留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料结构超级电容器碳纤维电极的制备与改性方法研究进展

陈少杰 徐海兵 张雪辉 刘东 颜春 陈刚 吕东喜 祝颖丹

陈少杰, 徐海兵, 张雪辉, 等. 复合材料结构超级电容器碳纤维电极的制备与改性方法研究进展[J]. 复合材料学报, 2023, 40(11): 6010-6028. doi: 10.13801/j.cnki.fhclxb.20230601.001
引用本文: 陈少杰, 徐海兵, 张雪辉, 等. 复合材料结构超级电容器碳纤维电极的制备与改性方法研究进展[J]. 复合材料学报, 2023, 40(11): 6010-6028. doi: 10.13801/j.cnki.fhclxb.20230601.001
CHEN Shaojie, XU Haibing, ZHANG Xuehui, et al. Recent progress in carbon fiber electrodes for structural supercapacitors composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6010-6028. doi: 10.13801/j.cnki.fhclxb.20230601.001
Citation: CHEN Shaojie, XU Haibing, ZHANG Xuehui, et al. Recent progress in carbon fiber electrodes for structural supercapacitors composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6010-6028. doi: 10.13801/j.cnki.fhclxb.20230601.001

复合材料结构超级电容器碳纤维电极的制备与改性方法研究进展

doi: 10.13801/j.cnki.fhclxb.20230601.001
基金项目: 国家自然科学基金(U1909220);浙江省自然科学基金(LY21E030012);宁波市科技创新2025重大专项(2019B10112;2020Z057;2021Z126;2022Z102)
详细信息
    通讯作者:

    徐海兵,博士,副研究员,硕士生导师,研究方向为碳纤维复合材料 E-mail:xuhaibing@nimte.ac.cn;

    张雪辉,博士,副教授,硕士生导师,研究方向为铜基复合材料 E-mail:xhzhang@jxust.edu.cn

  • 中图分类号: TB332

Recent progress in carbon fiber electrodes for structural supercapacitors composites

Funds: National Natural Science Foundation of China (U1909220); Natural Science Foundation of Zhejiang Province (LY21E030012); Ningbo Key Projects of Science and Technology Innovation 2025 Plan (2019B10112; 2020Z057; 2021Z126; 2022Z102)
  • 摘要: 在能源危机与生态环境持续恶化的大背景下,开发先进储能技术成为各国竞相研究的重点。将碳纤维作为多功能结构电极与聚合物电解质复合,制备兼具储能与结构承载的复合材料结构超级电容器(Structural supercapacitor composites,SSC),有望满足现代装备对高效储能与轻量化结构的双重需求,在新能源汽车、航空航天等领域具有广泛应用前景。碳纤维电极是SSC的重要组件,承担着富集电荷与力学承载的双重任务,应具有高比表面积、优良的力学性能及树脂电解质浸润能力。然而常规碳纤维表面光滑,比表面积小,化学惰性大,不利于电荷的存储及树脂电解质的浸润,限制了高性能SSC的制备与应用,必须对其进行表面改性处理。本文介绍了SSC用碳纤维电极材料的研究现状,重点阐述了刻蚀活化改性、碳基活性材料修饰、纳米金属化合物活性材料修饰、聚苯胺修饰等改性方法,总结了不同碳纤维电极制备方法对SSC储能及力学性能的影响行为与机制,归纳了各自优缺点,并展望了SSC用碳纤维电极研制面临的挑战及发展趋势。

     

  • 图  1  超级电容器储能原理示意图及电极材料示意图:(a) 双电电容器;(b) 赝电容电容器[8]

    Figure  1.  Schematic illustration of supercapacitor energy storage principle and its electrode material: (a) Electric double layer capacitors; (b) Pseudocapacitor capacitors[8]

    图  2  电介质电容器、电池、燃料电池和超级电容器的Ragone图[9]

    Figure  2.  Ragone plots for representative energy storage devices of dielectric capacitors, batteries, fuel cells and supercapacitors[9]

    图  3  复合材料结构超级电容器及其储能原理示意图

    Figure  3.  Schematic illustration of structural supercapacitor composites and its principle of energy storage

    图  4  热空气活性碳纤维布的过程示意图[21]

    CFCs—Carbon fiber cloth

    Figure  4.  Schematic for the preparation process of activated carbon fiber cloths[21]

    图  5  SEM微观形貌:((a), (b))未活化的碳纤维;((c), (d)) KOH热刻蚀活化的碳纤维[22]

    Figure  5.  SEM images: ((a), (b)) As-received carbon fibre; ((c), (d)) KOH activated carbon fibre[22]

    图  6  SEM微观形貌:((a), (b))未改性的碳纤维;((c), (d)) HNO3化学-热氧活化协同处理的碳纤维[24]

    Figure  6.  SEM images: ((a), (b)) As-received carbon fibre; ((c), (d)) Activated carbon fibre by HNO3 and thermally oxidization[24]

    图  7  基于活性碳修饰碳纤维电极的复合材料结构超级电容器(SSC)制备工艺示意图[18]

    C—Conductive agent; AC—Activated carbon; WCF—Carbon fiber woven cloth; PTEE—Polytetrafluroethylene

    Figure  7.  Schematic for the preparation of structural supercapacitor composite (SSC) based on activated-carbon-coated carbon fiber electrodes[18]

    图  8  基于喷涂工艺制备石墨烯纳米片(GNP)修饰碳纤维布电极的示意图[27]

    Figure  8.  Schematics for the preparation of graphene nanoplatelet (GNP) modified carbon fiber woven cloth electrode based on spraying process[27]

    图  9  碳纤维电泳沉积(EPD)连续沉积石墨烯工艺的示意图[27]

    Figure  9.  Schematic for the fibre treatment line for continuous electrophoretic deposition (EPD) on carbon fibres[27]

    图  10  基于连续EPD技术得到的石墨烯纳米片修饰碳纤维的表面特征形貌:(a) 30 V条件下沉积1 min;(b) 40 V条件下沉积1 min[27]

    Figure  10.  Characteristic micrographs of graphene nanoplatelet coated carbon fibres produced using the continuous EPD process at the following conditions: (a) 30 V, 1 min; (b) 40 V, 1 min[27]

    图  11  SSC制备过程示意图:(a) CF → gCF : 等离子体强化气相沉积技术(rf-PECVD)在裸碳纤维布上生长石墨烯纳米片(GNFs);(b) gCF → UgCF:通过尿素活化石墨烯纳米片沉积过的碳纤维布;(c) CF–(2GFs:SPE)–CF叠放的多功能结构超级电容器(MSS)结构示意图;(d)树脂灌注法制备碳纤维增强聚合物(CFRP)复合材料 MSS 层压板[29]

    PEGDGE—Polyethylene glycol diglycidyl ether; IL—Ionic liquid; TETA—Triethylene-tetramine; GFs—Glass fabrics

    Figure  11.  Schematic illustration of steps used for the fabrication of structural supercapacitor: (a) CF → gCF : direct growth of graphene nanoflakes (GNFs) on bare carbon fiber (CF) fabrics by plasma enhanced vapor deposition technique (rf-PECVD); (b) gCF → UgCF : urea activation of GNFs-coated carbon fiber ( gCF ) fabrics ( UgCF ); (c) CF–(2GFs:SPE)–CF lay-up configuration of multifunctional structural supercapacitor (MSS); (d) Fabrication of carbon fiber reinforced polymer (CFRP) composite-based MSS laminates via the resin infusion method[29]

    图  12  SEM微观形貌:(a) 未改性的碳纤维电极;(b) 多壁碳纳米管(MWCNT)修饰的碳纤维电极[30]

    Figure  12.  SEM images: (a) As-received carbon fibre; (b) Carbon fibre modified by multi-walled carbon nanotubes (MWCNT)[30]

    图  13  不同MWCNT负载量与改性碳纤维比电容的关系(比电容通过测试扫速为1 mV/s、10 mV/s、100 mV/s的CV曲线计算得到)[14]

    Figure  13.  Specific capacitance of MWCNT-impregnated carbon fiber electrodes as increasing amounts of MWCNT measured with CV experiments at 1 mV/s, 10 mV/s and 100 mV/s[14]

    图  14  基于碳气凝胶修饰的碳纤维结构电极制备SSC示意[17]

    Figure  14.  Schematic for the prepration of SSC based on carbon aerogel modified carbon fiber structured electrode[17]

    图  15  SEM微观形貌:(a) 初始碳纤维;((b)~(d)) 碳气凝胶修饰的碳纤维[17]

    Figure  15.  SEM images: (a) As-received carbon fiber; ((b)-(d)) Carbon fiber modified by carbon aerogel[17]

    图  16  通过负载石墨烯气凝胶制备碳纤维结构电极的示意图[19]

    GA—Graphene aerogel; GO—Graphene oxide

    Figure  16.  Schematic for the preparation of carbon fiber structured electrode by loading graphene aerogel[19]

    图  17  不同水热反应时间下MnOOH的微结构形貌[33]

    Figure  17.  SEM images of MnOOH obtained under different hydrothermal reaction time[33]

    图  18  基于MnOOH-NWs@WCF电极制备SSC的示意图[33]

    NWs—Nanowires; WCF—Carbon fiber woven cloth; GFF—Glass fibre fabric

    Figure  18.  Schematic for the preparation of SSC based on MnOOH-NWs@WCF electrode[33]

    图  19  (a) ZnO纳米棒修饰WCF的表面微观形貌;((b)~(f)) 在0.18 mol/L KOH水溶液刻蚀2 h、4 h、5 h、5.5 h、6 h得到的ZnO纳米管修饰WCF的微观形貌[34]

    Figure  19.  (a) Surface micromorphology of ZnO nanorods/WCF; ((b)-(f)) Surface micromorphology of ZnO nanotubes/WCF obtained by etching in 0.18 mol/L KOH aqueous solution for different time (2 h, 4 h, 5 h, 5.5 h and 6 h)[34]

    图  20  VG/MnO2改性碳布电极制备过程及其相应的SSC组成示意图[12]

    PECVD—Plasma enhanced chemical vapor deposition; VG—Vertical graphene; ECD—Electrochemical deposition

    Figure  20.  Schematic for the preparation of VG/MnO2 modified carbon fiber electrode and the corresponding SSC[12]

    图  21  不同放大倍数下包覆碳层的Ni-Co氧化物纳米线(CCNC Nws)@WCF电极微结构形貌[40]

    Figure  21.  SEM images of carbon-coated Ni-Co core-shell nanowires (CCNC Nws)@WCF electrode under different magnification[40]

    图  22  微观形貌:(a) 原始碳纤维;(b) 活化碳纤维;(c) 碳布(CF)-PANI-0.05纤维;(d) 活化碳布(ACF)-APNI-0.05纤维[42]

    PANI—Polyaniline

    Figure  22.  Microstructure: (a) As-received carbon fiber; (b) Activated carbon fiber; (c) Carbon fibre(CF)-PANI-0.05 fiber; (d) Activated carbon fibre (ACF)-APNI-0.05 fiber[42]

    图  23  碳纤维电极改性方法及其结构超级电容器组装示意图

    Figure  23.  Schematic diagram of the modification method of carbon fiber electrode and assembly of its structural supercapacitor

    表  1  未改性碳纤维与活化改性碳纤维的比表面积与拉伸强度[22]

    Table  1.   Specific surface area and tensile strength of as-received and activated carbon fibre[22]

    SampleSpecific surface
    area/
    (m2·g-1)
    Tensile strength/
    MPa
    As-received 0.213300±200
    HNO3 activated 0.503100±260
    Air activated 0.601900±220
    CO2 activated 1.102400±250
    KOH activated23.303600±320
    下载: 导出CSV

    表  2  不同改性碳纤维电极的比表面积与比电容[17]

    Table  2.   Surface area and specific capacitance of carbon fiber electrodes by different modification[17]

    SampleCAG loading/wt%BET surface area/(m2·g−1)Specific capacitance/
    (F·g−1)
    As-received 0.21 0.06
    CAG-modified
    (press)
    22.0163.1014.30
    CAG-modified
    (infusion)
    15.9118.00 8.70
    CAG-modified
    (infusion)
    9.5 80.70 5.90
    Notes: CAG—Carbon aerogels; BET—Brunauer-Emmett-Teller.
    下载: 导出CSV

    表  3  不同改性碳纤维电极的性能对比

    Table  3.   Performance comparison of different modified carbon fiber electrodes

    电极材料电解质比电容力学性能文献
    ACFPC/PEGDGE/TBAPF63.1 F/g (SSC)器件压缩强度:28.81 MPa;
    器件压缩模量:35.08 MPa
    [24]
    WCF/AC15DGEBA/AG-85/EMIMTFSI13.12 F/g (SSC)器件拉伸强度:257.78 MPa;
    器件拉伸模量:23.20 MPa
    [18]
    GNP-WCFTEABF4/PC1.44 F/g (小尺寸SSC)器件拉伸强度:350 MPa;
    器件拉伸模量:26 GPa
    [27]
    623 mF/g (大尺寸SSC)
    CNT-CF1 mol/L KCl3.1 F/g (电极)[30]
    CD553/SR494/EMITSFI125 mF/g (SSC)
    ZnO-WCFLSP-8020 B/EMITSFI/LiTf/PANI18.8 F/g (SSC)器件拉伸强度:325.82 MPa;[34]
    Cu-CoSe NWs@WCFLPS-8020 B/EMIMBF4/LiTf28.63 F/g (SSC)器件拉伸强度:488.89 MPa;
    器件拉伸模量:32.65 GPa
    [10]
    CF/VG/MnO21 mol/L Na2SO4240 F/g (电极 )[12]
    PEGDGE/EMITSFI/LiTFSI)30.7 mF/cm2 (SSC)器件拉伸强度:85.6 MPa
    CF/PANILiClO4/DGEBA/PC20.05 mF/g (SSC)[42]
    Notes: PEGDGE—Poly(ethylene glycol) diglycidyl ether; TBAPF6—Tetra-n-butylammonium hexafluorophosphate; DGEBA—Digycidylether of bis-phenol-A; EMIMTFSI—1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; TEABF4—Tetraethylammonium tetrafluoroborate; LiTf—Lithium trifluoromethanesulfonate; EMIMBF4—1-ethyl-3-methylimidazolium tetrafluoroborate; LiTFSI—Lithium bis((trifluoromethyl)sulfonyl)azanide.
    下载: 导出CSV
  • [1] ZHOU Y, QI H L, YANG J Y, et al. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage[J]. Energy & Environmental Science,2021,14(4):1854-1896.
    [2] XU Y F, LU W B, XU G B, et al. Structural supercapacitor composites: A review[J]. Composites Science and Technology,2021,204:108636. doi: 10.1016/j.compscitech.2020.108636
    [3] 丁颖慧, 祁国成, 张博明. 结构储电碳纤维复合材料研究进展[J]. 复合材料学报, 2021, 38(1):16-24. doi: 10.13801/j.cnki.fhclxb.20200921.006

    DING Yinghui, QI Guocheng, ZHANG Boming. Recent progress in carbon fiber reinforced composites for electricity storage[J]. Acta Materiae Compositae Sinica,2021,38(1):16-24(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.006
    [4] DEKA B K, HAZARIKA A, KIM J, et al. Recent development and challenges of multifunctional structural supercapacitors for automotive industries[J]. International Journal of Energy Research,2017,41(10):1397-1411. doi: 10.1002/er.3707
    [5] CARLSTEDT D, ASP L E. Performance analysis framework for structural battery composites in electric vehicles[J]. Composites Part B: Engineering,2020,186(4):107822.
    [6] GREENHALGH E S, NGUYEN S, VALKOVA M, et al. A critical review of structural supercapacitors and outlook on future research challenges[J]. Composites Science and Technology,2023,235:109968. doi: 10.1016/j.compscitech.2023.109968
    [7] TYNAN B, ZHOU Y, BROWN S A, et al. Structural supercapacitor electrodes for energy storage by electroless deposition of MnO2 on carbon nanotube mats[J]. Compo-sites Science and Technology,2023,238:110016. doi: 10.1016/j.compscitech.2023.110016
    [8] DEKA B K, HAZARIKA A K, JISOO K, et al. Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors[J]. Chemical Engineering Journal, 2019, 355: 551-559.
    [9] ZHANG S L, PAN N. Supercapacitors performance evaluation[J]. Advanced Energy Materials,2015(6):1-19.
    [10] DEKA B K, HAZARIKA A, KIM J, et al. Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors[J]. Chemical Engineering Journal,2019,355:551-559. doi: 10.1016/j.cej.2018.08.172
    [11] PANDEY D, SAMBATH KUMAR K, HENDERSON L N, et al. Energized composites for electric vehicles: A dual function energy-storing supercapacitor-based carbon fiber compo-site for the body panels[J]. Small,2022,18(9):2107053. doi: 10.1002/smll.202107053
    [12] SHA Z, HUANG F, ZHOU Y, et al. Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors[J]. Composites Science and Technology,2021,201:108568. doi: 10.1016/j.compscitech.2020.108568
    [13] HUBERT O, TODOROVIC N, BISMARCK A. Towards separator-free structural composite supercapacitors[J]. Composites Science and Technology,2022,217:109126. doi: 10.1016/j.compscitech.2021.109126
    [14] HUDAK N S, SCHLICHTING A D, EISENBEISER K. Structural supercapacitors with enhanced performance using carbon nanotubes and polyaniline[J]. Journal of the Electrochemical Society,2017,164(4):A691-A700. doi: 10.1149/2.0721704jes
    [15] JAVAID A, HO K K C, BISMARCK A, et al. Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement[J]. Journal of Composite Materials,2018,52(22):3085-3097. doi: 10.1177/0021998318761216
    [16] SENOKOS E, ANTHONY D B, RUBIO N, et al. Robust single-walled carbon nanotube-infiltrated carbon fiber electrodes for structural supercapacitors: From reductive dissolution to high performance devices[J]. Advanced Functional Materials, 2023, 33(16): 2212697.
    [17] QIAN H, KUCERNAK A R, GREENHALGH E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces,2013,5(13):6113-6122.
    [18] DING Y H, QI G C, CUI Q, et al. High-performance multifunctional structural supercapacitors based on in situ and ex situ activated-carbon-coated carbon fiber electrodes[J]. Energy & Fuels,2022,36(4):2171-2178.
    [19] SUBHANI K, JIN X, MAHON P J, et al. Graphene aerogel modified carbon fiber reinforced composite structural supercapacitors[J]. Composites Communications,2021,24(11):100663.
    [20] GREENHALGH E S, ANKERSEN J, ASP L E, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of Composite Materials,2015,49(15):1823-1834. doi: 10.1177/0021998314554125
    [21] ZHENG Y, DENG T, ZHANG W, et al. Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance[J]. Journal of Energy Chemistry,2020,47:210-216. doi: 10.1016/j.jechem.2019.12.014
    [22] QIAN H, DIAO H L, SHIRSHOVA N, et al. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors[J]. Journal of Colloid and Interface Science,2013,395:241-248. doi: 10.1016/j.jcis.2012.12.015
    [23] SHIRSHOVA N, QIAN H, SHAFFER M S P, et al. Structural composite supercapacitors[J]. Composites Part A: Applied Science and Manufacturing,2013,46:96-107. doi: 10.1016/j.compositesa.2012.10.007
    [24] LI S M, ZHAO Y T, ZHANG Z, et al. Electrochemical and mechanical effects of acid and thermal treatments of carbon fiber[J]. Advanced Engineering Materials,2015,17(1):52-57. doi: 10.1002/adem.201400033
    [25] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review,2017,4(3):453-489. doi: 10.1093/nsr/nwx009
    [26] FENG X, BAI Y, LIU M Q, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science,2021,14(4):2036-2089.
    [27] SÁNCHEZ-ROMATE X F, DEL BOSQUE A, ARTIGAS-ARNAUDAS J, et al. A proof of concept of a structural supercapacitor made of graphene coated woven carbon fibers: EIS study and mechanical performance[J]. Electrochimica Acta,2021,370:137746. doi: 10.1016/j.electacta.2021.137746
    [28] WANG X W, YANG C, LI J, et al. Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion[J]. Advanced Functional Materials,2021,31(11):2009109. doi: 10.1002/adfm.202009109
    [29] GANGULY A, KARAKASSIDES A, BENSON J, et al. Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes[J]. ACS Applied Energy Materials,2020,3(5):4245-4254. doi: 10.1021/acsaem.9b02469
    [30] ARTIGAS-ARNAUDAS J, MUÑOZ B K, SÁNCHEZ M, et al. Surface modifications of carbon fiber electrodes for structural supercapacitors[J]. Applied Composite Materials, 2022, 29(2): 889-900.
    [31] JAVAID A, IRFAN M. Multifunctional structural supercapacitors based on graphene nanoplatelets/carbon aerogel composite coated carbon fiber electrodes[J]. Materials Research Express,2018,6(1):016310. doi: 10.1088/2053-1591/aae862
    [32] ASFAW H D, KUCERNAK A, GREENHALGH E S, et al. Electrochemical performance of supercapacitor electrodes based on carbon aerogel-reinforced spread tow carbon fiber fabrics[J]. Composites Science and Technology,2023,238:110042. doi: 10.1016/j.compscitech.2023.110042
    [33] ZHAO Y, XU H B, CAI G B, et al. Multi-functional structural supercapacitor based on manganese oxide-hydroxide nanowires modified carbon fiber fabric electrodes[J]. Polymer Composites,2022,43(11):8458-8470. doi: 10.1002/pc.27016
    [34] DEKA B K, HAZARIKA A, KWON O B, et al. Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes[J]. Chemical Engineering Journal,2017,325:672-680. doi: 10.1016/j.cej.2017.05.093
    [35] DEKA B K, HAZARIKA A, KIM J, et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid-polyester resin[J]. Composites Part A: Applied Science and Manufacturing,2016,87:256-262. doi: 10.1016/j.compositesa.2016.05.007
    [36] KWON O B, DEKA B K, KIM J, et al. Electrochemical performance evaluation of tin oxide nanorod-embedded woven carbon fiber composite supercapacitor[J]. International Journal of Energy Research,2018,42(2):490-498. doi: 10.1002/er.3827
    [37] ROH H D, DEKA B K, PARK H W, et al. Multifunctional composite as a structural supercapacitor and self-sensing sensor using NiCo2O4 nanowires and ionic liquid[J]. Composites Science and Technology,2021,213:108833. doi: 10.1016/j.compscitech.2021.108833
    [38] DEKA B K, HAZARIKA A, KWAK M J, et al. Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn-Cu selenide nanostructured woven carbon fiber for energy harvesting and storage[J]. Energy Storage Materials,2021,43:402-410. doi: 10.1016/j.ensm.2021.09.027
    [39] WANG X, CHEN S, LI D H, et al. Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):633-641.
    [40] BAE S H, JEON C, OH S, et al. Load-bearing supercapacitor based on bicontinuous PEO-b-P(S-co-DVB) structural electrolyte integrated with conductive nanowire-carbon fiber electrodes[J]. Carbon,2018,139:10-20. doi: 10.1016/j.carbon.2018.06.039
    [41] EFTEKHARI A, LI L, YANG Y. Polyaniline supercapacitors[J]. Journal of Power Sources,2017,347:86-107. doi: 10.1016/j.jpowsour.2017.02.054
    [42] JAVAID A, KHALID O, SHAKEEL A, et al. Multifunctional structural supercapacitors based on polyaniline deposited carbon fiber reinforced epoxy composites[J]. Journal of Energy Storage,2021,33:102168. doi: 10.1016/j.est.2020.102168
    [43] 刘超, 李世林, 高宏全, 等. 水蒸气二氧化碳共活化制备聚苯胺基活性碳在离子液体超级电容器中的应用[J]. 中国材料进展, 2021, 40(4):308-313. doi: 10.7502/j.issn.1674-3962..201909007

    LIU Chao, LI Shilin, GAO Hongquan, et al. Preparation and application of H2O(gas)-CO2 co-activated polyaniline-based carbon materials for ionic liquid supercapacitor[J]. Materials China,2021,40(4):308-313(in Chinese). doi: 10.7502/j.issn.1674-3962..201909007
    [44] LIU J, MA L Y, ZHAO Y, et al. Porous structural effect of carbon electrode formed through one-pot strategy on performance of ionic liquid-based supercapacitors[J]. Chemical Engineering Journal,2021,411:128573. doi: 10.1016/j.cej.2021.128573
    [45] PENG H R, YAO B, WEI X J, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials,2019,9(19):1803665. doi: 10.1002/aenm.201803665
    [46] ZHOU H M, DUONGTHIPTHEWA A, ZHANG J, et al. A composite structural supercapacitor based on Ni-Co-layered double hydroxide-coated carbon cloth electrodes[J]. Composites Science and Technology,2023,240:110068. doi: 10.1016/j.compscitech.2023.110068
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  304
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 修回日期:  2023-05-04
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-02
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回