Experimental study on bending properties of modified aggregate-steel fibre recycled concrete under low temperature
-
摘要: 为探究低温作用对改性骨料-钢纤维再生混凝土弯曲性能的影响,将再生骨料通过水泥净浆改性处理后,分别设置30wt%、60wt%再生骨料取代率,掺入适量钢纤维制成净浆改性再生混凝土(CRAC),以我国北方寒区温度为背景设置20℃、0℃、−20℃、−40℃、−60℃的温度梯度,将CRAC经低温作用进行抗压强度及四点弯曲性能试验,对其进行等效弯曲强度及弯曲韧性分析,同时结合SEM从微观结构角度揭示其宏观性能改变机制,在此基础上给出了低温作用下再生混凝土的纤维增强效应表达式。结果表明:经低温作用CRAC弯拉强度显著提升,较常温最大可提升约168%;随温度的进一步降低,受冰晶生长作用及改性骨料特性影响,再生骨料取代率为60wt%的CRAC耗能能力较30wt%表现更优;同时低温作用下钢纤维体积掺量为1.5vol%的CRAC强度及韧性性能提升效果最佳,研究结论为低温作用下再生混凝土的性能优化设计及推广应用提供参考。Abstract: In order to study the effect of low temperature on bending property of modified aggregate-steel fiber recycled aggregate concrete, the replacement rates of 30wt% and 60wt% recycled aggregate were set, mixed with appropriate amount of steel fiber to make cement recycled aggregate concrete (CRAC), temperature gradients of 20℃, 0℃, −20℃, −40℃ and −60℃ were set in the cold area of northern China. CRAC was subjected to compressive strength and four-point bending performance tests by low-temperature action, and its equivalent bending strength and bending toughness were analysed, together with SEM to reveal its macroscopic performance change mechanism from the microstructure perspective, on the basis of which an expression for the fibre reinforcement effect of recycled concrete under low-temperature was proposed. The test results show that after low temperature treatment, the flexural strength of CRAC is significantly increased by 168%, respectively. With the further decrease of temperature, the bending property of 60wt% CRAC is better than that of 30wt% CRAC. At the same time, CRAC with 1.5vol% steel fibres has the best strength and toughness properties at low temperatures. The conclusion of the study is expected to provide reference for the performance design and application of recycled concrete in low temperature environment.
-
Key words:
- modified aggregate /
- recycled aggregate concrete /
- low temperature /
- bending property /
- fiber content /
- micro structure
-
表 1 钢纤维物理性能
Table 1. Physical parameters of steel fiber
Density/(g·cm−3) Diameter/mm Length/mm Tensile strength/MPa Modulus of elasticity/GPa 7.8 0.2 13 2900 200 表 2 不同骨料物理指标
Table 2. Physical indicators of different aggregates
Aggregate type Aggregate
size/mmApparent
density/(kg·m−3)Crush
index/%Water
absorption/%Moisture
content/%NA
RA
CRA5-20 2750
2652
26389.60
18.40
15.300.83
6.20
7.101.20
2.30
3.70Note: NA—Natural aggregate. 表 3 试件编号及配合比
Table 3. Number and mix proportion of specimens
Number NA/
(kg·m−3)CRA/
(kg·m−3)Steel fibre/
vol%Additional
water/(kg·m−3)Compressive strength/MPa 20℃ 0℃ −20℃ −40℃ −60℃ 0vol%SF/CRAC(30wt%CRA) 824.60 353.40 0 13.17 41.62 44.44 48.94 56.71 62.76 0.5vol%SF/CRAC(30wt%CRA) 824.60 353.40 0.50 13.17 47.02 47.56 50.97 60.21 75.56 1.0vol%SF/CRAC(30wt%CRA) 824.60 353.40 1.00 13.17 48.30 55.54 64.11 71.19 86.83 1.5vol%SF/CRAC(30wt%CRA) 824.60 353.40 1.50 13.17 49.36 56.20 56.13 67.18 85.07 0vol%SF/CRAC(60wt%CRA) 471.20 706.80 0 26.34 39.74 52.52 61.76 69.08 81.64 0.5vol%SF/CRAC(60wt%CRA) 471.20 706.80 0.50 26.34 41.68 47.65 48.08 54.22 81.78 1.0vol%SF/CRAC(60wt%CRA) 471.20 706.80 1.00 26.34 43.54 52.55 47.56 72.29 80.62 1.5vol%SF/CRAC(60wt%CRA) 471.20 706.80 1.50 26.34 46.78 58.33 57.46 68.21 83.92 Note: CRAC—Cement recycled aggregate concrete; SF—Steel fibre. 表 4 CRAC试件平均弯拉强度试验值
Table 4. Test values of average flexural tensile strength of each group CRAC specimens
Number Test values of average flexural tensile strength/MPa 20℃ 0℃ −20℃ −40℃ −60℃ 0vol%SF/CRAC(30wt%CRA) 4.88 5.12 5.62 8.21 10.12 0.5vol%SF/CRAC(30wt%CRA) 4.77 5.24 5.03 11.39 12.00 1.0vol%SF/CRAC(30wt%CRA) 4.81 6.26 5.34 7.54 11.12 1.5vol%SF/CRAC(30wt%CRA) 5.22 5.89 6.02 9.54 10.44 0vol%SF/CRAC(60wt%CRA) 3.47 4.20 3.97 8.25 9.30 0.5vol%SF/CRAC(60wt%CRA) 3.91 4.27 4.35 8.44 9.35 1.0vol%SF/CRAC(60wt%CRA) 5.01 4.95 4.65 8.71 10.54 1.5vol%SF/CRAC(60wt%CRA) 5.17 4.95 5.96 8.95 9.93 表 5 CRAC强度及韧性指标
Table 5. Strength and toughness index of CRAC
Number Temperature/℃ Initial crack
load/kNInitial crack
deflection/mmPeak load/kN Equivalent bending
strength/MPaI5 I10 0vol%SF/CRAC(30wt%CRA) 20 9.21 0.47 16.27 — — — 0 9.73 0.46 17.08 — — — −20 10.25 0.44 18.74 — — — −40 15.66 0.48 27.36 — — — −60 17.66 0.56 33.72 — — — 0.5vol%SF/CRAC(30wt%CRA) 20 10.69 0.39 15.91 2.55 5.68 10.05 0 9.77 0.38 17.45 2.05 5.38 8.59 −20 10.19 0.36 16.76 1.76 4.62 6.99 −40 15.79 0.52 39.95 3.90 6.09 8.48 −60 16.34 0.55 37.96 4.31 6.51 9.31 1.0vol%SF/CRAC(30wt%CRA) 20 13.97 0.44 16.01 3.50 6.01 11.94 0 12.80 0.41 20.86 2.89 5.61 9.06 −20 10.96 0.39 17.80 2.28 5.27 8.38 −40 17.54 0.62 25.14 4.55 6.15 10.06 −60 20.93 0.60 37.14 5.38 6.52 10.32 1.5vol%SF/CRAC(30wt%CRA) 20 15.05 0.49 17.40 4.05 6.58 12.26 0 13.64 0.47 19.62 3.54 6.17 10.62 −20 13.63 0.49 20.08 3.27 5.74 9.74 −40 17.10 0.59 31.81 4.53 6.29 10.29 −60 20.18 0.56 34.78 5.48 6.75 10.04 0vol%SF/CRAC(60wt%CRA) 20 8.80 0.32 10.94 — — — 0 9.34 0.37 14.00 — — — −20 9.19 0.42 13.24 — — — −40 15.69 0.58 27.51 — — — −60 17.15 0.58 30.99 — — — 0.5vol%SF/CRAC(60wt%CRA) 20 10.17 0.41 13.03 2.69 5.77 10.94 0 8.95 0.34 14.23 1.53 4.76 7.18 −20 9.08 0.35 14.10 1.67 5.06 7.69 −40 16.22 0.52 31.17 3.57 5.51 8.15 −60 15.08 0.66 28.12 3.65 5.89 8.44 1.0vol%SF/CRAC(60wt%CRA) 20 13.40 0.47 17.91 3.32 5.94 11.15 0 11.21 0.40 16.51 2.59 5.58 9.22 −20 11.02 0.39 15.51 2.72 5.70 9.37 −40 17.99 0.56 29.02 4.71 6.43 9.58 −60 24.53 0.63 35.13 5.78 7.00 10.62 1.5vol%SF/CRAC(60wt%CRA) 20 14.98 0.49 15.75 4.06 6.32 11.62 0 12.03 0.43 16.48 2.85 5.70 9.54 −20 15.10 0.42 19.87 3.73 6.24 10.28 −40 19.26 0.53 29.84 5.14 6.55 10.77 −60 23.29 0.64 33.11 6.01 7.08 10.31 Notes: As the 0vol% fibre doping CRAC exhibits brittle fracture, it is not possible to calculate its equivalent flexural strength and toughness index (I5, I10). 表 6 不同温度下CRAC纤维增强效应系数
Table 6. Fiber reinforcement effect coefficients of CRAC at different temperatures
Number Fiber reinforcement effect coefficients 20℃ 0℃ −20℃ −40℃ −60℃ 0.5vol%SF/CRAC(30wt%CRA) 5.63 4.09 3.39 3.15 2.78 1.0vol%SF/CRAC(30wt%CRA) 8.93 5.88 4.82 5.18 4.02 1.5vol%SF/CRAC(30wt%CRA) 9.00 7.92 6.52 5.34 3.67 0.5vol%SF/CRAC(60wt%CRA) 13.59 7.15 4.62 3.32 2.83 1.0vol%SF/CRAC(60wt%CRA) 18.05 10.52 8.06 4.25 5.25 1.5vol%SF/CRAC(60wt%CRA) 20.38 13.75 11.29 5.29 4.87 -
[1] 肖建庄, 张航华, 唐宇翔, 等. 废弃混凝土再生原理与再生混凝土基本问题[J]. 科学通报, 2023, 68(5): 510-523.XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. Chinese Science Bulletin, 2023, 68(5): 510-523. [2] ALEXANDRIDOU C, ANGELOPOULOS G N, COUTELIERIS F A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants[J]. Journal of Cleaner Production,2018,176:745-757. doi: 10.1016/j.jclepro.2017.12.081 [3] SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites,2018,86:130-138. doi: 10.1016/j.cemconcomp.2017.10.013 [4] KIM M S, SIM S R, RYU D W. Supercritical CO2 curing of resource-recycling secondary cement products containing concrete sludge waste as main materials[J]. Materials,2022,15:4581. doi: 10.3390/ma15134581 [5] 肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008: 4.XIAO Jianzhuang. Recycled concrete[M]. Beijing: China Architecture and Building Press, 2008: 4. [6] TAM V W Y, GAO X F, TAM C M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research,2005,35(6):1195-1203. doi: 10.1016/j.cemconres.2004.10.025 [7] KOU S C, POON C S. Properties of concrete prepared with PVA impregnated recycled concrete aggregates[J]. Cement and Concrete Composites,2010,32(8):649-654. doi: 10.1016/j.cemconcomp.2010.05.003 [8] BERNAL J, REYES E, MASSANA J, et al. Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures[J]. Construction and Building Materials,2018,160:196-210. doi: 10.1016/j.conbuildmat.2017.11.048 [9] ULSEN C, TSENG E, ANGULO S C, et al. Concrete aggre-gates properties crushed by jaw and impact secondary crushing[J]. Journal of Materials Research and Technology,2019,8:494-502. doi: 10.1016/j.jmrt.2018.04.008 [10] KATZ A. Treatments for the improvement of recycled aggregate[J]. Journal of Materials in Civil Engineering,2004,16(6):597-603. doi: 10.1061/(ASCE)0899-1561(2004)16:6(597) [11] SENARTNE S, GERACE D, MIRZA O, et al. The costs and benefits of combining recycled aggregate with steel fibers as a sustainable, structural material[J]. Journal of Cleaner Production,2016,112:2318-2327. doi: 10.1016/j.jclepro.2015.10.041 [12] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering,2017,130:28-37. doi: 10.1016/j.compositesb.2017.07.058 [13] 曹鑫铖, 金宝宏, 宋牧原, 等. 自密实包浆再生混凝土早期塑性开裂试验研究[J]. 长江科学院院报, 2021, 38(4):144-149, 154.CAO Xincheng, JIN Baohong, SONG Muyuan, et al. Experimental study on early plastic cracking of self-compacting recycled concrete with aggregates coated with cement slurry[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):144-149, 154(in Chinese). [14] 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3):1205-1214.WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica,2022,39(3):1205-1214(in Chinese). [15] KIM J S, SHIN Y S, PARK Y B. A study on the structural characteristic of recycled aggregate concrete reinforced steel fiber[J]. Journal of the Korea Institute of Building Construction,2008,8(5):35-42. doi: 10.5345/JKIC.2008.8.5.035 [16] 朱海堂, 王宝庭, 楼志辉, 等. 钢纤维再生混凝土断裂韧度试验研究[C]//第十二届全国纤维混凝土学术会议论文集. 北京: 《新型建筑材料》, 2008: 68-72.ZHU Haitang, WANG Baoting, LOU Zhihui, et al. Experimental research on fracture toughness of steel fiber recycled concrete[C]//The 12th National Fiber Concrete Academic Conference. Beijing: New Building Materials , 2008: 68-72(in Chinese). [17] 牛海成, 高锦龙, 李博涵, 等. PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响[J]. 复合材料学报, 2022, 39(11):5499-5511.NIU Haicheng, GAO Jinlong, LI Bohan, et al. Effect of PVA-steel fiber on the flexural performance of high-strength recycled aggregate concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(11):5499-5511(in Chinese). [18] 刘亦斌, 曹万林, 张建伟, 等. 国家速滑馆看台L形再生混凝土梁板工作性能试验[J]. 自然灾害学报, 2022, 31(1):108-116.LIU Yibin, CAO Wanlin, ZHANG Jianwei, et al. Experimental study on working performance of L-shaped recycled aggregate concrete beam-slabs in the stands of National Speed Skating Hall[J]. Journal of Natural Disasters,2022,31(1):108-116(in Chinese). [19] KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47:760-770. doi: 10.1016/j.conbuildmat.2013.04.025 [20] 李文贵, 肖建庄, 黄靓, 等. 再生混凝土界面过渡区纳观力学性能试验研究[J]. 湖南大学学报(自然科学版), 2014, 41(12):31-39.LI Wengui, XIAO Jianzhuang, HUANG Liang, et al. Experimental study on mechanical properties of interfacial transition zones in recycled aggregate concrete[J]. Jour-nal of Hunan University (Natural Sciences),2014,41(12):31-39(in Chinese). [21] 中国工程建设协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2010.China Association for Engineering Construction Standardization. Fiber reinforced concrete test method standard: CECS 13—2009[S]. Beijing: Planning Press of China, 2010(in Chinese). [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [23] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97.SHI Zhanchong, SU Qingtian, SHAO Changyu, et al. Basic mechanical behavior and flexural toughness evaluation method of coarse aggregate UHPC[J]. China Civil Engi-neering Journal,2020,53(12):86-97(in Chinese). [24] 孔祥清, 高化东, 刚建明, 等. 钢-聚丙烯混杂纤维再生混凝土弯曲韧性研究[J]. 硅酸盐通报, 2018, 37(9):2729-2736.KONG Xiangqing, GAO Huadong, GANG Jianming, et al. Study on flexural toughness of steel-polypropylene hybrid fiber recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(9):2729-2736(in Chinese). [25] 肖建庄, 杨洁. 玻璃纤维增强塑料约束再生混凝土轴压试验[J]. 同济大学学报(自然科学版), 2009, 37(12):1586-1591.XIAO Jianzhuang, YANG Jie. On recycled concrete confined by GFRP tube under axial compression[J]. Journal of Tongji University (Natural Sciences),2009,37(12):1586-1591(in Chinese). [26] WANG K, MONTEIRO P J, RUBINSKY B, et al. Microscopic study of ice propagation in concrete[J]. ACI Materials Journal,1996,93(4):370-377. [27] CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,1278:389-393. [28] JIANG Z W, HE B, ZHU X P, et al. State-of-the-art review on properties evolution and deterioration mechanism of concrete at cryogenic temperature[J]. Construction and Building Materials,2020,257:119456. doi: 10.1016/j.conbuildmat.2020.119456 [29] KIM M J, KIM S, LEE S K, et al. Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures[J]. Construction and Building Materials,2017,157:498-508. doi: 10.1016/j.conbuildmat.2017.09.099 [30] JIANG Z W, DENG Z L, ZHU X P, et al. Increased strength and related mechanisms for mortars at cryogenic temperatures[J]. Cryogenics,2018,94:5-13. doi: 10.1016/j.cryogenics.2018.06.005 [31] 罗素蓉, 郑欣, 黄海生. 再生粗骨料预处理及再生混凝土徐变试验研究[J]. 建筑材料学报, 2016, 19(2):242-247.LUO Surong, ZHENG Xin, HUANG Haisheng. Experimental study on pretreatment of recycled coarse aggregate and creep behavior of recycled aggregate concrete[J]. Journal of Builuing Materials,2016,19(2):242-247(in Chinese).