首先,给出归一化强度储备的定义,并根据归一化强度储备推导出确定性剩余强度模型。然后,将一个疲劳寿命概率模型耦合进确定性剩余强度模型,进而衍生出一个新的剩余强度概率模型。最后,利用文献中的恒幅与变幅剩余强度试验数据对所提出的剩余强度概率模型的准确性和适用性进行验证。结果表明:几乎所有的恒幅试验数据点都分布在预测曲线的95%置信上限与5%置信下限之间,且50%可靠度的预测曲线对试验数据具有高拟合优度值:0.94、0.84及0.97。所提出的模型在充分考虑了复合材料剩余强度统计特征的前提下,仅用一组模型参数即可准确描述多个应力水平下的强度退化。在变幅工况下,所提出模型在升序与降序变幅加载中的预测值与试验值的相对误差均低于6%。Abstract: To address the problems of low generalization and high testing costs of most current residual strength models for composites, a probabilistic residual strength model that accounts for the effect of stress level and is independent of stress level was proposed. Firstly, the normalized strength reserve was defined and a deterministic residual strength model was derived based on the normalized strength reserve. Then, a fatigue life probability model was coupled into the deterministic residual strength model, and then a new residual strength probability model was derived. Finally, the accuracy and applicability of the proposed probabilistic residual strength model was verified using constant-amplitude and variable-amplitude residual strength experimental data from the open literatures. The results show that almost all the constant amplitude experimental data points are distributed between the upper 95% confidence limit and lower 5% confidence limit of the prediction curves, and the prediction curves with 50% reliability have high goodness-of-fit values for the experimental data: 0.94, 0.84 and 0.97. The proposed model accurately describes strength degradation at multiple stress levels using only one set of model parameters, with sufficient consideration of the statistical characteristics of the residual strength of the composite. The relative error between the predicted values of the proposed model and experimental values for both ascending and descending variable-amplitude loading is less than 6%.
-
Key words:
- composite /
- strength reserve /
- residual strength /
- probability /
- fatigue life /
- constant and variable amplitude /
- stress level
-
图 1 归一化强度储备的概念:(a) 剩余强度与强度储备;(b) 归一化剩余强度与归一化强度储备
Figure 1. Concept of normalized strength reserve: (a) Residual strength and strength reserve; (b) Normalized residual strength and normalized strength reserve
σ0—Tensile static strength; σc—Critical strength, numerically equal to the peak stress; N—Fatigue life
图 3 变幅加载下的剩余强度退化路径:(a) 低-高 (L-H);(b) 高-低 (H-L)
Figure 3. Residual strength degradation paths under variable amplitude loading: (a) Low-high (L-H); (b) High-low (H-L)
mi—Number of stress cycles in the first load block; mi+1,i—Equivalent number of cycles of the first load block mi in the second load block
图 6 模型参数拟合与VARTM E-玻璃/乙烯基酯的剩余强度预测曲线:(a) 归一化强度储备拟合曲线与试验数据[22];(b) 置信区间为5%~95%的剩余强度预测区间与试验数据[22];(c) 失效概率为50%的剩余强度预测曲线与试验数据[22]
Figure 6. Model parameter fitting and residual strength prediction curves for VARTM E-glass/vinyl ester: (a) Normalized strength reserve fitting curve vs. experimental data[22]; (b) Residual strength prediction band with confidence interval of 5%-95% vs. experimental data[22]; (c) Residual strength prediction curves with 50% failure probability vs. experimental data[22]
μ, ν—Model parameters for the normalized strength reserve model
图 9 22级应力水平加载的VARTM E-玻璃/乙烯基酯剩余强度预测曲线与试验数据[22]:(a) 50%失效概率的剩余强度预测;(b) 5%失效概率的剩余强度预测
Figure 9. Residual strength prediction curves of VARTM E-glass/vinyl ester for 22 stress level loading vs. experimental data[22]: (a) Residual strength prediction for 50% probability of failure; (b) Residual strength prediction for 5% probability of failure
表 1 铺层顺序为[0/+45/90/−45/0]s的VARTM E-玻璃/乙烯基酯的静拉伸强度[22]
Table 1. Static tensile strength of VARTM E-glass/vinyl ester with a lay-up sequence of [0/+45/90/−45/0]s[22]
Test number σ0/MPa Test number σ0/MPa 1 338 11 343 2 342 12 333 3 350 13 333 4 333 14 327 5 321 15 323 6 328 16 338 7 326 17 331 8 353 18 332 9 341 19 341 10 332 20 321 表 2 铺层顺序为[0/45/90/−452/90/45/0]2的T300/934石墨/环氧树脂的静拉伸强度[26]
Table 2. Static tensile strength of T300/934 graphite/epoxy with a lay-up sequence of [0/45/90/−452/90/45/0]2[26]
Test number σ0/MPa Test number σ0/MPa 1 427.49 14 481.96 2 444.04 15 481.96 3 445.42 16 486.79 4 445.42 17 486.79 5 449.55 18 491.61 6 455.07 19 492.30 7 455.07 20 495.06 8 466.10 21 496.44 9 468.86 22 500.58 10 477.82 23 503.33 11 477.82 24 511.61 12 477.80 25 519.88 13 480.58 表 3 T300/934石墨/环氧树脂的非线性累积损伤与线性累积损伤的对比[7]
Table 3. Non-linear cumulative damage of T300/934 graphite/epoxy in comparison to linear cumulative damage[7]
σ1 σ2 σ3 n1 n2 n3 Ref. [7] Eq.(14) Eq.(15) H-L 345 290 — 20000 40000 — 0.76 0.63 0.45 L-H 290 345 — 40000 20000 — 0.67 0.63 0.50 H-L 400 345 290 4000 8000 20000 0.86 0.62 0.48 L-H 290 345 400 20000 8000 4000 0.70 0.62 0.46 Notes: σ1—Peak stress of the first loading; σ2—Peak stress of the second loading; σ3—Peak stress of the third loading; n1—Number of cycles for the first loading; n2—Number of cycles for the second loading; n3—Number of cycles for the third loading. 表 4 VARTM E-玻璃/乙烯基酯的变幅测试载荷谱[22]
Table 4. Load spectra for variable amplitude testing of VARTM E-glass/vinyl ester[22]
Load cycle Stress/MPa Load cycle Stress/MPa 337535 74 394 157 182664 81 213 150 98852 88 115 164 53496 95 62 170 28950 102 34 177 15667 109 18 183 8478 116 10 190 4588 123 5 196 2483 130 3 203 1344 144 2 209 727 137 1 216 表 5 两个算例(VARTM E-玻璃/乙烯基酯和T300/934石墨/环氧树脂)涉及的模型参数
Table 5. Model parameters involved in the two cases (VARTM E-glass/vinyl ester and T300/934 graphite/epoxy)
$ \alpha $ $\beta $ $\gamma $ $\delta $ $\mu $ $\nu $ Case 1 0.0544 0.1730 490 20 0.2 0.25 Case 2 0.1909 0.1932 340.6 20.99 0.1 0.13 Notes: α, β—Model parameters of the S-N curve; γ—Scale parameter of the Weibull distribution of static strength; δ—Shape parameter of the Weibull distribution of static strength. -
[1] SHABANI P, TAHERI-BEHROOZ F, SAMAREH-MOUSAVI S S, et al. Very high cycle and gigacycle fatigue of fiber-reinforced composites: A review on experimental approaches and fatigue damage mechanisms[J]. Progress in Materials Science,2021,118:100762. doi: 10.1016/j.pmatsci.2020.100762 [2] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6):214-222.WU Tao, YAO Weixing, HUANG Jie. Recent development of research on very high cycle fatigue of fiber reinforced plastic[J]. Materials Reports,2022,36(6):214-222(in Chinese). [3] 程小全, 杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报, 2021, 47(7):1311-1322. doi: 10.13700/j.bh.1001-5965.2020.0229CHEN Xiaoquan, DU Xiaoyuan. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(7):1311-1322(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0229 [4] WU F Q, YAO W X. A fatigue damage model of composite materials[J]. International Journal of Fatigue,2010,32(1):134-138. doi: 10.1016/j.ijfatigue.2009.02.027 [5] 李顶河, 李梁轶, 郭巧荣, 等. 基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析[J]. 复合材料学报, 2022, 39(7):3603-3615.LI Dinghe, LI Liangyi, GUO Qiaorong, et al. Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model[J]. Acta Materiae Compositae Sinica,2022,39(7):3603-3615(in Chinese). [6] HUANG J Z, GUO L C, CHEN L L, et al. Damage evolution of 3D woven carbon/epoxy composites under the tension-compression fatigue loading based on multi damage information[J]. International Journal of Fatigue,2022,154:106566. doi: 10.1016/j.ijfatigue.2021.106566 [7] D'AMORE A, GRASSIA L. A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings[J]. Composite Structures,2019,228:111338. doi: 10.1016/j.compstruct.2019.111338 [8] 高建雄, 安宗文, 白学宗. 随机载荷下风电叶片复合材料剩余强度概率模型[J]. 太阳能学报, 2018, 39(8):2169-2175.GAO Jianxiong, AN Zongwen, BAI Xuezong. Probabilistic model of residual strength of composite materials for wind turbine bldae under random load[J]. Acta Energiae Solaris Sinica,2018,39(8):2169-2175(in Chinese). [9] D'AMORE A, GIORGIO M, GRASSIA L. Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading[J]. International Journal of Fatigue,2015,78:31-37. doi: 10.1016/j.ijfatigue.2015.03.012 [10] MA H D, MA Q, BAI X Z, et al. A material property degradation model of composite laminates considering stress level[J]. Mechanics of Advanced Materials and Structures, 2023, 30(2): 272-283. [11] CHOU P C, CROMAN R. Residual strength in fatigue based on the strength-life equal rank assumption[J]. Journal of Composite Materials,1978,12(2):177-194. doi: 10.1177/002199837801200206 [12] BROUTMAN L, SAHU S. A new theory to predict cumula-tive fatigue damage in fiber glass reinforced plastics[M]. West Conshohocken: ASTM International, 1972: 170-188. [13] FANG G W, GAO X G, ZHANG S, et al. A residual strength model for the fatigue strengthening behavior of 2D needled CMCs[J]. International Journal of Fatigue,2015,80:298-305. doi: 10.1016/j.ijfatigue.2015.06.019 [14] GANESAN C, JOANNA P. Modeling the residual strength and fatigue life of carbon fiber composites under constant amplitude loading[J]. Mechanics of Advanced Materials and Structures,2020,27(21):1840-1848. doi: 10.1080/15376494.2018.1526353 [15] STOJKOVIĆ N, FOLIĆ R, PASTERNAK H. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue,2017,103:478-487. doi: 10.1016/j.ijfatigue.2017.06.032 [16] 赵晟, 张继文. 一种基于复合材料剩余强度的衍生疲劳损伤模型[J]. 复合材料学报, 2020, 37(10):2473-2481.ZHAO Sheng, ZHANG Jiwen. A derivative fatigue damage model based on residual strength of composite[J]. Acta Materiae Compositae Sinica,2020,37(10):2473-2481(in Chinese). [17] HALPIN J C, JOHNSON T A, WADDOUPS M E. Kinetic fracture models and structural reliability[J]. International Journal of Fracture Mechanics,1972,8(4):465-468. doi: 10.1007/BF00191112 [18] TSERPES K I, PAPANIKOS P, LABEAS G, et al. Fatigue damage accumulation and residual strength assessment of CFRP laminates[J]. Composite Structures,2004,63(2):219-230. doi: 10.1016/S0263-8223(03)00169-7 [19] PASSIPOULARIDIS V A, PHILIPPIDIS T P. Strength degradation due to fatigue in fiber dominated glass/epoxy composites: A statistical approach[J]. Journal of Composite Materials,2009,43(9):997-1013. doi: 10.1177/0021998308097738 [20] SHOKRIEH M M, LESSARD L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling[J]. International Journal of Fatigue,1997,19(3):201-207. doi: 10.1016/S0142-1123(96)00074-6 [21] POST N L, CASE S W, LESKO J J. Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading[J]. International Journal of Fatigue,2008,30(12):2064-2086. doi: 10.1016/j.ijfatigue.2008.07.002 [22] POST N, CAIN J, MCDONALD K, et al. Residual strength prediction of composite materials: Random spectrum loading[J]. Engineering Fracture Mechanics,2008,75(9):2707-2724. doi: 10.1016/j.engfracmech.2007.03.002 [23] VASSILOPOULOS A, NIJSSEN R. Fatigue life prediction of composite materials under realistic loading conditions (variable amplitude loading)[M]//Fatigue life prediction of composites and composite structures. Second Editon. Sawston: Woodhead Publishing, 2010: 293-333. [24] PAEPEGEM W V, DEGRIECK J. Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites[J]. Mechanics of Advanced Materials and Structures,2002,9(1):19-35. doi: 10.1080/153764902317224851 [25] YANG J, JONES D. Load sequence effects on the fatigue of unnotched composite materials[J]. Fatigue of Fibrous Composite Materials,1981,723:213-232. [26] RYDER J, WALKER E. Ascertainment of the effect of compressive loading on the fatigue lifetime of graphite epoxy laminates for structural applications[R]. Burbank: Lockheed-California co Burbank Rye Canyon Research Lab, 1976.