留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及应力水平效应的复合材料剩余强度概率模型

马辉东 曾世龙 马强 白学宗 安宗文

马辉东, 曾世龙, 马强, 等. 计及应力水平效应的复合材料剩余强度概率模型[J]. 复合材料学报, 2024, 41(2): 1080-1091. doi: 10.13801/j.cnki.fhclxb.20230614.002
引用本文: 马辉东, 曾世龙, 马强, 等. 计及应力水平效应的复合材料剩余强度概率模型[J]. 复合材料学报, 2024, 41(2): 1080-1091. doi: 10.13801/j.cnki.fhclxb.20230614.002
MA Huidong, ZENG Shilong, MA Qiang, et al. Probabilistic residual strength model for composite materials considering stress levels[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1080-1091. doi: 10.13801/j.cnki.fhclxb.20230614.002
Citation: MA Huidong, ZENG Shilong, MA Qiang, et al. Probabilistic residual strength model for composite materials considering stress levels[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1080-1091. doi: 10.13801/j.cnki.fhclxb.20230614.002

计及应力水平效应的复合材料剩余强度概率模型

doi: 10.13801/j.cnki.fhclxb.20230614.002
基金项目: 国家自然科学基金(51665029);甘肃省高等学校产业支撑引导项目(2020 C-12);甘肃省科技计划资助(22 JR5 RA238);兰州理工大学优秀博士学位论文培育计划
详细信息
    通讯作者:

    安宗文,博士,教授,博士生导师,研究方向为风电叶片及其复合材料疲劳寿命预测 E-mail:anzongwen@163.com

  • 中图分类号: TB332

Probabilistic residual strength model for composite materials considering stress levels

Funds: National Natural Science Foundation of China (51665029); Industrial Support Plan for Colleges and Universities in Gansu Province of China (2020 C-12); Gansu Province Science and Technology Program Funding (22 JR5 RA238); Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology
  • 摘要: 针对当前大多数复合材料剩余强度模型通用化程度低、试验成本高的问题,本文提出了一个计及应力水平效应且独立于应力水平的剩余强度概率模型。首先,给出归一化强度储备的定义,并根据归一化强度储备推导出确定性剩余强度模型。然后,将一个疲劳寿命概率模型耦合进确定性剩余强度模型,进而衍生出一个新的剩余强度概率模型。最后,利用文献中的恒幅与变幅剩余强度试验数据对所提出的剩余强度概率模型的准确性和适用性进行验证。结果表明:几乎所有的恒幅试验数据点都分布在预测曲线的95%置信上限与5%置信下限之间,且50%可靠度的预测曲线对试验数据具有高拟合优度值:0.94、0.84及0.97。所提出的模型在充分考虑了复合材料剩余强度统计特征的前提下,仅用一组模型参数即可准确描述多个应力水平下的强度退化。在变幅工况下,所提出模型在升序与降序变幅加载中的预测值与试验值的相对误差均低于6%。

     

  • 图  1  归一化强度储备的概念:(a) 剩余强度与强度储备;(b) 归一化剩余强度与归一化强度储备

    Figure  1.  Concept of normalized strength reserve: (a) Residual strength and strength reserve; (b) Normalized residual strength and normalized strength reserve

    σ0—Tensile static strength; σc—Critical strength, numerically equal to the peak stress; N—Fatigue life

    图  2  两个连续载荷块的加载示意图

    Figure  2.  Loading diagram of two continuous load blocks

    σmax,i—Peak stress of the ith load block; σmax,i+1—Peak stress of the (i+1)th load block; ni—Cycle counts of the ith load block; ni+1—Cycle counts of the (i+1)th load block

    图  3  变幅加载下的剩余强度退化路径:(a) 低-高 (L-H);(b) 高-低 (H-L)

    Figure  3.  Residual strength degradation paths under variable amplitude loading: (a) Low-high (L-H); (b) High-low (H-L)

    mi—Number of stress cycles in the first load block; mi+1,i—Equivalent number of cycles of the first load block mi in the second load block

    图  4  VARTM E-玻璃/乙烯基酯的应力-寿命(S-N)曲线[22]

    Figure  4.  Stress-life (S-N) curve for VARTM E-glass/vinyl ester[22]

    图  5  VARTM E-玻璃/乙烯基酯的静强度累积概率分布[22]:(a) 试验与计算静强度;(b) 合并静强度

    Figure  5.  Cumulative probability distributions of static strength for VARTM E-glass/vinyl ester[22]: (a) Experimental and calculated static strength; (b) Mixed static strength

    图  6  模型参数拟合与VARTM E-玻璃/乙烯基酯的剩余强度预测曲线:(a) 归一化强度储备拟合曲线与试验数据[22];(b) 置信区间为5%~95%的剩余强度预测区间与试验数据[22];(c) 失效概率为50%的剩余强度预测曲线与试验数据[22]

    Figure  6.  Model parameter fitting and residual strength prediction curves for VARTM E-glass/vinyl ester: (a) Normalized strength reserve fitting curve vs. experimental data[22]; (b) Residual strength prediction band with confidence interval of 5%-95% vs. experimental data[22]; (c) Residual strength prediction curves with 50% failure probability vs. experimental data[22]

    μ, ν—Model parameters for the normalized strength reserve model

    图  7  二级应力水平变幅加载的T300/934石墨/环氧树脂剩余强度预测:(a) 高-低;(b) 低-高

    Figure  7.  Residual strength prediction of T300/934 graphite/epoxy under variable amplitude loading containing 2 stress levels: (a) H-L; (b) L-H

    图  8  三级应力水平变幅加载的T300/934石墨/环氧树脂剩余强度预测:(a) 高-低;(b) 低-高

    Figure  8.  Residual strength prediction of T300/934 graphite/epoxy under variable amplitude loading containing 3 stress levels: (a) H-L; (b) L-H

    图  9  22级应力水平加载的VARTM E-玻璃/乙烯基酯剩余强度预测曲线与试验数据[22]:(a) 50%失效概率的剩余强度预测;(b) 5%失效概率的剩余强度预测

    Figure  9.  Residual strength prediction curves of VARTM E-glass/vinyl ester for 22 stress level loading vs. experimental data[22]: (a) Residual strength prediction for 50% probability of failure; (b) Residual strength prediction for 5% probability of failure

    表  1  铺层顺序为[0/+45/90/−45/0]s的VARTM E-玻璃/乙烯基酯的静拉伸强度[22]

    Table  1.   Static tensile strength of VARTM E-glass/vinyl ester with a lay-up sequence of [0/+45/90/−45/0]s[22]

    Test numberσ0/MPaTest numberσ0/MPa
    1 338 11 343
    2 342 12 333
    3 350 13 333
    4 333 14 327
    5 321 15 323
    6 328 16 338
    7 326 17 331
    8 353 18 332
    9 341 19 341
    10 332 20 321
    下载: 导出CSV

    表  2  铺层顺序为[0/45/90/−452/90/45/0]2的T300/934石墨/环氧树脂的静拉伸强度[26]

    Table  2.   Static tensile strength of T300/934 graphite/epoxy with a lay-up sequence of [0/45/90/−452/90/45/0]2[26]

    Test numberσ0/MPaTest numberσ0/MPa
    1 427.49 14 481.96
    2 444.04 15 481.96
    3 445.42 16 486.79
    4 445.42 17 486.79
    5 449.55 18 491.61
    6 455.07 19 492.30
    7 455.07 20 495.06
    8 466.10 21 496.44
    9 468.86 22 500.58
    10 477.82 23 503.33
    11 477.82 24 511.61
    12 477.80 25 519.88
    13 480.58
    下载: 导出CSV

    表  3  T300/934石墨/环氧树脂的非线性累积损伤与线性累积损伤的对比[7]

    Table  3.   Non-linear cumulative damage of T300/934 graphite/epoxy in comparison to linear cumulative damage[7]

    σ1σ2σ3n1n2n3Ref. [7]Eq.(14)Eq.(15)
    H-L34529020000400000.760.630.45
    L-H29034540000200000.670.630.50
    H-L40034529040008000200000.860.620.48
    L-H29034540020000800040000.700.620.46
    Notes: σ1—Peak stress of the first loading; σ2—Peak stress of the second loading; σ3—Peak stress of the third loading; n1—Number of cycles for the first loading; n2—Number of cycles for the second loading; n3—Number of cycles for the third loading.
    下载: 导出CSV

    表  4  VARTM E-玻璃/乙烯基酯的变幅测试载荷谱[22]

    Table  4.   Load spectra for variable amplitude testing of VARTM E-glass/vinyl ester[22]

    Load cycleStress/MPaLoad cycleStress/MPa
    33753574394157
    18266481213150
    9885288115164
    534969562170
    2895010234177
    1566710918183
    847811610190
    45881235196
    24831303203
    13441442209
    7271371216
    下载: 导出CSV

    表  5  两个算例(VARTM E-玻璃/乙烯基酯和T300/934石墨/环氧树脂)涉及的模型参数

    Table  5.   Model parameters involved in the two cases (VARTM E-glass/vinyl ester and T300/934 graphite/epoxy)

    $ \alpha $$\beta $$\gamma $$\delta $$\mu $$\nu $
    Case 10.05440.1730490200.20.25
    Case 20.19090.1932340.620.990.10.13
    Notes: α, β—Model parameters of the S-N curve; γ—Scale parameter of the Weibull distribution of static strength; δ—Shape parameter of the Weibull distribution of static strength.
    下载: 导出CSV
  • [1] SHABANI P, TAHERI-BEHROOZ F, SAMAREH-MOUSAVI S S, et al. Very high cycle and gigacycle fatigue of fiber-reinforced composites: A review on experimental approaches and fatigue damage mechanisms[J]. Progress in Materials Science,2021,118:100762. doi: 10.1016/j.pmatsci.2020.100762
    [2] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6):214-222.

    WU Tao, YAO Weixing, HUANG Jie. Recent development of research on very high cycle fatigue of fiber reinforced plastic[J]. Materials Reports,2022,36(6):214-222(in Chinese).
    [3] 程小全, 杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报, 2021, 47(7):1311-1322. doi: 10.13700/j.bh.1001-5965.2020.0229

    CHEN Xiaoquan, DU Xiaoyuan. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(7):1311-1322(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0229
    [4] WU F Q, YAO W X. A fatigue damage model of composite materials[J]. International Journal of Fatigue,2010,32(1):134-138. doi: 10.1016/j.ijfatigue.2009.02.027
    [5] 李顶河, 李梁轶, 郭巧荣, 等. 基于离散损伤模型的复合材料双悬臂梁分层疲劳扩展分析[J]. 复合材料学报, 2022, 39(7):3603-3615.

    LI Dinghe, LI Liangyi, GUO Qiaorong, et al. Fatigue delamination analysis of composite double cantilever beams based on discrete damage zone model[J]. Acta Materiae Compositae Sinica,2022,39(7):3603-3615(in Chinese).
    [6] HUANG J Z, GUO L C, CHEN L L, et al. Damage evolution of 3D woven carbon/epoxy composites under the tension-compression fatigue loading based on multi damage information[J]. International Journal of Fatigue,2022,154:106566. doi: 10.1016/j.ijfatigue.2021.106566
    [7] D'AMORE A, GRASSIA L. A method to predict the fatigue life and the residual strength of composite materials subjected to variable amplitude (VA) loadings[J]. Composite Structures,2019,228:111338. doi: 10.1016/j.compstruct.2019.111338
    [8] 高建雄, 安宗文, 白学宗. 随机载荷下风电叶片复合材料剩余强度概率模型[J]. 太阳能学报, 2018, 39(8):2169-2175.

    GAO Jianxiong, AN Zongwen, BAI Xuezong. Probabilistic model of residual strength of composite materials for wind turbine bldae under random load[J]. Acta Energiae Solaris Sinica,2018,39(8):2169-2175(in Chinese).
    [9] D'AMORE A, GIORGIO M, GRASSIA L. Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading[J]. International Journal of Fatigue,2015,78:31-37. doi: 10.1016/j.ijfatigue.2015.03.012
    [10] MA H D, MA Q, BAI X Z, et al. A material property degradation model of composite laminates considering stress level[J]. Mechanics of Advanced Materials and Structures, 2023, 30(2): 272-283.
    [11] CHOU P C, CROMAN R. Residual strength in fatigue based on the strength-life equal rank assumption[J]. Journal of Composite Materials,1978,12(2):177-194. doi: 10.1177/002199837801200206
    [12] BROUTMAN L, SAHU S. A new theory to predict cumula-tive fatigue damage in fiber glass reinforced plastics[M]. West Conshohocken: ASTM International, 1972: 170-188.
    [13] FANG G W, GAO X G, ZHANG S, et al. A residual strength model for the fatigue strengthening behavior of 2D needled CMCs[J]. International Journal of Fatigue,2015,80:298-305. doi: 10.1016/j.ijfatigue.2015.06.019
    [14] GANESAN C, JOANNA P. Modeling the residual strength and fatigue life of carbon fiber composites under constant amplitude loading[J]. Mechanics of Advanced Materials and Structures,2020,27(21):1840-1848. doi: 10.1080/15376494.2018.1526353
    [15] STOJKOVIĆ N, FOLIĆ R, PASTERNAK H. Mathematical model for the prediction of strength degradation of composites subjected to constant amplitude fatigue[J]. International Journal of Fatigue,2017,103:478-487. doi: 10.1016/j.ijfatigue.2017.06.032
    [16] 赵晟, 张继文. 一种基于复合材料剩余强度的衍生疲劳损伤模型[J]. 复合材料学报, 2020, 37(10):2473-2481.

    ZHAO Sheng, ZHANG Jiwen. A derivative fatigue damage model based on residual strength of composite[J]. Acta Materiae Compositae Sinica,2020,37(10):2473-2481(in Chinese).
    [17] HALPIN J C, JOHNSON T A, WADDOUPS M E. Kinetic fracture models and structural reliability[J]. International Journal of Fracture Mechanics,1972,8(4):465-468. doi: 10.1007/BF00191112
    [18] TSERPES K I, PAPANIKOS P, LABEAS G, et al. Fatigue damage accumulation and residual strength assessment of CFRP laminates[J]. Composite Structures,2004,63(2):219-230. doi: 10.1016/S0263-8223(03)00169-7
    [19] PASSIPOULARIDIS V A, PHILIPPIDIS T P. Strength degradation due to fatigue in fiber dominated glass/epoxy composites: A statistical approach[J]. Journal of Composite Materials,2009,43(9):997-1013. doi: 10.1177/0021998308097738
    [20] SHOKRIEH M M, LESSARD L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling[J]. International Journal of Fatigue,1997,19(3):201-207. doi: 10.1016/S0142-1123(96)00074-6
    [21] POST N L, CASE S W, LESKO J J. Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading[J]. International Journal of Fatigue,2008,30(12):2064-2086. doi: 10.1016/j.ijfatigue.2008.07.002
    [22] POST N, CAIN J, MCDONALD K, et al. Residual strength prediction of composite materials: Random spectrum loading[J]. Engineering Fracture Mechanics,2008,75(9):2707-2724. doi: 10.1016/j.engfracmech.2007.03.002
    [23] VASSILOPOULOS A, NIJSSEN R. Fatigue life prediction of composite materials under realistic loading conditions (variable amplitude loading)[M]//Fatigue life prediction of composites and composite structures. Second Editon. Sawston: Woodhead Publishing, 2010: 293-333.
    [24] PAEPEGEM W V, DEGRIECK J. Effects of load sequence and block loading on the fatigue response of fiber-reinforced composites[J]. Mechanics of Advanced Materials and Structures,2002,9(1):19-35. doi: 10.1080/153764902317224851
    [25] YANG J, JONES D. Load sequence effects on the fatigue of unnotched composite materials[J]. Fatigue of Fibrous Composite Materials,1981,723:213-232.
    [26] RYDER J, WALKER E. Ascertainment of the effect of compressive loading on the fatigue lifetime of graphite epoxy laminates for structural applications[R]. Burbank: Lockheed-California co Burbank Rye Canyon Research Lab, 1976.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  283
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-05-15
  • 录用日期:  2023-05-28
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回