留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导热聚酰亚胺及其复合材料的研究进展

凃思帆 杨丹妮 梁旭昀 钟荣健 胡德超 林静

凃思帆, 杨丹妮, 梁旭昀, 等. 导热聚酰亚胺及其复合材料的研究进展[J]. 复合材料学报, 2023, 40(11): 6043-6060. doi: 10.13801/j.cnki.fhclxb.20230612.001
引用本文: 凃思帆, 杨丹妮, 梁旭昀, 等. 导热聚酰亚胺及其复合材料的研究进展[J]. 复合材料学报, 2023, 40(11): 6043-6060. doi: 10.13801/j.cnki.fhclxb.20230612.001
TU Sifan, YANG Danni, LIANG Xuyun, et al. Research progress of thermally conductive polyimide and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6043-6060. doi: 10.13801/j.cnki.fhclxb.20230612.001
Citation: TU Sifan, YANG Danni, LIANG Xuyun, et al. Research progress of thermally conductive polyimide and its composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6043-6060. doi: 10.13801/j.cnki.fhclxb.20230612.001

导热聚酰亚胺及其复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20230612.001
基金项目: 广东省基础与应用基础研究基金(2021 A1515110405);广东省高性能与功能高分子材料重点实验室开放基金(20220612;20220615);广东省大学生创新创业培训计划(S202211847048);佛山科学技术学院学术基金(xsjj202206 zrb04;xsjj202206 zrb05)
详细信息
    作者简介:

    林静,博士,讲师,硕士生导师,研究方向为柔性传感材料与器件 E-mail: smdjlin@163.com;

    通讯作者:

    胡德超,博士,特聘青年研究员,硕士生导师,研究方向为高分子改性与功能复合材料 E-mail: msdchu@fosu.edu.cn

  • 中图分类号: TB332

Research progress of thermally conductive polyimide and its composites

Funds: Guangdong Basic and Applied Basic Research Foundation (2021 A1515110405); Open Fund for Key Lab of Guangdong High Property and Functional Macromolecular Materials (20220612; 20220615); College Students' Innovation and Entrepreneurship Training Program of Guangdong Province (S202211847048); Student Academic Fund of Foshan University (xsjj202206 zrb04; xsjj202206 zrb05)
  • 摘要: 随着电子设备朝着小型化、集成化和多功能化的趋势不断发展,实现电子材料的高导热性能对电子设备的稳定运行和使用寿命至关重要。聚酰亚胺(PI)因其优异的耐热性能和力学性能被广泛应用于热管理领域,然而传统PI的本征导热系数较低,难以满足电子器件的快速散热需求,发展新型高导热PI及PI复合材料成为目前国内外的研究重点。本文从PI分子链结构、分子链取向及分子间相互作用等方面阐述了非晶型与液晶型两类本征型导热PI的制备与性能调控,系统探讨了填料表面修饰、杂化改性、取向设计、三维网络构筑等方法对PI复合材料结构与性能的影响规律,最后对高导热PI及PI复合材料研究中面临的挑战进行了总结与展望。

     

  • 图  1  聚酰亚胺(PI)纤维的分子填充模型[7]

    Figure  1.  Molecular packing model of polyimide (PI) fibers[7]

    图  2  (a) 液晶聚酰亚胺(LC-PI)的合成化学反应;(b) 液晶PI薄膜的低(上)和高(下)固有热导率的机制示意图;(c) 室温下LC-PIIV薄膜的偏光显微镜(POM)图像;(d) LC-PI薄膜的面内导热率λ和面外导热率λ[14]

    ODA—4, 4′-diaminodiphenyl ether; TPE-Q—1, 4-bis(4-aminophenoxy)benzene; PI—Polyimide

    Figure  2.  (a) Synthetic chemical reaction of liquid crystalline polyimide (LC-PI); (b) Schematic diagram of the mechanisms for low (up) and high (down) intrinsic thermal conductivities of liquid crystal PI; (c) Polarizing microscope (POM) images of LC-PIIV films at room temperature; (d) In-plane thermal conductivity λand out-plane thermal conductivity λ of LC-PI films[14]

    图  3  (a) EPPOSS@Gh-BN和PI/EPPOSS@Gh-BN复合薄膜的制备示意图;纯PI (b)和PI/EPPOSS@Gh-BN复合材料(c)的扫描电镜图像; 含不同填料的PI复合薄膜的拉伸强度(d)、介电损耗(e)、导热系数和热扩散系数(f)[27]

    Figure  3.  (a) Schematic diagram of the synthesis of EPPOSS@Gh-BN and PI/EPPOSS@Gh-BN nanocomposite film; SEM micrographs of pure PI (b) and PI/EPPOSS@Gh-BN composites (c); Tensile strengths (d), dielectric losses (e), thermal conductivity and thermal diffusivity (f) of the PI nanocomposite films with different fillers[27]

    图  4  (a) 银-聚多巴胺-六方氮化硼(h-BN@Ag)填料和PI复合膜的制备示意图;(b) PI复合薄膜的热传输模型;1wt%h-BN@Ag (c) 和10wt%h-BN@Ag (d)填充含量的h-BN@Ag/PI复合薄膜的扫描电镜图;(e) 纯PI和h-BN@Ag/PI复合薄膜的热重曲线[32]

    Figure  4.  (a) Schematic illustration of the preparation of silver-polydopamine-hexagonal boron nitride (h-BN@Ag) fillers and PI composite films; (b) Heat transport models of the PI composite films; SEM images of h-BN@Ag/PI composite films filled with 1wt%h-BN@Ag (c) and 10wt%h-BN@Ag (d) filler contents; (e) TGA curves of pure PI and h-BN@Ag/PI composite films[32]

    DMAc—N, N-dimethylacetamide; T5—Temperatures at the mass loss of 5%; T30—Temperatures at the mass loss of 30%; R700—Residual rate at 700 oC

    图  5  (a) 石墨烯(GF)和移动磁场感应下的石墨烯-氮化硼/聚酰亚胺(GF-BN/PI(MF))复合膜的制备示意图;(b) GF-BN/PI(MF)复合薄膜的运动磁场感应和导热机制示意图;(c) 纯PI和填充含量为30wt%的不同PI复合膜的导热性能;(d) 30wt%GF-BN/PI(MF)薄膜撕裂断裂表面的扫描电镜图像[43]

    Figure  5.  (a) Schematic illustration of preparation of the graphene (GF) and the graphene-boron nitride/polyimide under moving magnetic field induction (GF-BN/PI(MF)) composite film; (b) Schematic diagram of the moving magnetic field induction and heat conduction mechanism of the GF-BN/PI(MF) composite film; (c) Thermal conductivity of the pure PI and the different PI composite films with 30wt% filler content; (d) SEM images of the fracture surface of 30wt%GF-BN/PI(MF) film[43]

    图  6  (a) PI/GF、PI/AlN和PI/GF/AlN复合材料的热流传递模型;填料含量对PI/GF/AlN复合材料的热扩散系数和导热系数的影响:(b) AlN;(c) GF[49];(d) PI-BN-B复合薄膜的力学化学辅助制备及其对BN的影响;(e) 力学化学辅助制备的PI复合膜(PI-BN-B)和原位聚合制备的PI复合膜(PI-BN-S)的面内热导率[20]

    Figure  6.  (a) Models of the transfer of heat flow in PI/GF, PI/AlN, and PI/GF/AlN composites; Influence of filler content on the thermal diffusivity and thermal conductivity of PI/GF/AlN composites: (b) AlN; (c) GF[49]; (d) Mechanochemical-assisted fabrication of PI-BN-B composite films and effects on BN; (e) In-plane thermal conductivities of PI composite film (PI-BN-B) from mechanochemical-assisted fabrication and the control PI composite film (PI-BN-S) from in-situ polymerization[20]

    图  7  (a) ae-BN/PI和h-BN/PI复合材料的结构模型;(b) 在室温下ae-BN/PI和h-BN/PI复合材料的平面内导热率[51];(c) PI复合材料的导热模型示意图,特别是复合材料的声子传输模型示意图(c')和界面态((c''), (c'''));(d) 具有不同填料含量的复合材料的平面内导热率[52]

    δ—Distance factor

    Figure  7.  (a) Structure models of ae-BN/PI and h-BN/PI composites; (b) In-plane thermal conductivity of ae-BN/PI and h-BN/PI composites at room temperature[51]; (c) Schematic diagram of the heat dissipation model for PI composites, specifically, the schematic diagram for phonon heat conduction model of composites (c'), and the interfacial state ((c''), (c''')); (d) In-plane thermal conductivity of composites with different filler contents[52]

    图  8  (a) PI/3DSG复合材料的制备工艺;(b) 复合材料的热流模型;(c) 不同填料含量的PI/3DSG复合材料的导热系数和热扩散系数;(d) 纯PI和PI复合材料的导热性能和提升率[41]

    SiCNWs—Silicon carbide nanowire; GSs—Graphene sheets; 3DSG—Three-dimensional SiCNWs@GSs

    Figure  8.  (a) Preparation process of the PI/3DSG composites; (b) Model of heat flow for the composites; (c) Thermal conductivity and thermal diffusivity of PI/3DSG composites with various filler contents; (d) Thermal conductivity and thermal conductivity enhancement of neat PI and PI composites[41]

    图  9  (a) PI/CNT@CF复合材料的制备和表征:通过单向冷冻干燥制备PI/CNT@CF气凝胶和热压制备PI/CNT@CF复合材料的示意图;(b) PI/CF和PI/CNT@CF复合材料中热流的平面内传递示意图;(c) 不同填料质量分数的PI/CF和PI/CNT@CF复合材料的平面内导热系数;(d) 纯PI和PI/CNT@CF复合材料在加热过程中的热膨胀系数(CTE)值(温度范围为25~235℃)[55]

    Figure  9.  (a) Preparation and characterization of PI/CNT@CF composites: Schematic of the preparation of PI/CNT@CF aerogels by the unidirectional freeze-drying and fabrication of PI/CNT@CF composites by hot-pressing; (b) Schematic diagram of the in-plane transfer of heat flow in the PI/CF and PI/CNT@CF composites; (c) In-plane thermal conductivity of PI/CF and PI/CNT@CF composites with different filler mass fractions; (d) Coefficient of thermal expansion (CTE) values of pure PI and PI/CNT@CF composites in the heating process (Temperature range of 25-235℃)[55]

    图  10  (a) BNNS及聚酰亚胺/氮化硼/碳纳米管@碳化聚乙烯醇(PI/BNNS/CNT@αPVA)复合膜的制备示意图;(b) BNNS为30wt%的PI/BNNS/CNT@αPVA复合膜的SEM图像;(c) PI及其复合膜的表面温度随时间的变化;(d) PI、PI/BNNS和PI/BNNS/CNT@αPVA膜的红外热图像;(e) PI、PI/BNNS和PI/BNNS/CNT@αPVA膜的热传导机制示意图[62]

    Figure  10.  (a) Schematic illustration for the exfoliation of BNNS and the fabrication of polyimide/boron nitride/carbon nanotubes@carbonized polyvinyl alcohol (PI/BNNS/CNT@αPVA) composite films; (b) SEM images PI/BNNS/CNT@αPVA films with BNNS of 30wt%; (c) Surface temperature variations of films versus time; (d) Infrared thermal images of PI, PI/BNNS and PI/BNNS/CNT@αPVA films with different BNNS loading; (e) Schematic illustration of heat conduction mechanism of PI, PI/BNNS and PI/BNNS/CNT@αPVA films[62]

    DI water—Deionized water; SDS—Sodium dodecyl sulfate; BNNS—Boron nitride nanosheet; BA—Boric acid

    图  11  (a) 制备PI/定向BNNSs复合材料的示意图;(b) PI/取向BNNSs纳米复合材料的热流图;(c) PI/定向BNNSs-12.4的扫描电镜断裂图像;(d) 比较PI/取向BNNSs和PI/随机BNNSs复合材料的热导率增强作为BNNSs加载的函数;(e) 纳米复合材料的表面温度随时间的变化[66]

    Figure  11.  (a) Schematic illustration of preparing PI/oriented BNNSs composites; (b) Diagram of in-plane transfer of heat flow in the PI/oriented BNNSs nanocomposites; (c) SEM fracture images of PI/oriented BNNSs-12.4; (d) Comparison of thermal conductivity enhancement between the PI/oriented BNNSs and the PI/random BNNSs composites as a function of BNNSs loading; (e) Surface temperature variations of nanocomposites versus time[66]

    表  1  本征导热聚酰亚胺的导热性能

    Table  1.   Thermal conductivity of various intrinsic thermally conductive polyimide

    类型化学结构导热率/(W·(m·K)–1)参考文献
    非晶型聚酰亚胺调控分子链结构6FDA/TFB/BAPP0.40[6]
    非晶型聚酰亚胺分子链取向、分子
    间相互作用
    PPD/BIA/BPDA2.13[9]
    非晶型聚酰亚胺分子链取向、分子
    间相互作用
    ODPA/BAPP0.98[10]
    非晶型聚酰亚胺分子间相互作用PMDA/ODA/4NADA0.58[12]
    液晶型聚酰亚胺调控分子链结构ODA/TPE-Q/HQDA/PEPAλ=2.11, λ=0.32[14]
    Notes: FDA—4, 4'-(hexafluoroisopropylidene) diphthalic anhydride; TFB—2, 2'-bis(trifluoromethyl)-benzidine; BAPP—2, 2-bis(4-(4-aminophenoxy)-phenyl) hexafluoropropane; BPDA—3, 3', 4, 4'-biphenyldianhydride; PDA—p-phenylene diamine; PMDA—Pyromellitic dianhydride; PPD—p-phenylenediamine; BIA—2-(4-aminophenyl)-5-amino-benzimidazole; ODPA—4, 4′-oxydiphthalic anhydride; 4NADA—2, 4, 5, 7-tetraamino-1, 8-dihydroxyanthracene-9, 10-dione monomers; PEPA—4-phenylethynyl phthalic anhydride; HQDA—4, 4′-(p-phenylenedioxy)bis[phthalic anhydride].
    下载: 导出CSV

    表  2  填充型导热聚酰亚胺的导热性能

    Table  2.   Thermal conductivity of polyimide composites with different fillers

    类型填料添加量导热率/(W·(m·K)–1)参考文献
    共价键改性ODA改性MWCNT3wt%0.4397[23]
    共价键改性EPPOSS改性Gh-BN0.3wt%0.36[27]
    非共价键改性TMN改性LC-GeF15wt%λ=4.21, λ=0.63[24]
    杂化填料h-BN-ND40wt%0.98[35]
    杂化填料f-MWCNT-g-rGO40wt%1.60[36]
    磁取向PDA改性GF30wt%λ=2.532, λ=0.425[43]
    磁取向mf-BN30wt%1.246[44]
    电取向h-BN14.2vol%0.59[46]
    应力取向GF/AlN11wt%11.19[49]
    应力取向BN20wt%14.7[20]
    真空抽滤ae-BN30vol%6.57[51]
    真空抽滤h-BN@PDA20vol%3.01[52]
    模板法GWFs12wt%3.73[54]
    模板法3DSG11wt%2.63[41]
    模板法CNT@CF20wt%4.25[55]
    静电纺丝法mBN30wt%0.696[61]
    静电纺丝法BNNS, CNT30wt%8.40[62]
    隔离结构BN30wt%λ=2.81, λ=0.73[65]
    隔离结构BNNSs12.4vol%4.25[66]
    Notes: MWCNT—Carbon nanotube; TMN—Polyethylene glycol trimethylnonyl ether; LC-GeF—Graphene fluoride; EPPOSS—Epoxidized polyhedral oligomeric silsesquioxanes; Gh-BN—KH550 modified hexagonal boron nitride; ILFG—Ionic liquid functionalized graphene; h-BN—Hexagonal boron nitride; ND—Nanodiamond; f-MWCNT—Urea functionalized multi-walled carbon nanotubes; rGO—Reduced graphene oxide; First GF in Table 2—Reduced GO/γ-FeOOH/γ-Fe2O3 hybrid nanoparticle; mf-BN—Fe3O4 nanoparticles was attached to the surface of the h-BNs with hydroxyl groups; GF in GF/AlN—Graphene flakes; AlN—Polyhedral aluminum nitride; ae-BN—Polydisperse hexagonal boron nitride; GWFs—Graphene woven fabrics; 3DSG—A rigid three-dimensional structure composed of silicon carbide nanowire@graphene sheets; CNT@CF—Grafted carbon nanotubes onto carbon fiber surface; BNNS—Boron nitride nanosheet; mBN—Micrometer boron nitride.
    下载: 导出CSV
  • [1] BAI L, ZHAI L, HE M H, et al. Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application[J]. Reactive and Functional Polymers,2019,141:155-164. doi: 10.1016/j.reactfunctpolym.2019.05.009
    [2] RUAN K P, ZHONG X, SHI X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics,2021,20:100456. doi: 10.1016/j.mtphys.2021.100456
    [3] CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [4] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展[J]. 物理学报, 2022, 71(23):233601. doi: DOI:10.7498/aps.71.20221398

    ZHA Junwei, WANG Fan. Research progress of high thermal conductivity polyimide dielectric films[J]. Acta Physica Sinica,2022,71(23):233601(in Chinese). doi: DOI:10.7498/aps.71.20221398
    [5] 周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7):2038-2055.

    ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Progress in intrinsic thermally conductive polymers[J]. Acta Materiae Compositae Sinica,2021,38(7):2038-2055(in Chinese).
    [6] XIAO T C, FAN X, LI Q, et al. High thermal conductivity and low absorptivity/emissivity properties of transparent fluorinated polyimide films[J]. Polymer Bulletin,2017,74(11):4561-4575. doi: 10.1007/s00289-017-1974-6
    [7] LEI H Y, ZHANG M Y, NIU H Q, et al. Multilevel structure analysis of polyimide fibers with different chemical constitutions[J]. Polymer,2018,149:96-105. doi: 10.1016/j.polymer.2018.06.067
    [8] MORIKAWA J, HASHIMOTO T. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis[J]. Journal of Applied Physics,2009,105(11):113506. doi: 10.1063/1.3116509
    [9] XIANG L P, FANG Y T, XU K, et al. Molecular alignment induced high thermal conductivity in amorphous/low crystalline polyimide fibers[J]. International Journal of Heat and Mass Transfer,2022,193:122959. doi: 10.1016/j.ijheatmasstransfer.2022.122959
    [10] YOON D, LEE H, KIM T, et al. Enhancing the thermal conductivity of amorphous polyimide by molecular-scale manipulation[J]. European Polymer Journal,2023,184:111775. doi: 10.1016/j.eurpolymj.2022.111775
    [11] 田付强, 熊雯雯, 夏宇, 等. 高导热环氧树脂基复合绝缘材料及其在金属基覆铜板中的应用[J]. 绝缘材料, 2020, 53(1):1-8.

    TIAN Fuqiang, XIONG Wenwen, XIA Yu, et al. High thermal conductive epoxy resin-based composite insulating material and its applications in metal base copper clad laminates[J]. Insulating Materials,2020,53(1):1-8(in Chinese).
    [12] LIU B H, ZHOU Y, DONG L, et al. Enhanced thermal conductivity in copolymerized polyimide[J]. iScience,2022,25(11):105451. doi: 10.1016/j.isci.2022.105451
    [13] WEN P S, HE R, LI X D, et al. Soluble polyimide as liquid crystal perpendicular alignment layer[J]. Journal of Materials Science,2022,57(1):755-765. doi: DOI:https://doi.org/10.1007/s10853-021-06627-1
    [14] RUAN K P, GUO Y Q, GU J W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness[J]. Macromolecules,2021,54(10):4934-4944. doi: 10.1021/acs.macromol.1c00686
    [15] SHOJI Y, ISHIGE R, HIGASHIHARA T, et al. Cross-linked liquid crystalline polyimides with siloxane units: Their morphology and thermal diffusivity[J]. Macromolecules,2013,46(3):747-755. doi: 10.1021/ma302486s
    [16] SASAKI R, TAKAHASHI Y, HAYASHI Y, et al. Atomistic mechanism of anisotropic heat conduction in the liquid crystal 4-heptyl-4′-cyanobiphenyl: All-atom molecular dynamics[J]. The Journal of Physical Chemistry B,2020,124(5):881-889. doi: DOI:https://doi.org/10.1021/acs.jpcb.9b08158
    [17] GUO Y Q, QIU H, RUAN K P, et al. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity[J]. Nano-Micro Letters,2022,14(1):26. doi: 10.1007/s40820-021-00767-4
    [18] WANG Y Y, ZHANG X, DING X, et al. Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a "deciduous-like" strategy[J]. Composites Science and Technology,2021,205:108693. doi: 10.1016/j.compscitech.2021.108693
    [19] JIN S W, JIN Y J, CHOI Y J, et al. Eco-friendly preparation and characterization of highly thermally conductive polyimide/boron nitride composites[J]. Composites Part A: Applied Science and Manufacturing,2023,166:107396. doi: 10.1016/j.compositesa.2022.107396
    [20] OU X H, CHEN S S, LIU X M, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications,2021,23:100549. doi: 10.1016/j.coco.2020.100549
    [21] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(4):760-766. doi: 10.13801/j.cnki.fhclxb.20170607.001

    WU Yuming, YU Jinhong, CAO Yong, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(4):760-766(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170607.001
    [22] MA H Q, GAO B, WANG M Y, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review[J]. Journal of Materials Science,2021,56(2):1064-1086. doi: 10.1007/s10853-020-05279-x
    [23] CHAO M, LI Y M, WU G L, et al. Functionalized multiwalled carbon nanotube-reinforced polyimide composite films with enhanced mechanical and thermal properties[J]. International Journal of Polymer Science, 2019, 2019: 9302803.
    [24] RUAN K P, GU J W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films[J]. Macromolecules,2022,55(10):4134-4145. doi: 10.1021/acs.macromol.2c00491
    [25] ALI A, ANDRIYANA A. Properties of multifunctional composite materials based on nanomaterials: A review[J]. RSC Advances,2020,10(28):16390-16403. doi: 10.1039/C9RA10594H
    [26] ZHANG C L, ZHANG J R, XU T L, et al. Effects of polyhedral oligomeric silsesquioxane (POSS) on thermal and mechanical properties of polysiloxane foam[J]. Materials,2020,13(20):4570. doi: 10.3390/ma13204570
    [27] ZHANG Y J, WANG J E, CHEN Y J. Polyhedral oligosilsesquioxane-modified boron nitride enhances the mechanical properties of polyimide nanocomposites[J]. RSC Advances,2022,12(12):7276-7283. doi: 10.1039/D2RA00267A
    [28] LIU X, GAO Y W, SHANG Y S, et al. Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties[J]. Polymer,2020,203:122763. doi: 10.1016/j.polymer.2020.122763
    [29] RUAN H, ZHANG Q, LIAO W Q, et al. Enhancing tribological, mechanical, and thermal properties of polyimide compo-sites by the synergistic effect between graphene and ionic liquid[J]. Materials & Design,2020,189:108527. doi: DOI:https://doi.org/10.1016/j.matdes.2020.108527
    [30] PRADHAN S S, UNNIKRISHNAN L, MOHANTY S, et al. Thermally conducting polymer composites with EMI shielding: A review[J]. Journal of Electronic Materials,2020,49(3):1749-1764. doi: 10.1007/s11664-019-07908-x
    [31] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1-28. doi: 10.1016/j.progpolymsci.2016.05.001
    [32] LI R Y, LYU X W, YU J A, et al. Dielectric, thermally conductive, and heat-resistant polyimide composite film filled with silver nanoparticle-modified hexagonal boron nitride[J]. High Performance Polymers,2020,32(10):1181-1190. doi: 10.1177/0954008320938846
    [33] HU D C, LIU H Q, MA W S. Rational design of nanohybrids for highly thermally conductive polymer composites[J]. Composites Communications,2020,21:100427. doi: 10.1016/j.coco.2020.100427
    [34] TSENG I H, LIN H C, TSAI M H, et al. Thermal conductivity and morphology of silver-filled multiwalled carbon nanotubes/polyimide nanocomposite films[J]. Journal of Applied Polymer Science,2012,126:E182-E187. doi: 10.1002/app.36905
    [35] YANG X, YU X, NAITO K, et al. Enhanced thermal conduc-tivity of polyimide composites filled with modified h-BN and nanodiamond hybrid filler[J]. Journal of Nanoscience and Nanotechnology,2018,18:3291-3298. doi: 10.1166/jnn.2018.14630
    [36] GUO Y Q, RUAN K P, YANG X T, et al. Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites[J]. Journal of Materials Chemistry C,2019,7(23):7035-7044. doi: 10.1039/C9TC01804B
    [37] WU K, LEI C X, HUANG R, et al. Design and preparation of a unique segregated double network with excellent thermal conductive property[J]. ACS Applied Materials & Interfaces,2017,9(8):7637-7647. doi: DOI:https://doi.org/10.1021/acsami.6b16586
    [38] WANG S S, FENG D Y, GUAN H, et al. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing "Line-Plane"-like hetero-structured fillers[J]. Composites Part A: Applied Science and Manufacturing,2022,157:106911. doi: 10.1016/j.compositesa.2022.106911
    [39] ZHANG F, FENG Y Y, FENG W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports,2020,142:100580. doi: 10.1016/j.mser.2020.100580
    [40] XIAO H, HUANG Z X, ZHANG Z P, et al. Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites[J]. Composites Science and Technology,2022,230:109087. doi: 10.1016/j.compscitech.2021.109087
    [41] DAI W, YU J H, WANG Y, et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler[J]. Journal of Materials Chemistry A,2015,3(9):4884-4891. doi: 10.1039/C4TA06417H
    [42] WU Z, CHEN J Y, LI Q F, et al. Preparation and thermal conductivity of epoxy resin/graphene-Fe3O4 composites[J]. Materials,2021,14(8):2013. doi: 10.3390/ma14082013
    [43] LIU D X, CHI H T, MA C G, et al. Improving in-plane and out-of-plane thermal conductivity of polyimide/boron nitride film with reduced graphene oxide by a moving magnetic field induction[J]. Composites Science and Technology,2022,220:109292. doi: 10.1016/j.compscitech.2022.109292
    [44] SONG H S, PARK C, BAE Y S, et al. Enhanced thermal diffusion in the vertical direction of flexible polyimide composite films with magnetically alignable h-BN platelets via ferrofluids hybridization[J]. Journal of Materials Research and Technology,2022,20:2921-2930. doi: 10.1016/j.jmrt.2022.08.058
    [45] 陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4):1486-1497.

    CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of force-induced oriented highly thermally conduc-tive polymer composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1486-1497(in Chinese).
    [46] HARUKI M, TADA J, FUNAKI R, et al. Enhancing thermal conductivities of hexagonal boron nitride/fluorinated polyimide composite materials using direct current electrical fields[J]. Thermochimica Acta,2020,684:178491. doi: 10.1016/j.tca.2019.178491
    [47] ROMYEN N, THONGYAI S, PRASERTHDAM P. Alignment of carbon nanotubes in polyimide under electric and magnetic fields[J]. Journal of Applied Polymer Science,2012,123(6):3470-3475. doi: 10.1002/app.34692
    [48] LI M H, ALI Z, WEI X Z, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2021,208:108599. doi: 10.1016/j.compositesb.2020.108599
    [49] HE X H, YU X, WANG Y C. Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization[J]. Polymer Composites,2020,41(2):740-747. doi: 10.1002/pc.25404
    [50] HUANG Y L, BIAN S W. Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors[J]. Journal of Materials Chemistry A,2021,9(37):21347-21356. doi: 10.1039/D1TA06089A
    [51] DING D L, ZOU M H, WANG X, et al. Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation[J]. Chemical Engineering Journal,2022,437:135438. doi: 10.1016/j.cej.2022.135438
    [52] DING D L, SHANG Z H, ZHANG X, et al. Greatly enhanced thermal conductivity of polyimide composites by polydopamine modification and the 2D-aligned structure[J]. Ceramics International,2020,46(18):28363-28372. doi: 10.1016/j.ceramint.2020.07.340
    [53] LIANG C B, GU Z J, ZHANG Y L, et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review[J]. Nano-Micro Letters,2021,13(1):181. doi: 10.1007/s40820-021-00707-2
    [54] GONG J R, LIU Z D, YU J H, et al. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2016,87:290-296. doi: 10.1016/j.compositesa.2016.05.010
    [55] WU Z Q, DONG J, TENG C Q, et al. Polyimide-based compo-sites reinforced by carbon nanotube-grafted carbon fiber for improved thermal conductivity and mechanical pro-perty[J]. Composites Communications, 2023, 39: 101543.
    [56] ZHANG F, FENG Y Y, QIN M M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite[J]. Advanced Functional Materials,2019,29(25):1901383. doi: 10.1002/adfm.201901383
    [57] LIU L, SHEN S Y, WANG Y Y. Enhanced thermal conduc-tivity of flexible h-BN/polyimide composites films with ethyl cellulose[J]. e-Polymers,2019,19(1):305-312. doi: 10.1515/epoly-2019-0031
    [58] YU H T, FENG Y Y, CHEN C, et al. Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material[J]. Carbon,2021,179:348-357. doi: 10.1016/j.carbon.2021.04.055
    [59] 伍垚屹, 陈松, 张雪娇, 等. 冰模板法制备取向氮化硼@聚多巴胺/纳米银导热网络及其硅橡胶复合导热垫片[J]. 复合材料学报, 2022, 39(7):3131-3143.

    WU Yaoyi, CHEN Song, ZHANG Xuejiao, et al. Preparation of oriented boron nitride@polydopamine/nanosilver network and silicone rubber thermally conductive composite by ice template method[J]. Acta Materiae Compositae Sinica,2022,39(7):3131-3143(in Chinese).
    [60] JIANG T, CARBONE E J, LO K W H, et al. Electrospinning of polymer nanofibers for tissue regeneration[J]. Progress in Polymer Science,2015,46:1-24. doi: 10.1016/j.progpolymsci.2014.12.001
    [61] GU J W, LYU Z Y, WU Y L, et al. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method[J]. Composites Part A: Applied Science and Manufacturing,2017,94:209-216. doi: 10.1016/j.compositesa.2016.12.014
    [62] ZHANG X D, DONG J W, PAN D, et al. Constructing dual thermal conductive networks in electrospun polyimide membranes with highly thermally conductivity but electrical insulation properties[J]. Advanced Composites and Hybrid Materials,2021,4(4):1102-1112. doi: 10.1007/s42114-021-00335-9
    [63] XU Y F, WANG X J, HAO Q. A mini review on thermally conductive polymers and polymer-based composites[J]. Composites Communications,2021,24:100617. doi: 10.1016/j.coco.2020.100617
    [64] JIN L Y, WANG P, CAO W J, et al. Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric compo-sites[J]. ACS Applied Materials & Interfaces,2022,14(1):1747-1756. doi: DOI:https://doi.org/10.1021/acsami.1c20267
    [65] WANG H T, DING D L, LIU Q, et al. Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets[J]. Composites Part B: Engineering,2019,158:311-318. doi: 10.1016/j.compositesb.2018.09.104
    [66] CAO L, WANG J J, DONG J, et al. Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres[J]. Composites Part B: Engineering,2020,188:107882. doi: 10.1016/j.compositesb.2020.107882
    [67] LIU B C, LI Y B, FEI T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method[J]. Chemical Engineering Journal,2020,385:123829. doi: 10.1016/j.cej.2019.123829
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  880
  • HTML全文浏览量:  207
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-05-17
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-12
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回