Experimental study on bonding behavior between CFRP smooth bar and UHPC under impact loading
-
摘要: 为明确冲击荷载作用下,碳纤维增强复合材料(Carbon fiber-reinforced polymer,CFRP)筋与超高性能混凝土(Ultra-high performance concrete,UHPC)粘结界面间化学粘结力和摩擦力的应变率效应,以锚固长度和荷载类型为参数,对8组共计24个采用UHPC作为粘结介质锚固的CFRP光圆筋试件(锚固长度分别为20d~35d,d为CFRP筋材直径),分别进行了静力拉拔和筋材应变速率约为4.0 s−1的纵向冲击试验。结果表明:静力和纵向冲击试件均发生了光圆筋拔出的滑移破坏,相较于冲击试件,静力加载后CFRP光圆筋的表面损伤更明显。冲击荷载作用下,CFRP光圆筋与UHPC间界面的化学粘结强度和峰值粘结强度均呈现正的应变率效应,分别较相应的静力强度提高了约53%和17%;而峰值后界面的残余粘结强度即滑动摩擦阻力则表现为负的应变率效应,较相应的静力值降低约38%。基于试验结果,建立了冲击作用下CFRP光圆筋与UHPC间界面动态粘结强度的预测公式。
-
关键词:
- 碳纤维增强树脂复合材料(CFRP) /
- 超高性能混凝土(UHPC) /
- 冲击荷载 /
- 粘结强度 /
- 锚固长度
Abstract: To investigate effect of strain rate on chemical adhesion force and friction on the bonding interface between carbon fiber-reinforced polymer (CFRP) bars and ultra-high performance concrete (UHPC) under impact load, both static pull-out tests and longitudinal impact tests with the 4.0 s−1 strain rate were conducted on UHPC-filled anchorage for CFRP smooth bars. Totally, 24 specimens for eight test groups with 20d-35d (d is CFRP bars diameter) embedded lengths were prepared. The results show that both static and longitudinal impact specimens fail in a similar pattern, that is, all CFRP bars slide out UHPC regardless of the embedded lengths and load types. However, the damage on the surface of CFRP bar is slightly severer in static tests than in impact tests. Under the impact, the chemical bond strength at the bonding interface between CFRP smooth bar and UHPC increases, thereby leading to an improved peak bond strength; however, the residual bonding strength (i.e., friction) at the bond interface decreases. Compared with the corresponding static test specimens, the chemical bond strength and peak bond strength approximately increase by 53% and 17%, respectively, while the average residual bonding strength decreases by about 38%. Besides, a prediction formula for predicting the dynamic bonding strength between CFRP smooth bar and UHPC under impact loads was established. -
表 1 超高性能混凝土(UHPC)的配合比
Table 1. Mix proportion of ultra-high performance concrete (UHPC)
Component Cement Silica
fumeQuartz
flourQuartz
sandWater
reducerWater
binder ratioMass ratio 1 0.25 0.25 1.1 0.02 0.22 表 2 试件概况
Table 2. Overview of the test specimens
Specimen Length of
reliable
anchorage
/mmLength of
test anchorage
/mmFree length
/mmLength of
specimens
/mmS-L160 500 160 300 1000 S-L200 500 200 300 1040 S-L240 500 240 300 1080 S-L280 500 280 300 1120 D-L160 Wedge type 160 300 680 D-L200 200 300 720 D-L240 240 300 760 D-L280 280 300 800 Notes: In specimen codes, the first letter indicates the test type (S—Static tensile test; D—Dynamic impact test), and the second letter is used to differentiate the anchorage length (160 to 280 mm denoted by L160 to L280). For example, D-L160 means the impact specimen with a bond length of 160 mm. 表 3 CFRP光圆筋与UHPC粘结试件静力和冲击试验主要结果
Table 3. Typical results of static and impact tests on CFRP smooth bar and UHPC bonded specimens
Specimen $\acute{\varepsilon} $/s−1 $\bar{\acute{\varepsilon} }$/s−1 Tmax/kN ${\bar T_{\max }} $/kN ${\bar \tau _{\rm{m}}} $/MPa ${\bar \tau _{\rm{a}}} $/MPa ${\bar \tau _{\rm{r}}} $/MPa S0/mm ${\bar S_0} $/mm ${\bar S_{\textit{z}}} $/mm S-L160-1 — — 12.35 11.96 2.98 1.24 2.52 0.56 0.46 0.48 S-L160-2 11.61 0.37 S-L160-3 11.93 0.46 S-L200-1 — — 14.29 14.72 2.93 1.20 2.50 0.49 0.53 0.56 S-L200-2 15.13 0.50 S-L200-3 14.75 0.60 S-L240-1 — — 17.74 17.30 2.87 1.21 2.50 0.65 0.61 0.65 S-L240-2 17.23 0.61 S-L240-3 16.94 0.58 S-L280-1 — — 18.56 19.57 2.78 1.16 2.49 0.64 0.68 0.72 S-L280-2 19.73 0.66 S-L280-3 20.42 0.75 D-L160-1 3.44 3.65 14.30 13.96 3.47 1.93 1.60 0.97 0.83 — D-L160-2 3.67 13.93 0.77 D-L160-3 3.83 13.64 0.76 D-L200-1 3.95 3.70 16.13 17.06 3.40 1.87 1.58 0.85 0.91 — D-L200-2 3.29 17.15 0.89 D-L200-3 3.85 17.90 0.99 D-L240-1 3.93 3.84 21.21 20.31 3.37 1.79 1.55 1.10 1.01 — D-L240-2 3.89 19.19 0.96 D-L240-3 3.71 20.54 0.98 D-L280-1 4.42 4.06 23.40 23.48 3.34 1.76 1.52 1.06 1.08 — D-L280-2 3.86 22.46 1.03 D-L280-3 3.91 24.58 1.14 Notes: $\acute{\varepsilon} $, Tmax, S0—Strain rate, maximum load, slip of specimen corresponding to the maximum load, respectively; $ \bar{\acute{\varepsilon} } $, ${\bar T_{\max }} $, ${\bar \tau _{\rm{m}}} $, ${\bar \tau _{\rm{a}}} $, ${\bar \tau _{\rm{r}}} $, ${\bar S _{0}} $, ${\bar S_{\textit{z}}}$—Average value of the strain rate, maximum load, peak bond strength, chemical bond strength, residual bond strength, slip of specimen corresponding to the maximum load, slip of loading end corresponding the free end start slip, respectively. 表 4 CFRP光圆筋与UHPC粘结试件静、动态化学粘结强度对比
Table 4. Comparison of static and dynamic chemical bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,a
/MPaτd,a
/MPaτd,a/τs,a 160 1.24 1.93 1.56 200 1.20 1.87 1.56 240 1.21 1.79 1.48 280 1.16 1.76 1.52 Average 1.20 1.84 1.53 Note: τs,a, τd,a—Static and dynamic chemical bond strength, respectively. 表 5 CFRP光圆筋与UHPC粘结试件静、动态峰值粘结强度对比
Table 5. Comparison of static and dynamic peak bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,m
/MPaτd,m
/MPaτd,m/τs,m 160 2.98 3.47 1.16 200 2.93 3.40 1.16 240 2.87 3.37 1.17 280 2.78 3.34 1.20 Average 2.89 3.39 1.17 Note: τs,m, τd,m—Static and dynamic peak bond strength, respectively. 表 6 CFRP光圆筋与UHPC粘结试件静、动态残余粘结强度对比
Table 6. Comparison of static and dynamic residual bond strength between CFRP smooth bar and UHPC bonded specimens
Embedded length
/mmτs,r
/MPaτd,r
/MPaτd,r/τs,r 160 2.52 1.60 0.63 200 2.50 1.58 0.63 240 2.50 1.55 0.62 280 2.49 1.52 0.61 Average 2.50 1.56 0.62 Note: τs,r, τd,r—Static residual bond strength and dynamic residual bond strength, respectively. -
[1] FANG Y W, FANG Z, JIANG Z W, et al. Investigation on failure behavior of carbon fiber reinforced polymer wire subjected to combined tension and bending[J]. Compo-site Structures,2021,267:113927. doi: 10.1016/j.compstruct.2021.113927 [2] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36.YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006,39(3):24-36(in Chinese). [3] FANG Y W, FANG Z, XIANG Y, et al. Charpy impact properties of uni-directional carbon fiber-reinforced polymer tendons with protective layers[J]. Advances in Structural Engineering, 2023, 26(1): 36-51 [4] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2020.FANG Yawei. Investigation on static and impact behavior of carbon fiber reinforced polymer bar with considering temperature effect[D]. Changsha: Hunan University, 2020(in Chinese). [5] 宋进辉. 大吨位FRP拉索整体锚固体系优化设计及性能评价[D]. 南京: 东南大学, 2017.SONG Jinhui. Optimal design and performance evaluation of integral anchoring system with large tonnage FRP cable[D]. Nanjing: Southeast University, 2017(in Chinese). [6] 梅葵花, 吕志涛, 张继文. CFRP筋粘结型锚具试验研究及实桥应用分析[J]. 中国公路学报, 2016, 29(1):53-60. doi: 10.3969/j.issn.1001-7372.2016.01.007MEI Kuihua, LYU Zhitao, ZHANG Jiwen. Experimental study and practical application of bond-type anchorages for CFRP tendons[J]. China Journal of Highway and Transport,2016,29(1):53-60(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.007 [7] 方志, 梁栋, 蒋田勇. 不同粘结介质中CFRP筋锚固性能的试验研究[J]. 土木工程学报, 2006, 39(6):47-51.FANG Zhi, LIANG Dong, JIANG Tianyong. Experiment investigation on the anchorage performance of CFRP tendon in different bond mediums[J]. China Civil Engineering Journal,2006,39(6):47-51(in Chinese). [8] 蒋田勇, 方志. CFRP筋粘结式锚具锚固性能试验[J]. 中国公路学报, 2011, 24(1): 72-81.JIANG Tianyong, FANG Zhi. Experiment on anchorage performance of bond-type anchorage for CFRP tendon[J]. China Journal of Highway and Transport, 2011, 24(1): 72-81(in Chinese). [9] ZHANG K, FANG Z, NANNI A, et al. Experimental study of a large-scale ground anchor system with FRP tendon and RPC grout medium[J]. Journal of Composites for Construction,2015,19(4):04014073. doi: 10.1061/(ASCE)CC.1943-5614.0000537 [10] FANG Z, ZHANG K, TU B. Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures,2013,57:364-373. doi: 10.1016/j.engstruct.2013.09.038 [11] FANG Y W, FANG Z, HUANG D B, et al. Experimental investigation on mechanical performance of carbon fiber reinforced polymer wire after exposure to elevated temperature[J]. Composite Structures,2021,274:114388. doi: 10.1016/j.compstruct.2021.114388 [12] 张羽, 方志, 卢江波, 等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击, 2021, 40(5): 237-246.ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40(5): 237-246(in Chinese). [13] FANG Y W, FANG Z, JIANG R N, et al. Effect of temperature on the transverse impact performance of preloaded CFRP wire[J]. Composite Structures, 2020, 231: 111464. [14] FANG Y W, FANG Z, JIANG R N, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction,2019,23(5):04019041. doi: 10.1061/(ASCE)CC.1943-5614.0000970 [15] 李维博. 冲击荷载作用下CFRP筋-混凝土界面力学性能试验研究[D]. 长沙: 湖南大学, 2017.LI Weibo. Experiment study on dynamic bond behavior of CFRP rebar to concrete interface under impact loads[D]. Changsha: Hunan Universuty, 2017(in Chinese). [16] 方志, 奉礼鑫, 方亚威, 等. 冲击作用下CFRP筋粘结式锚固系统力学性能的试验研究[J]. 复合材料学报, 2022, 39(11):5287-5299.FANG Zhi, FENG Lixin, FANG Yawei, et al. Experimental study on mechanical properties of CFRP bar bond-type anchorage system under impact[J]. Acta Materiae Compositae Sinica,2022,39(11):5287-5299(in Chinese). [17] FANG Y, FANG Z, FENG L, et al. Bond behavior of an ultra-high performance concrete-filled anchorage for carbon fiber-reinforced polymer tendons under static and impactloads[J]. Engineering Structures,2023,274:115128. doi: 10.1016/j.engstruct.2022.115128 [18] XIONG Z, WEI W, HE S, et al. Dynamic bond behaviour of fibre-wrapped basalt fibre-reinforced polymer bars embedded in sea sand and recycled aggregate concrete under high-strain rate pull-out tests[J]. Construction and Building Materials,2021,276:122195. doi: 10.1016/j.conbuildmat.2020.122195 [19] LI L, MAI G, HE S, et al. Experimental study on bond behaviour between recycled aggregate concrete and basalt fibre-reinforced polymer bars under different strain rates[J]. Construction and Building Materials,2021,290:123218. doi: 10.1016/j.conbuildmat.2021.123218 [20] 向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90.XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaviors of CFRP cable and its anchoring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese). [21] YAN C. Bond between reinforcing bars and concrete under impact loading[D]. Vancouver: University of British Columbia, 1992. [22] WEATHERSBY J H. Investigation of bond slip between concrete and steel reinforcement under dynamic loading conditions[D]. Baton Rouge: Louisiana State University, 2003. [23] 付应乾, 余效儒, 董新龙, 等. 应变率对光圆钢筋与混凝土“粘结-滑移”行为影响的实验研究[J]. 爆炸与冲击, 2019, 39(6):85-93.FU Yingqian, YU Xiaoru, DONG Xinlong, et al. An experimental study of dynamic bond-slip behaviors of plain steel barsin concrete at different strain rates[J]. Explosion and Shock Waves,2019,39(6):85-93(in Chinese). [24] 中国建筑材料联合会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.China Building Materials Federation. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: Standards Press of China, 2013(in Chinese). [25] 中国建筑材料联合会. 超高性能混凝土试验方法标准: T/CECS 864—2021[S]. 北京: 中国建筑工业出版社, 2021.China Building Materials Federation. Standard for test methods of ultra-high performance concrete: T/CECS 864—2021[S]. Beijing: China Architecture & Building Press, 2021(in Chinese). [26] 中国建筑材料联合会. 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015.China Building Materials Federation. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standards Press of China, 2015(in Chinese). [27] 诸葛萍, 强士中. 新型CFRP筋夹片式锚具理论与试验研究[J]. 土木工程学报, 2011, 44(10): 67-72.ZHU Geping, QIANG Shizhong. Theoretical and experimental investigation of a new CFRP tendon wedge-anchor[J]. China Civil Engineering Journal, 2011, 44(10): 67-72(in Chinese). [28] 中国建筑材料联合会. 预应力筋用锚具、夹具和连接器: GB/T 14370—2015[S]. 北京: 中国标准出版社, 2015.China Building Materials Federation. Anchorage, grip and coupler for prestressing tendons: GB/T 14370—2015[S]. Beijing: Standards Press of China, 2015(in Chinese). [29] 李正辉. 落石冲击下拱形明洞落石冲击荷载及荷载效应研究[D]. 成都: 西南交通大学, 2017.LI Zhenghui. Research on rock-fall impaction loads and loads effects of arch open tunnel under the impact of rock[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese). [30] 刘练. 不同应变率下混凝土纵向冲击力学性能试验研究[D]. 长沙: 湖南大学, 2017.LIU Lian. Experimental study on dynamic mechanical properties of concrete under different strain rates[D]. Changsha: Hunan University, 2017(in Chinese). [31] 张羽. 大跨混凝土斜拉桥断索后结构受力性能及倒塌破坏研究[D]. 长沙: 湖南大学, 2020.ZHANG Yu. Investigation on structural performance and progressive collapse of a 1ong-span concrete cable-stayed bridge subjected to cable loss[D]. Changsha: Hunan University, 2020(in Chinese). [32] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173) [33] KUMAR C, SINGH K K, RAWAT P, et al. Effect of loading rate on inter laminar shear strength (ILSS) of highly doped MWCNTs carbon/epoxy laminates[J]. IOP Publishing,2018,455(1):012006. [34] PAPADAKIS N, REYNOLDS N, PHARAOH M W, et al. Strain rate effects on the shear mechanical properties of a highly oriented thermoplastic composite material using a contacting displacement measurement methodology—Part A: Elasticity and shear strength[J]. Composites Science and Technology,2004,64(5):729-738. doi: 10.1016/j.compscitech.2003.08.001 [35] TAI Y S, EL-TAWIL S, CHUNG T H. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J]. Cement and Concrete Research,2016,89:1-13. doi: 10.1016/j.cemconres.2016.07.013 [36] BAKIS C E, UPPULURI V S, NANNI A, et al. Analysis of bonding mechanisms of smooth and lugged FRP rods embedded in concrete[J]. Composites Science and Technology,1998,58(8):1307-1319. doi: 10.1016/S0266-3538(98)00016-5 [37] CHEN W, MENG F, SUN H, et al. Bond behaviors of BFRP bar-to-concrete interface under dynamic loading[J]. Construction and Building Materials,2021,305:124812. doi: 10.1016/j.conbuildmat.2021.124812 [38] ZHANG R, JIN L, LIU M, et al. Refined modeling of the in terfacial behavior between FRP bars and concrete under different loading rates[J]. Composite Structures,2022,291:115676. doi: 10.1016/j.compstruct.2022.115676 [39] 朱平, 池颜海, 易笃韬, 等. 混杂钢纤维对钢纤维–超高性能混凝土界面粘结性能的影响[J]. 硅酸盐学报, 2020, 48(10): 1669-1681.ZHU Ping, CHI Yanhai, YI Dutao, et al. Influence of hybrid steel fibers on interfacial bond performance between steel fiber and ultra high-performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1669-1681(in Chinese). [40] ZIELINSKI A J. Fracture of concrete and mortar under uniaxial impact tensile loading[D]. Delft: Delft University of Technology, 1982. [41] MO Y L, CHAN J. Bond and slip of plain rebars in concrete[J]. Journal of Materials in Civil Engineering,1996,8(4):208-211. doi: 10.1061/(ASCE)0899-1561(1996)8:4(208) [42] 方志, 蒋田勇, 梁栋. CFRP筋在活性粉末混凝土中的锚固性能[J]. 湖南大学学报(自然科学版), 2007(7): 1-5FANG Zhi, JIANG Tianyong, LIANG Dong. The anchorage behavior of CFRP tendons in RPC[J]. Journal of Hunan University (Natural Sciences), 2007(7): 1-5(in Chinese). [43] HOU J P, RUIZ C. Measurement of the properties of woven CFRP T300/914 at different strain rates[J]. Composites Science and Technology, 2000, 60(15): 2829-2834. [44] AL-ZUBAIDY H, ZHAO X L, AL-MAHAIDI R. Mechanical characterisation of the dynamic tensile properties of CFRP sheet and adhesive at medium strain rates[J]. Composite Structures,2013,96:153-164. doi: 10.1016/j.compstruct.2012.09.032