留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温作用下改性骨料-钢纤维再生混凝土弯曲性能试验

苏骏 黄福 王淞波 许子扬 杨海鑫 李扬

苏骏, 黄福, 王淞波, 等. 低温作用下改性骨料-钢纤维再生混凝土弯曲性能试验[J]. 复合材料学报, 2024, 41(2): 884-897. doi: 10.13801/j.cnki.fhclxb.20230531.002
引用本文: 苏骏, 黄福, 王淞波, 等. 低温作用下改性骨料-钢纤维再生混凝土弯曲性能试验[J]. 复合材料学报, 2024, 41(2): 884-897. doi: 10.13801/j.cnki.fhclxb.20230531.002
SU Jun, HUANG Fu, WANG Songbo, et al. Experimental study on bending properties of modified aggregate-steel fibre recycled concrete under low temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 884-897. doi: 10.13801/j.cnki.fhclxb.20230531.002
Citation: SU Jun, HUANG Fu, WANG Songbo, et al. Experimental study on bending properties of modified aggregate-steel fibre recycled concrete under low temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 884-897. doi: 10.13801/j.cnki.fhclxb.20230531.002

低温作用下改性骨料-钢纤维再生混凝土弯曲性能试验

doi: 10.13801/j.cnki.fhclxb.20230531.002
基金项目: 国家自然科学基金(51508171);湖北省自然科学基金项目(2020CFB860)
详细信息
    通讯作者:

    黄福,硕士生,研究方向为纤维再生混凝土 E-mail: 1248089087@qq.com

  • 中图分类号: TB332

Experimental study on bending properties of modified aggregate-steel fibre recycled concrete under low temperature

Funds: National Natural Science Foundation of China (51508171); Natural Science Foundation of Hubei Province (2020CFB860)
  • 摘要: 为探究低温作用对改性骨料-钢纤维再生混凝土弯曲性能的影响,将再生骨料通过水泥净浆改性处理后,分别设置30wt%、60wt%再生骨料取代率,掺入适量钢纤维制成净浆改性再生混凝土(CRAC),以我国北方寒区温度为背景设置20℃、0℃、−20℃、−40℃、−60℃的温度梯度,将CRAC经低温作用进行抗压强度及四点弯曲性能试验,对其进行等效弯曲强度及弯曲韧性分析,同时结合SEM从微观结构角度揭示其宏观性能改变机制,在此基础上给出了低温作用下再生混凝土的纤维增强效应表达式。结果表明:经低温作用CRAC弯拉强度显著提升,较常温最大可提升约168%;随温度的进一步降低,受冰晶生长作用及改性骨料特性影响,再生骨料取代率为60wt%的CRAC耗能能力较30wt%表现更优;同时低温作用下钢纤维体积掺量为1.5vol%的CRAC强度及韧性性能提升效果最佳,研究结论为低温作用下再生混凝土的性能优化设计及推广应用提供参考。

     

  • 图  1  水泥净浆改性再生骨料(CRA)制作流程及其形态

    RA—Recycled aggregate

    Figure  1.  Production process and morphology of cement recycled aggregate (CRA)

    图  2  降温及温度传感设备

    Figure  2.  Cryogenic equipment and temperature sensor

    图  3  加载示意图

    Figure  3.  Loading diagram

    图  4  韧性指标计算简图

    δ—Incipient deflection

    Figure  4.  Calculation diagram of toughness index

    图  5  不同温度下水泥净浆改性再生混凝土(CRAC)受弯荷载-挠度曲线

    Figure  5.  Bending load-deflection curves of cement recycledaggregate concrete (CRAC) at different temperatures

    图  6  1.5vol%SF/CRAC(60wt%CRA)试件破坏形态

    Figure  6.  1.5vol%SF/CRAC(60wt%CRA) specimen damage pattern

    图  7  温度对CRAC等效弯曲强度的影响

    Figure  7.  Effect of temperature on equivalent bending strength of CRAC

    图  8  低温作用下孔隙水冰晶生长演化过程

    Figure  8.  Evolution of pore water ice crystal growth under the effect of low temperature

    图  9  不同影响因素下CRAC弯曲韧性指数

    Figure  9.  Bending toughness index of CRAC under different influence factors

    图  10  不同温度下钢纤维损伤机制

    Figure  10.  Steel fiber damage mechanisms at different temperatures

    图  11  不同温度下CRAC破坏机制

    Figure  11.  CRAC destruction mechanisms at different temperatures

    图  12  CRAC纤维增强效应与温度的关系

    Figure  12.  Relationship between fiber reinforcement effect of CRAC and temperature

    图  13  CRAC微观结构

    ITZ—Interface transition zone; Aft—Ettringite; C-H—Calcium hydroxide; C-S-H—Calcium silicate hydrates

    Figure  13.  Microstructure of CRAC

    图  14  低温作用对CRAC微观结构影响

    Figure  14.  Effect of low temperature action on the microstructure of CRAC

    表  1  钢纤维物理性能

    Table  1.   Physical parameters of steel fiber

    Density/(g·cm−3)Diameter/mmLength/mmTensile strength/MPaModulus of elasticity/GPa
    7.80.2132900200
    下载: 导出CSV

    表  2  不同骨料物理指标

    Table  2.   Physical indicators of different aggregates

    Aggregate typeAggregate
    size/mm
    Apparent
    density/(kg·m−3)
    Crush
    index/%
    Water
    absorption/%
    Moisture
    content/%
    NA
    RA
    CRA
    5-202750
    2652
    2638
    9.60
    18.40
    15.30
    0.83
    6.20
    7.10
    1.20
    2.30
    3.70
    Note: NA—Natural aggregate.
    下载: 导出CSV

    表  3  试件编号及配合比

    Table  3.   Number and mix proportion of specimens

    NumberNA/
    (kg·m−3)
    CRA/
    (kg·m−3)
    Steel fibre/
    vol%
    Additional
    water/(kg·m−3)
    Compressive strength/MPa
    20℃0℃−20℃−40℃−60℃
    0vol%SF/CRAC(30wt%CRA)824.60353.40013.1741.6244.4448.9456.7162.76
    0.5vol%SF/CRAC(30wt%CRA)824.60353.400.5013.1747.0247.5650.9760.2175.56
    1.0vol%SF/CRAC(30wt%CRA)824.60353.401.0013.1748.3055.5464.1171.1986.83
    1.5vol%SF/CRAC(30wt%CRA)824.60353.401.5013.1749.3656.2056.1367.1885.07
    0vol%SF/CRAC(60wt%CRA)471.20706.80026.3439.7452.5261.7669.0881.64
    0.5vol%SF/CRAC(60wt%CRA)471.20706.800.5026.3441.6847.6548.0854.2281.78
    1.0vol%SF/CRAC(60wt%CRA)471.20706.801.0026.3443.5452.5547.5672.2980.62
    1.5vol%SF/CRAC(60wt%CRA)471.20706.801.5026.3446.7858.3357.4668.2183.92
    Note: CRAC—Cement recycled aggregate concrete; SF—Steel fibre.
    下载: 导出CSV

    表  4  CRAC试件平均弯拉强度试验值

    Table  4.   Test values of average flexural tensile strength of each group CRAC specimens

    NumberTest values of average flexural tensile strength/MPa
    20℃0℃−20℃−40℃−60℃
    0vol%SF/CRAC(30wt%CRA) 4.88 5.12 5.62 8.21 10.12
    0.5vol%SF/CRAC(30wt%CRA) 4.77 5.24 5.03 11.39 12.00
    1.0vol%SF/CRAC(30wt%CRA) 4.81 6.26 5.34 7.54 11.12
    1.5vol%SF/CRAC(30wt%CRA) 5.22 5.89 6.02 9.54 10.44
    0vol%SF/CRAC(60wt%CRA) 3.47 4.20 3.97 8.25 9.30
    0.5vol%SF/CRAC(60wt%CRA) 3.91 4.27 4.35 8.44 9.35
    1.0vol%SF/CRAC(60wt%CRA) 5.01 4.95 4.65 8.71 10.54
    1.5vol%SF/CRAC(60wt%CRA) 5.17 4.95 5.96 8.95 9.93
    下载: 导出CSV

    表  5  CRAC强度及韧性指标

    Table  5.   Strength and toughness index of CRAC

    NumberTemperature/℃Initial crack
    load/kN
    Initial crack
    deflection/mm
    Peak load/kNEquivalent bending
    strength/MPa
    I5I10
    0vol%SF/CRAC(30wt%CRA) 20 9.21 0.47 16.27
    0 9.73 0.46 17.08
    −20 10.25 0.44 18.74
    −40 15.66 0.48 27.36
    −60 17.66 0.56 33.72
    0.5vol%SF/CRAC(30wt%CRA) 20 10.69 0.39 15.91 2.55 5.68 10.05
    0 9.77 0.38 17.45 2.05 5.38 8.59
    −20 10.19 0.36 16.76 1.76 4.62 6.99
    −40 15.79 0.52 39.95 3.90 6.09 8.48
    −60 16.34 0.55 37.96 4.31 6.51 9.31
    1.0vol%SF/CRAC(30wt%CRA) 20 13.97 0.44 16.01 3.50 6.01 11.94
    0 12.80 0.41 20.86 2.89 5.61 9.06
    −20 10.96 0.39 17.80 2.28 5.27 8.38
    −40 17.54 0.62 25.14 4.55 6.15 10.06
    −60 20.93 0.60 37.14 5.38 6.52 10.32
    1.5vol%SF/CRAC(30wt%CRA) 20 15.05 0.49 17.40 4.05 6.58 12.26
    0 13.64 0.47 19.62 3.54 6.17 10.62
    −20 13.63 0.49 20.08 3.27 5.74 9.74
    −40 17.10 0.59 31.81 4.53 6.29 10.29
    −60 20.18 0.56 34.78 5.48 6.75 10.04
    0vol%SF/CRAC(60wt%CRA) 20 8.80 0.32 10.94
    0 9.34 0.37 14.00
    −20 9.19 0.42 13.24
    −40 15.69 0.58 27.51
    −60 17.15 0.58 30.99
    0.5vol%SF/CRAC(60wt%CRA) 20 10.17 0.41 13.03 2.69 5.77 10.94
    0 8.95 0.34 14.23 1.53 4.76 7.18
    −20 9.08 0.35 14.10 1.67 5.06 7.69
    −40 16.22 0.52 31.17 3.57 5.51 8.15
    −60 15.08 0.66 28.12 3.65 5.89 8.44
    1.0vol%SF/CRAC(60wt%CRA) 20 13.40 0.47 17.91 3.32 5.94 11.15
    0 11.21 0.40 16.51 2.59 5.58 9.22
    −20 11.02 0.39 15.51 2.72 5.70 9.37
    −40 17.99 0.56 29.02 4.71 6.43 9.58
    −60 24.53 0.63 35.13 5.78 7.00 10.62
    1.5vol%SF/CRAC(60wt%CRA) 20 14.98 0.49 15.75 4.06 6.32 11.62
    0 12.03 0.43 16.48 2.85 5.70 9.54
    −20 15.10 0.42 19.87 3.73 6.24 10.28
    −40 19.26 0.53 29.84 5.14 6.55 10.77
    −60 23.29 0.64 33.11 6.01 7.08 10.31
    Notes: As the 0vol% fibre doping CRAC exhibits brittle fracture, it is not possible to calculate its equivalent flexural strength and toughness index (I5, I10).
    下载: 导出CSV

    表  6  不同温度下CRAC纤维增强效应系数

    Table  6.   Fiber reinforcement effect coefficients of CRAC at different temperatures

    NumberFiber reinforcement effect coefficients
    20℃0℃−20℃−40℃−60℃
    0.5vol%SF/CRAC(30wt%CRA) 5.63 4.09 3.39 3.15 2.78
    1.0vol%SF/CRAC(30wt%CRA) 8.93 5.88 4.82 5.18 4.02
    1.5vol%SF/CRAC(30wt%CRA) 9.00 7.92 6.52 5.34 3.67
    0.5vol%SF/CRAC(60wt%CRA) 13.59 7.15 4.62 3.32 2.83
    1.0vol%SF/CRAC(60wt%CRA) 18.05 10.52 8.06 4.25 5.25
    1.5vol%SF/CRAC(60wt%CRA) 20.38 13.75 11.29 5.29 4.87
    下载: 导出CSV
  • [1] 肖建庄, 张航华, 唐宇翔, 等. 废弃混凝土再生原理与再生混凝土基本问题[J]. 科学通报, 2023, 68(5): 510-523.

    XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. Chinese Science Bulletin, 2023, 68(5): 510-523.
    [2] ALEXANDRIDOU C, ANGELOPOULOS G N, COUTELIERIS F A. Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants[J]. Journal of Cleaner Production,2018,176:745-757. doi: 10.1016/j.jclepro.2017.12.081
    [3] SHI C J, WU Z M, CAO Z J, et al. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry[J]. Cement and Concrete Composites,2018,86:130-138. doi: 10.1016/j.cemconcomp.2017.10.013
    [4] KIM M S, SIM S R, RYU D W. Supercritical CO2 curing of resource-recycling secondary cement products containing concrete sludge waste as main materials[J]. Materials,2022,15:4581. doi: 10.3390/ma15134581
    [5] 肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008: 4.

    XIAO Jianzhuang. Recycled concrete[M]. Beijing: China Architecture and Building Press, 2008: 4.
    [6] TAM V W Y, GAO X F, TAM C M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research,2005,35(6):1195-1203. doi: 10.1016/j.cemconres.2004.10.025
    [7] KOU S C, POON C S. Properties of concrete prepared with PVA impregnated recycled concrete aggregates[J]. Cement and Concrete Composites,2010,32(8):649-654. doi: 10.1016/j.cemconcomp.2010.05.003
    [8] BERNAL J, REYES E, MASSANA J, et al. Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures[J]. Construction and Building Materials,2018,160:196-210. doi: 10.1016/j.conbuildmat.2017.11.048
    [9] ULSEN C, TSENG E, ANGULO S C, et al. Concrete aggre-gates properties crushed by jaw and impact secondary crushing[J]. Journal of Materials Research and Technology,2019,8:494-502. doi: 10.1016/j.jmrt.2018.04.008
    [10] KATZ A. Treatments for the improvement of recycled aggregate[J]. Journal of Materials in Civil Engineering,2004,16(6):597-603. doi: 10.1061/(ASCE)0899-1561(2004)16:6(597)
    [11] SENARTNE S, GERACE D, MIRZA O, et al. The costs and benefits of combining recycled aggregate with steel fibers as a sustainable, structural material[J]. Journal of Cleaner Production,2016,112:2318-2327. doi: 10.1016/j.jclepro.2015.10.041
    [12] WANG L, ZHOU S H, SHI Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering,2017,130:28-37. doi: 10.1016/j.compositesb.2017.07.058
    [13] 曹鑫铖, 金宝宏, 宋牧原, 等. 自密实包浆再生混凝土早期塑性开裂试验研究[J]. 长江科学院院报, 2021, 38(4):144-149, 154.

    CAO Xincheng, JIN Baohong, SONG Muyuan, et al. Experimental study on early plastic cracking of self-compacting recycled concrete with aggregates coated with cement slurry[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):144-149, 154(in Chinese).
    [14] 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(3):1205-1214.

    WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechanical properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica,2022,39(3):1205-1214(in Chinese).
    [15] KIM J S, SHIN Y S, PARK Y B. A study on the structural characteristic of recycled aggregate concrete reinforced steel fiber[J]. Journal of the Korea Institute of Building Construction,2008,8(5):35-42. doi: 10.5345/JKIC.2008.8.5.035
    [16] 朱海堂, 王宝庭, 楼志辉, 等. 钢纤维再生混凝土断裂韧度试验研究[C]//第十二届全国纤维混凝土学术会议论文集. 北京: 《新型建筑材料》, 2008: 68-72.

    ZHU Haitang, WANG Baoting, LOU Zhihui, et al. Experimental research on fracture toughness of steel fiber recycled concrete[C]//The 12th National Fiber Concrete Academic Conference. Beijing: New Building Materials , 2008: 68-72(in Chinese).
    [17] 牛海成, 高锦龙, 李博涵, 等. PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响[J]. 复合材料学报, 2022, 39(11):5499-5511.

    NIU Haicheng, GAO Jinlong, LI Bohan, et al. Effect of PVA-steel fiber on the flexural performance of high-strength recycled aggregate concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(11):5499-5511(in Chinese).
    [18] 刘亦斌, 曹万林, 张建伟, 等. 国家速滑馆看台L形再生混凝土梁板工作性能试验[J]. 自然灾害学报, 2022, 31(1):108-116.

    LIU Yibin, CAO Wanlin, ZHANG Jianwei, et al. Experimental study on working performance of L-shaped recycled aggregate concrete beam-slabs in the stands of National Speed Skating Hall[J]. Journal of Natural Disasters,2022,31(1):108-116(in Chinese).
    [19] KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47:760-770. doi: 10.1016/j.conbuildmat.2013.04.025
    [20] 李文贵, 肖建庄, 黄靓, 等. 再生混凝土界面过渡区纳观力学性能试验研究[J]. 湖南大学学报(自然科学版), 2014, 41(12):31-39.

    LI Wengui, XIAO Jianzhuang, HUANG Liang, et al. Experimental study on mechanical properties of interfacial transition zones in recycled aggregate concrete[J]. Jour-nal of Hunan University (Natural Sciences),2014,41(12):31-39(in Chinese).
    [21] 中国工程建设协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2010.

    China Association for Engineering Construction Standardization. Fiber reinforced concrete test method standard: CECS 13—2009[S]. Beijing: Planning Press of China, 2010(in Chinese).
    [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [23] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97.

    SHI Zhanchong, SU Qingtian, SHAO Changyu, et al. Basic mechanical behavior and flexural toughness evaluation method of coarse aggregate UHPC[J]. China Civil Engi-neering Journal,2020,53(12):86-97(in Chinese).
    [24] 孔祥清, 高化东, 刚建明, 等. 钢-聚丙烯混杂纤维再生混凝土弯曲韧性研究[J]. 硅酸盐通报, 2018, 37(9):2729-2736.

    KONG Xiangqing, GAO Huadong, GANG Jianming, et al. Study on flexural toughness of steel-polypropylene hybrid fiber recycled aggregate concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(9):2729-2736(in Chinese).
    [25] 肖建庄, 杨洁. 玻璃纤维增强塑料约束再生混凝土轴压试验[J]. 同济大学学报(自然科学版), 2009, 37(12):1586-1591.

    XIAO Jianzhuang, YANG Jie. On recycled concrete confined by GFRP tube under axial compression[J]. Journal of Tongji University (Natural Sciences),2009,37(12):1586-1591(in Chinese).
    [26] WANG K, MONTEIRO P J, RUBINSKY B, et al. Microscopic study of ice propagation in concrete[J]. ACI Materials Journal,1996,93(4):370-377.
    [27] CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,1278:389-393.
    [28] JIANG Z W, HE B, ZHU X P, et al. State-of-the-art review on properties evolution and deterioration mechanism of concrete at cryogenic temperature[J]. Construction and Building Materials,2020,257:119456. doi: 10.1016/j.conbuildmat.2020.119456
    [29] KIM M J, KIM S, LEE S K, et al. Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures[J]. Construction and Building Materials,2017,157:498-508. doi: 10.1016/j.conbuildmat.2017.09.099
    [30] JIANG Z W, DENG Z L, ZHU X P, et al. Increased strength and related mechanisms for mortars at cryogenic temperatures[J]. Cryogenics,2018,94:5-13. doi: 10.1016/j.cryogenics.2018.06.005
    [31] 罗素蓉, 郑欣, 黄海生. 再生粗骨料预处理及再生混凝土徐变试验研究[J]. 建筑材料学报, 2016, 19(2):242-247.

    LUO Surong, ZHENG Xin, HUANG Haisheng. Experimental study on pretreatment of recycled coarse aggregate and creep behavior of recycled aggregate concrete[J]. Journal of Builuing Materials,2016,19(2):242-247(in Chinese).
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  707
  • HTML全文浏览量:  304
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-05-09
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回