Experimental study on bonding behavior between CFRP smooth bar and UHPC under impact loading
-
摘要: 为明确冲击荷载作用下,碳纤维增强复合材料(Carbon fiber-reinforced polymer,CFRP)筋与超高性能混凝土(Ultra-high performance concrete,UHPC)粘结界面间化学粘结力和摩擦力的应变率效应,以锚固长度和荷载类型为参数,对8组共计24个采用UHPC作为粘结介质锚固的CFRP光圆筋试件(锚固长度分别为20d~35d,d为CFRP筋材直径),分别进行了静力拉拔和筋材应变速率约为4.0 s−1的纵向冲击试验。结果表明:静力和纵向冲击试件均发生了光圆筋拔出的滑移破坏,相较于冲击试件,静力加载后CFRP光圆筋的表面损伤更明显。冲击荷载作用下,CFRP光圆筋与UHPC间界面的化学粘结强度和峰值粘结强度均呈现正的应变率效应,分别较相应的静力强度提高了约53%和17%;而峰值后界面的残余粘结强度即滑动摩擦阻力则表现为负的应变率效应,较相应的静力值降低约38%。基于试验结果,建立了冲击作用下CFRP光圆筋与UHPC间界面动态粘结强度的预测公式。
-
关键词:
- 碳纤维增强树脂复合材料(CFRP) /
- 超高性能混凝土(UHPC) /
- 冲击荷载 /
- 粘结强度 /
- 锚固长度
Abstract: To investigate effect of strain rate on chemical adhesion force and friction on the bonding interface between carbon fiber-reinforced polymer (CFRP) bars and ultra-high performance concrete (UHPC) under impact load, both static pull-out tests and longitudinal impact tests with the 4.0 s−1 strain rate were conducted on UHPC-filled anchorage for CFRP smooth bars. Totally, 24 specimens for eight test groups with 20d-35d (d is CFRP bars diameter) embedded lengths were prepared. The results show that both static and longitudinal impact specimens fail in a similar pattern, that is, all CFRP bars slide out UHPC regardless of the embedded lengths and load types. However, the damage on the surface of CFRP bar is slightly severer in static tests than in impact tests. Under the impact, the chemical bond strength at the bonding interface between CFRP smooth bar and UHPC increases, thereby leading to an improved peak bond strength; however, the residual bonding strength (i.e., friction) at the bond interface decreases. Compared with the corresponding static test specimens, the chemical bond strength and peak bond strength approximately increase by 53% and 17%, respectively, while the average residual bonding strength decreases by about 38%. Besides, a prediction formula for predicting the dynamic bonding strength between CFRP smooth bar and UHPC under impact loads was established. -
乙烯-四氟乙烯(ETFE)薄膜凭借其良好的物理特性及力学性能,在新型建筑、能源等领域中已被广泛应用。在实际工程应用中,ETFE膜结构的撕裂破坏可归结为内部因素与外部环境因素的协同作用。膜面处膜材在制造与安装过程中,不可避免地会存在微小孔洞、细微折痕和微裂纹等初始缺陷,以及偶发的外来飞致物刺穿引起的切缝;这使膜材在预应力、极端风荷载及雨雪荷载的复合作用下,极易产生应力集中而诱发缺陷不断扩展,最终膜材撕裂损伤,严重情况下甚至会引发膜结构的整体失效,对结构安全构成重大威胁。并且当膜材在中心区域处受到集中载荷或存在制造缺陷时,极有可能会出现显著的中心撕裂行为[1, 2]。因此,除了需对ETFE薄膜的常规力学性能进行研究,也有必要对其撕裂力学行为开展深入研究。
吴明儿[3-5]、崔家春[6, 7]、胡建辉[8]、Zhang[9]、Surholt[10]和Zhao[11-13]等分别对ETFE薄膜进行了系列试验与分析,揭示了薄膜的单轴和双轴力学行为,研究了弹性模量、屈服强度、断裂强度和徐变等力学参数和规律。整体上,现有研究多集中在ETFE母材的粘-弹塑性行为及本构关系等,在撕裂性能的研究尚十分欠缺。而随着ETFE膜结构的社会需求增长,对其撕裂性能研究的欠缺势必会阻碍ETFE膜结构的进一步应用和发展。另外,国内外学者已对织物类膜材的撕裂强度及破坏规律开展了深入研究[14-20],可为ETFE薄膜撕裂力学性能的研究提供一定参考。Chen等[14, 15]对层压织物进行了系统的单轴撕裂试验,分析了切缝长度、切缝角度、偏轴角对其撕裂行为和撕裂强度的影响;Sun等[18, 19]深入研究了单轴拉伸下切缝长度和切缝角度对PTFE涂层织物撕裂性能的影响;Zhang等[20]论证了切口样式、切缝尺寸和试样尺寸对PVC涂层织物单轴中心撕裂特性的影响。
鉴于此,本文针对典型ETFE薄膜,进行单轴中心撕裂试验,研究切缝长度、切缝角度和切口样式对ETFE薄膜的破坏形态特征及撕裂力学行为的影响。另外,数字图像相关(DIC)技术具有全场测量、非接触、高分辨率等优势[21-23],可为撕裂力学行为分析提供准确可靠的数据支撑,将用于薄膜撕裂全过程薄膜位移场和应变场的测量与重构。所得结论可为ETFE薄膜材料的撕裂力学性能研究和ETFE膜结构的安全性评估提供有益参考。
1. 试验概况
1.1 试验材料及试件尺寸
试验采用ETFE #250/NJ/
1600 /NT薄膜,其厚度为250μm,密度为1.75 g·cm−3。材料由乙烯和四氟乙烯聚合生成,无色透明,具有优秀的耐化学腐蚀性能和自洁性能[24]。考虑到当前暂无专门的ETFE膜材撕裂性能检测标准,因此参照GB/T 1040.3-2006[25],以ETFE薄膜单轴拉伸试验的长条形试件的尺寸,直接作为单轴中心撕裂试验的试样尺寸,以实现测试需求。试件尺寸为150 mm×25 mm,夹持端长为25 mm,有效测试区域为100 mm×25 mm。散斑区域设置为50 mm×25 mm,散斑直径为0.5 mm。其中,切缝长度为5 mm,切缝方向角以膜材机器展开方向(MD)的垂直线为基准线,逆时针旋转θ。试件示意图如图1所示。另外,为保证试件在拉伸过程中的滑移量可控,采用在试件夹持端处使用粘结剂粘附砂纸的方法,通过增大夹具与试件接触面之间的摩擦系数,提升夹持的稳定性与可靠性。1.2 试验设备
试验选用深圳三思UTM4000型电子万能试验机和尼康D3200高像素照相机。其中,试验机位移速率范围为0.001~500.000 mm·min−1;变形测量范围为10~800 mm,±1‰变形精度;拉压力传感器量程为200 N、精度为0.2 N;尼康D3200高像素照相机拥有
2400 万像素。含中心切缝的ETFE薄膜加载过程中的夹持示意图如图2所示。试验中先对试件施加5 N的预张力,再匀速(50 mm·min−1)加载至试件破坏,并记录试件在试验过程中的变形、荷载和图像数据。1.3 试验工况及环境
试验工况设置为切缝长度、切缝角度和切口样式。其中,切缝长度以2.5 mm为梯度,选取为2.5、5.0、7.5、10.0、12.5和15.0 mm;切缝角度以MD方向为基准,逆时针每旋转15°为一个梯度,选取0°、15°、30°、45°、60°、75°和90°七个角度;切口样式则将典型试件的“一”形切缝更换为其它切口样式,且切口样式可分为开放性切缝(如“一、V、X和十”形等)和封闭性切口(如圆形、椭圆形和矩形切口等)[26];不同切缝角度和切口样式的示意图如图3所示。每个工况的有效试件为3个,以保证试验的有效性。
试验温度控制在(20±2.0)℃,相对湿度控制在(65±4.0)%。
2. 试验结果及分析
2.1 撕裂过程及破坏形态
ETFE薄膜在不同工况下典型撕裂过程如图4所示,其膜面含散斑贴膜以便于观察,三种工况下的ETFE薄膜的撕裂过程均呈现出4个特征状态:
(ⅰ)切缝初始状态:在外加5 N预张力时,因其外加荷载较小,切缝保持未张开状态。
(ⅱ)切缝张开状态:随着外加荷载不断增加,切缝逐渐张开,切缝张开形状近似呈现椭圆形;薄膜在切缝尖端上下邻域展现出显著的面外屈曲现象。
(ⅲ)极限撕裂状态:随着外加荷载进一步增大,切缝开口进一步扩大,面外屈曲现象也变得更加明显,薄膜的塑性变形显著增加;其切缝尖端处由于应力集中效应显著,会形成撕裂三角区,出现明显的颈缩现象,并且切缝开始沿着垂直于加载方向扩展。
(ⅳ)完全破坏状态:在薄膜到达极限撕裂状态以后,随着荷载的增大,切缝扩展速度加剧,薄膜的承载能力不断下降,薄膜最终达到完全破坏状态,丧失所有承载能力,并且不同切口样式导致薄膜呈现的破坏形态各异。
图5为ETFE薄膜在切缝张开状态下的切缝邻域εxy应变云图,该云图可直观的展现出薄膜面外屈曲的位置分布及其方向。据图可知,薄膜的面外屈曲的位置集中分布于切口上下邻域;εxy应变云图集中区呈现“X”型分布,其中,“X”型的中心点与切口的中心点重合。在构成“X”型的同一边上,面外屈曲的方向相同;而在构成“X”型的不同边上,面外屈曲的方向相反。随着切缝长度变化,薄膜面外屈曲的位置几乎保持不变。随着切缝角度变化,面外屈曲的位置仍处于切口上下邻域,随之发生相同角度的倾斜。随着切口样式变化,切口会沿着拉伸方向发生不同的张开变形,从而使薄膜面外屈曲的位置随之变化。
2.2 切缝长度影响
不同切缝长度的ETFE薄膜的撕裂抗力-位移曲线如图6(a)所示,撕裂曲线随切缝长度改变存在规律性衍变,但存在典型共同特征,不妨提取典型撕裂曲线对ETFE薄膜撕裂力学行为进行深入阐释(见图6(b))。
如图6(a)所示,随着切缝长度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化。在撕裂抗力上升阶段,曲线斜率增加的部分随切缝长度增大而逐渐消失;当切缝长度为2.5 mm、5.0 mm时,可明显观察到曲线斜率上升的趋势,而当切缝长度增大至7.5 mm后,曲线的斜率随着位移的增大而越来越小,无法观察到曲线斜率上升。在撕裂后段,当薄膜的切缝长度从2.5 mm增大到15.0 mm,薄膜有效承载截面不断减小,其极限撕裂抗力从130.74 N下降至57.94 N,下降55.68%;断裂位移由45.48 mm下降至11.05 mm,下降75.70%。
如图6(b)所示,典型撕裂曲线以4个特征点为界,可分为3个特征阶段。其中,初始点O为曲线与纵轴的交点,类屈服点A为曲线斜率首次发生变化点,峰值点B为曲线撕裂抗力最大点和破坏点C为曲线与横轴的交点;4特征点分别与典型撕裂过程的4个特征状态相对应。
(OA)撕裂前段:曲线从不为零的初始点O开始,对应着试验前施加的预张力状态;在该阶段ETFE薄膜呈现出显著的线弹性行为,薄膜的初始弹性模量较大。
(AB)撕裂抗力上升阶段:曲线到达类屈服点A后,斜率迅速减小,明显小于撕裂前段的斜率,开始出现较大的塑性变形;随着位移增大,薄膜内部结构会充分发生变化,撕裂抗力不断增加,曲线斜率明显上升;随后由于变形继续增大导致刚度下降,撕裂抗力增加的速度变缓,曲线斜率又开始下降至零。
(BC)撕裂后段:曲线到达峰值点B时,薄膜达到极限撕裂抗力,开始发生显著的撕裂扩展;随着位移增加,撕裂抗力不断下降,并且撕裂扩展的速度不断加快,撕裂抗力下降幅度逐渐变大,最终下降到破坏点C,对应着薄膜完全破坏。
2.3 切缝角度影响
不同切缝角度的ETFE薄膜撕裂抗力-位移曲线如图7所示。随着切缝角度增大,撕裂抗力-位移曲线的撕裂前段的斜率不发生变化,并且类屈服点对应的位移由1.52 mm上升至1.57 mm,撕裂前段所历经的位移仅增加1.97%,曲线几乎同时进入下一阶段。在撕裂抗力上升阶段,不同切缝角度的薄膜的曲线均会呈现出斜率增大的趋势,并且撕裂抗力上升阶段随切缝角度增加而显著变长。在撕裂后段,当切缝角度由0°增大至90°时,对应的等效切缝长度[27]由5 mm减少至0 mm,其极限撕裂抗力由107.69 N上升至134.25 N,断裂位移由24.39 mm上升至79.90 mm。
可见,随着切缝角度的增大,对应的等效切缝长度随之减小,薄膜的承载途径逐渐恢复,用来承受拉伸荷载的有效截面增大,薄膜的极限撕裂强度增强,使薄膜不易到达极限撕裂状态,使得其断裂位移也随之增大。并且当切缝长度保持为5 mm时,切缝角度由0°增大到90°,其极限撕裂抗力和断裂位移分别上升了24.66%和227.59%,断裂位移的变化率远大于极限撕裂抗力的变化率。因此,切缝角度的改变对薄膜的极限撕裂抗力影响较小,而会显著影响薄膜完全破坏时对应的断裂位移。
图8为不同切缝角度的ETFE薄膜的切缝尖端邻域的竖向应变场云图。据图可知,当预制切缝长度为5 mm的“一”形切缝时,薄膜在切缝邻域出现明显的应变集中区(红色区域),并且其应变集中区分布于切缝尖端邻域上,随切缝角度的增加而发生相应的偏转。这是由于薄膜在预制初始切缝后,在切缝尖端邻域,随着拉伸应力的增大,切缝张开导致薄膜沿着切缝方向发生横向收缩,并且在切缝上下邻域处发生面外屈曲,薄膜会向面外凸出,导致切缝尖端邻域处承受的应力远高于其它区域,从而使薄膜在该区域处的竖向应变较大而出现应变集中区。因此,随着切缝角度的增大,薄膜切缝张开所致的横向收缩效应及面外屈曲现象发生相应的变化,使薄膜的应变集中区始终分布于切缝尖端邻域,从而使得薄膜的应变集中区发生相应的偏转。
2.4 切口样式影响
图9为不同切口样式的ETFE薄膜的撕裂抗力-位移曲线。不同切口样式对薄膜撕裂曲线的撕裂后段影响显著,导致含不同切口样式的薄膜在完全破坏时,整体上表现出两种破坏模式:类脆性破坏和类延性破坏。如图9(a)和图9(f)所示,对于无切缝和含圆形切口的ETFE薄膜,撕裂曲线到达峰值点后立即发生破坏,在撕裂后段历经的位移占整个撕裂过程发生的位移比例极小;并且在试验过程中可听到轻脆的崩断声,薄膜突然发生破坏,展现出类脆性破坏特性。而对于图9其它切口样式的ETFE薄膜,则呈现类延性破坏特性。撕裂曲线到达峰值点后,薄膜虽然达到了极限撕裂强度,但并不会立即发生断裂破坏;薄膜的切缝不断扩展,有效承载截面逐渐减小,薄膜在历经较大的位移后才完全破坏,可观察到明显预兆。
图10为撕裂试样典型损伤模式示意图。可知,含切口的ETFE薄膜,在拉伸撕裂过程中,切口破坏了薄膜的完整性,使薄膜较易出现面外屈曲和颈缩,从而使薄膜在切口邻域处出现显著的大变形区。这会导致薄膜的应力分布不均匀,在大变形区出现应力集中,从而引发撕裂,使薄膜在切口尖端处出现撕裂三角区,薄膜的承载性能下降。并随着撕裂三角区的逐渐扩展,薄膜的有效承载区域不断减小,薄膜的承载性能逐渐下降为零。并且,不同切口样式会使薄膜的大变形区不同,从而使其应力集中各不相同,导致不同切口样式使薄膜承载性能的衰减程度各异。
图11为不同切口样式的ETFE薄膜对应的极限撕裂抗力。对于含开放性切缝的薄膜,相较于无切缝薄膜,含“V、X和十”形切缝的薄膜的极限撕裂抗力均约为138.13 N,下降40.58%,而含“一”形切缝的薄膜仅为107.25 N,下降53.86%。因此,当切缝的横向尺寸相同时,“一”形切缝贯穿了薄膜的主要受力方向,应力集中显著,对薄膜的极限撕裂强度的不利影响最大。对于含封闭性切口的薄膜,相较于无切缝薄膜,含圆形和椭圆形切口的薄膜的极限撕裂强度约为151.88 N,下降34.66%,含矩形-I切口的薄膜仅为115.19 N,下降50.44%。因此,当切口的横向尺寸相同时,矩形-I切口由于具有直角边缘等特性,使薄膜的应力集中程度远大于含圆形和椭圆形切口的薄膜,使薄膜承载性能的衰减程度更大。另外,含矩形-II切口的薄膜的极限撕裂强度为129.63 N,相较于无切缝薄膜的下降44.23%。可见,当切口几何外形相同时,对于横向尺寸较大的切口,其周围的应力集中区域较大,薄膜较易产生撕裂扩展,故对薄膜极限撕裂强度的不利影响更大。
3. 结 论
结合系列试验与数字图像相关(DIC)技术,深入分析了乙烯-四氟乙烯(ETFE)薄膜的单轴中心撕裂行为,主要结论如下:
(1) ETFE薄膜的典型撕裂扩展过程呈现出4个特征状态;不同切缝参数显著影响薄膜面外屈曲的位置和破坏形态,但不影响薄膜切缝扩展的方向始终为垂直于加载方向;
(2) ETFE薄膜的撕裂抗力-位移曲线随不同工况的变化而发生非线性衍变,但存在典型共同特征,可划分为3个特征阶段:撕裂前段、撕裂抗力上升阶段和撕裂后段;
(3)当切缝长度从2.5 mm增大到15.0 mm时,薄膜的有效承载截面变小,其极限撕裂强度和断裂位移分别减小了55.75%和75.70%;当切缝角度从0°增大到90°时,薄膜承载途径逐渐恢复,其极限撕裂强度增大了24.67%,而断裂位移却增大了227.59%;
(4)切口样式使薄膜在完全破坏时呈现出类脆性破坏特征或类延性破坏特征。当横向尺寸相同时,在开放性切缝中,“一”形切缝贯穿薄膜主要受力方向,应力集中显著,对薄膜极限撕裂强度的不利影响最大;在封闭性切口中,与光滑边缘切口相比,直角边缘切口使薄膜的应力集中效应更显著,使薄膜易在切口尖角处发生撕裂,造成薄膜承载性能的显著衰减。所得结论可为相关均质性膜材的撕裂力学性能研究和膜结构的安全性评估提供有益参考。
-
表 1 超高性能混凝土(UHPC)的配合比
Table 1 Mix proportion of ultra-high performance concrete (UHPC)
Component Cement Silica
fumeQuartz
flourQuartz
sandWater
reducerWater
binder ratioMass ratio 1 0.25 0.25 1.1 0.02 0.22 表 2 试件概况
Table 2 Overview of the test specimens
Specimen Length of
reliable
anchorage
/mmLength of
test anchorage
/mmFree length
/mmLength of
specimens
/mmS-L160 500 160 300 1000 S-L200 500 200 300 1040 S-L240 500 240 300 1080 S-L280 500 280 300 1120 D-L160 Wedge type 160 300 680 D-L200 200 300 720 D-L240 240 300 760 D-L280 280 300 800 Notes: In specimen codes, the first letter indicates the test type (S—Static tensile test; D—Dynamic impact test), and the second letter is used to differentiate the anchorage length (160 to 280 mm denoted by L160 to L280). For example, D-L160 means the impact specimen with a bond length of 160 mm. 表 3 CFRP光圆筋与UHPC粘结试件静力和冲击试验主要结果
Table 3 Typical results of static and impact tests on CFRP smooth bar and UHPC bonded specimens
Specimen εˊ/s−1 \bar{\acute{\varepsilon} }/s−1 Tmax/kN {\bar T_{\max }} /kN {\bar \tau _{\rm{m}}} /MPa {\bar \tau _{\rm{a}}} /MPa {\bar \tau _{\rm{r}}} /MPa S0/mm {\bar S_0} /mm {\bar S_{\textit{z}}} /mm S-L160-1 — — 12.35 11.96 2.98 1.24 2.52 0.56 0.46 0.48 S-L160-2 11.61 0.37 S-L160-3 11.93 0.46 S-L200-1 — — 14.29 14.72 2.93 1.20 2.50 0.49 0.53 0.56 S-L200-2 15.13 0.50 S-L200-3 14.75 0.60 S-L240-1 — — 17.74 17.30 2.87 1.21 2.50 0.65 0.61 0.65 S-L240-2 17.23 0.61 S-L240-3 16.94 0.58 S-L280-1 — — 18.56 19.57 2.78 1.16 2.49 0.64 0.68 0.72 S-L280-2 19.73 0.66 S-L280-3 20.42 0.75 D-L160-1 3.44 3.65 14.30 13.96 3.47 1.93 1.60 0.97 0.83 — D-L160-2 3.67 13.93 0.77 D-L160-3 3.83 13.64 0.76 D-L200-1 3.95 3.70 16.13 17.06 3.40 1.87 1.58 0.85 0.91 — D-L200-2 3.29 17.15 0.89 D-L200-3 3.85 17.90 0.99 D-L240-1 3.93 3.84 21.21 20.31 3.37 1.79 1.55 1.10 1.01 — D-L240-2 3.89 19.19 0.96 D-L240-3 3.71 20.54 0.98 D-L280-1 4.42 4.06 23.40 23.48 3.34 1.76 1.52 1.06 1.08 — D-L280-2 3.86 22.46 1.03 D-L280-3 3.91 24.58 1.14 Notes: \acute{\varepsilon} , Tmax, S0—Strain rate, maximum load, slip of specimen corresponding to the maximum load, respectively; \bar{\acute{\varepsilon} } , {\bar T_{\max }} , {\bar \tau _{\rm{m}}} , {\bar \tau _{\rm{a}}} , {\bar \tau _{\rm{r}}} , {\bar S _{0}} , {\bar S_{\textit{z}}}—Average value of the strain rate, maximum load, peak bond strength, chemical bond strength, residual bond strength, slip of specimen corresponding to the maximum load, slip of loading end corresponding the free end start slip, respectively. 表 4 CFRP光圆筋与UHPC粘结试件静、动态化学粘结强度对比
Table 4 Comparison of static and dynamic chemical bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,a
/MPaτd,a
/MPaτd,a/τs,a 160 1.24 1.93 1.56 200 1.20 1.87 1.56 240 1.21 1.79 1.48 280 1.16 1.76 1.52 Average 1.20 1.84 1.53 Note: τs,a, τd,a—Static and dynamic chemical bond strength, respectively. 表 5 CFRP光圆筋与UHPC粘结试件静、动态峰值粘结强度对比
Table 5 Comparison of static and dynamic peak bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,m
/MPaτd,m
/MPaτd,m/τs,m 160 2.98 3.47 1.16 200 2.93 3.40 1.16 240 2.87 3.37 1.17 280 2.78 3.34 1.20 Average 2.89 3.39 1.17 Note: τs,m, τd,m—Static and dynamic peak bond strength, respectively. 表 6 CFRP光圆筋与UHPC粘结试件静、动态残余粘结强度对比
Table 6 Comparison of static and dynamic residual bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,r
/MPaτd,r
/MPaτd,r/τs,r 160 2.52 1.60 0.63 200 2.50 1.58 0.63 240 2.50 1.55 0.62 280 2.49 1.52 0.61 Average 2.50 1.56 0.62 Note: τs,r, τd,r—Static residual bond strength and dynamic residual bond strength, respectively. -
[1] FANG Y W, FANG Z, JIANG Z W, et al. Investigation on failure behavior of carbon fiber reinforced polymer wire subjected to combined tension and bending[J]. Compo-site Structures,2021,267:113927. DOI: 10.1016/j.compstruct.2021.113927
[2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese).
[3] FANG Y W, FANG Z, XIANG Y, et al. Charpy impact properties of uni-directional carbon fiber-reinforced polymer tendons with protective layers[J]. Advances in Structural Engineering, 2023, 26(1): 36-51
[4] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020. FANG Yawei. Investigation on static and impact behavior of carbon fiber reinforced polymer bar with considering temperature effect[D]. Changsha: Hunan University, 2020(in Chinese).
[5] 宋进辉. 大吨位FRP拉索整体锚固体系优化设计及性能评价[D]. 南京: 东南大学, 2017. SONG Jinhui. Optimal design and performance evaluation of integral anchoring system with large tonnage FRP cable[D]. Nanjing: Southeast University, 2017(in Chinese).
[6] 梅葵花, 吕志涛, 张继文. CFRP筋粘结型锚具试验研究及实桥应用分析[J]. 中国公路学报, 2016, 29(1):53-60. DOI: 10.3969/j.issn.1001-7372.2016.01.007 MEI Kuihua, LYU Zhitao, ZHANG Jiwen. Experimental study and practical application of bond-type anchorages for CFRP tendons[J]. China Journal of Highway and Transport,2016,29(1):53-60(in Chinese). DOI: 10.3969/j.issn.1001-7372.2016.01.007
[7] 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51. FANG Zhi, LIANG Dong, JIANG Tianyong. Experiment investigation on the anchorage performance of CFRP tendon in different bond mediums[J]. China Civil Engineering Journal,2006,39(6):47-51(in Chinese).
[8] 蒋田勇, 方志. CFRP筋粘结式锚具锚固性能试验[J]. 中国公路学报, 2011, 24(1): 72-81. JIANG Tianyong, FANG Zhi. Experiment on anchorage performance of bond-type anchorage for CFRP tendon[J]. China Journal of Highway and Transport, 2011, 24(1): 72-81(in Chinese).
[9] ZHANG K, FANG Z, NANNI A, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composites for Construction,2015,19(4):04014073. DOI: 10.1061/(ASCE)CC.1943-5614.0000537
[10] FANG Z, ZHANG K, TU B. Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures,2013,57:364-373. DOI: 10.1016/j.engstruct.2013.09.038
[11] FANG Y W, FANG Z, HUANG D B, et al. Experimental investigation on mechanical performance of carbon fiber reinforced polymer wire after exposure to elevated temperature[J]. Composite Structures,2021,274:114388. DOI: 10.1016/j.compstruct.2021.114388
[12] 张羽, 方志, 卢江波, 等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5): 237-246. ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40(5): 237-246(in Chinese).
[13] FANG Y W, FANG Z, JIANG R N, et al. Effect of temperature on the transverse impact performance of preloaded CFRP wire[J]. Composite Structures, 2020, 231: 111464.
[14] FANG Y W, FANG Z, JIANG R N, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction,2019,23(5):04019041. DOI: 10.1061/(ASCE)CC.1943-5614.0000970
[15] 李维博. 冲击荷载作用下CFRP筋-混凝土界面力学性能试验研究[D]. 长沙: 湖南大学, 2017. LI Weibo. Experiment study on dynamic bond behavior of CFRP rebar to concrete interface under impact loads[D]. Changsha: Hunan Universuty, 2017(in Chinese).
[16] 方志, 奉礼鑫, 方亚威, 等. 冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究[J]. 复合材料学报, 2022, 39(11):5287-5299. FANG Zhi, FENG Lixin, FANG Yawei, et al. Experimental study on mechanical properties of CFRP bar bond-type anchorage system under impact[J]. Acta Materiae Compositae Sinica,2022,39(11):5287-5299(in Chinese).
[17] FANG Y, FANG Z, FENG L, et al. Bond behavior of an ultra-high performance concrete-filled anchorage for carbon fiber-reinforced polymer tendons under static and impactloads[J]. Engineering Structures,2023,274:115128. DOI: 10.1016/j.engstruct.2022.115128
[18] XIONG Z, WEI W, HE S, et al. Dynamic bond behaviour of fibre-wrapped basalt fibre-reinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests[J]. Construction and Building Materials,2021,276:122195. DOI: 10.1016/j.conbuildmat.2020.122195
[19] LI L, MAI G, HE S, et al. Experimental study on bond behaviour between recycled aggregate concrete and basalt fibre-reinforced polymer bars under different strain rates[J]. Construction and Building Materials,2021,290:123218. DOI: 10.1016/j.conbuildmat.2021.123218
[20] 向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90. XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaviors of CFRP cable and its anchoring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese).
[21] YAN C. Bond between reinforcing bars and concrete under impact loading[D]. Vancouver: University of British Columbia, 1992.
[22] WEATHERSBY J H. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions[D]. Baton Rouge: Louisiana State University, 2003.
[23] 付应乾, 余效儒, 董新龙, 等. 应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究[J]. 爆炸与冲击, 2019, 39(6):85-93. FU Yingqian, YU Xiaoru, DONG Xinlong, et al. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion and Shock Waves,2019,39(6):85-93(in Chinese).
[24] 中国建筑材料联合会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013. China Building Materials Federation. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
[25] 中国建筑材料联合会. 超高性能混凝土试验方法标准: T/CECS 864—2021[S]. 北京: 中国建筑工业出版社, 2021. China Building Materials Federation. Standard for test methods of ultra-high performance concrete: T/CECS 864—2021[S]. Beijing: China Architecture & Building Press, 2021(in Chinese).
[26] 中国建筑材料联合会. 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015. China Building Materials Federation. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
[27] 诸葛萍, 强士中. 新型CFRP筋夹片式锚具理论与试验研究[J]. 土木工程学报, 2011, 44(10): 67-72. ZHU Geping, QIANG Shizhong. Theoretical and experimental investigation of a new CFRP tendon wedge-anchor[J]. China Civil Engineering Journal, 2011, 44(10): 67-72(in Chinese).
[28] 中国建筑材料联合会. 预应力筋用锚具、夹具和连接器: GB/T 14370—2015[S]. 北京: 中国标准出版社, 2015. China Building Materials Federation. Anchorage, grip and coupler for prestressing tendons: GB/T 14370—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
[29] 李正辉. 落石冲击下拱形明洞落石冲击荷载及荷载效应研究[D]. 成都: 西南交通大学, 2017. LI Zhenghui. Research on rock-fall impaction loads and loads effects of arch open tunnel under the impact of rock[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese).
[30] 刘练. 不同应变率下混凝土纵向冲击力学性能试验研究[D]. 长沙: 湖南大学, 2017. LIU Lian. Experimental study on dynamic mechanical properties of concrete under different strain rates[D]. Changsha: Hunan University, 2017(in Chinese).
[31] 张羽. 大跨混凝土斜拉桥断索后结构受力性能及倒塌破坏研究[D]. 长沙: 湖南大学, 2020. ZHANG Yu. Investigation on structural performance and progressive collapse of a 1ong-span concrete cable-stayed bridge subjected to cable loss[D]. Changsha: Hunan University, 2020(in Chinese).
[32] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. DOI: 10.1061/(ASCE)1090-0268(2004)8:2(173)
[33] KUMAR C, SINGH K K, RAWAT P, et al. Effect of loading rate on inter laminar shear strength (ILSS) of highly doped MWCNTs carbon/epoxy laminates[J]. IOP Publishing,2018,455(1):012006.
[34] PAPADAKIS N, REYNOLDS N, PHARAOH M W, et al. Strain rate effects on the shear mechanical properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology—Part A: Elasticity and shear strength[J]. Composites Science and Technology,2004,64(5):729-738. DOI: 10.1016/j.compscitech.2003.08.001
[35] TAI Y S, EL-TAWIL S, CHUNG T H. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J]. Cement and Concrete Research,2016,89:1-13. DOI: 10.1016/j.cemconres.2016.07.013
[36] BAKIS C E, UPPULURI V S, NANNI A, et al. Analysis of bonding mechanisms of smooth and lugged FRP rods embedded in concrete[J]. Composites Science and Technology,1998,58(8):1307-1319. DOI: 10.1016/S0266-3538(98)00016-5
[37] CHEN W, MENG F, SUN H, et al. Bond behaviors of BFRP bar-to-concrete interface under dynamic loading[J]. Construction and Building Materials,2021,305:124812. DOI: 10.1016/j.conbuildmat.2021.124812
[38] ZHANG R, JIN L, LIU M, et al. Refined modeling of the in terfacial behavior between FRP bars and concrete under different loading rates[J]. Composite Structures,2022,291:115676. DOI: 10.1016/j.compstruct.2022.115676
[39] 朱平, 池颜海, 易笃韬, 等. 混杂钢纤维对钢纤维–超高性能混凝土界面粘结性能的影响[J]. 硅酸盐学报, 2020, 48(10): 1669-1681. ZHU Ping, CHI Yanhai, YI Dutao, et al. Influence of hybrid steel fibers on interfacial bond performance between steel fiber and ultra high-performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1669-1681(in Chinese).
[40] ZIELINSKI A J. Fracture of concrete and mortar under uniaxial impact tensile loading[D]. Delft: Delft University of Technology, 1982.
[41] MO Y L, CHAN J. Bond and slip of plain rebars in concrete[J]. Journal of Materials in Civil Engineering,1996,8(4):208-211. DOI: 10.1061/(ASCE)0899-1561(1996)8:4(208)
[42] 方志, 蒋田勇, 梁栋. CFRP筋在活性粉末混凝土中的锚固性能[J]. 湖南大学学报(自然科学版), 2007(7): 1-5 FANG Zhi, JIANG Tianyong, LIANG Dong. The anchorage behavior of CFRP tendons in RPC[J]. Journal of Hunan University (Natural Sciences), 2007(7): 1-5(in Chinese).
[43] HOU J P, RUIZ C. Measurement of the properties of woven CFRP T300/914 at different strain rates[J]. Composites Science and Technology, 2000, 60(15): 2829-2834.
[44] AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. DOI: 10.1016/j.compstruct.2012.09.032
-