留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛/镁双金属复合材料界面强化方法研究现状与展望

吴远兵 辜诚 彭韦力 田增辉 赵建华

吴远兵, 辜诚, 彭韦力, 等. 钛/镁双金属复合材料界面强化方法研究现状与展望[J]. 复合材料学报, 2023, 40(11): 5989-6009. doi: 10.13801/j.cnki.fhclxb.20230523.002
引用本文: 吴远兵, 辜诚, 彭韦力, 等. 钛/镁双金属复合材料界面强化方法研究现状与展望[J]. 复合材料学报, 2023, 40(11): 5989-6009. doi: 10.13801/j.cnki.fhclxb.20230523.002
WU Yuanbing, GU Cheng, PENG Weili, et al. Research and prospect on interface strengthening methods for Ti/Mg bimetallic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 5989-6009. doi: 10.13801/j.cnki.fhclxb.20230523.002
Citation: WU Yuanbing, GU Cheng, PENG Weili, et al. Research and prospect on interface strengthening methods for Ti/Mg bimetallic composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 5989-6009. doi: 10.13801/j.cnki.fhclxb.20230523.002

钛/镁双金属复合材料界面强化方法研究现状与展望

doi: 10.13801/j.cnki.fhclxb.20230523.002
基金项目: 国家自然科学基金(51875062);中国博士后科学基金(2021M700567);重庆市研究生科研创新项目(CYB21005)
详细信息
    通讯作者:

    辜诚,博士,助理研究员,研究方向为轻合金凝固过程多尺度建模与仿真 E-mail: gucheng.90@cqu.edu.cn

    赵建华,博士,教授,博士生导师,研究方向为先进轻合金成型技术、增材制造工艺与装备  E-mail: zjh213@cqu.edu.cn

  • 中图分类号: TB331

Research and prospect on interface strengthening methods for Ti/Mg bimetallic composites

Funds: National Natural Science Foundation of China (51875062); China Postdoctoral Science Foundation (2021M700567); Graduate Scientific Research and Innovation Foundation of Chongqing (CYB21005)
  • 摘要: 钛/镁双金属复合材料兼具了钛和镁的优点,在航空航天、交通运输等领域具有巨大的潜在应用价值,近年来受到了国内外研究者的广泛关注。针对熔点差异大,弱反应,低互溶的钛、镁两种金属,采用中间层金属实现钛/镁界面冶金结合是典型的界面强化方法,界面冶金结合的调控是提高界面结合强度的核心,界面反应的控制和优化是界面强化的难点。本文综述了不同复合方法制备钛/镁双金属复合材料的研究进展,分析了界面组织演变对界面结合强度的影响;总结了在不同的复合方法下所采用的界面强化方法时,钛/镁双金属复合材料界面的失效强度;归纳了钛/镁双金属的界面强化机制,并对钛/镁双金属的界面强化后续研究进行展望。

     

  • 图  1  钛-镁接头宏观、微观形貌及EDS线扫描结果:((a), (c), (e)) ΔD=0.3 mm;((b), (d), (f)) ΔD=0.5 mm[19]

    ΔD—Laser offset; FZ—Fusion zone

    Figure  1.  Macrostructure, microstructure and EDS line scan result of Mg/Ti joint: ((a), (c), (e)) ΔD=0.3 mm; ((b), (d), (f)) ΔD=0.5 mm[19]

    图  2  钛-镁接头界面显微组织及EDS能谱面扫描结果(激光功率1300 W)[26]

    Figure  2.  Microstructure and EDS line scan results of Ti-Mg joints (Laser power of 1300 W)[26]

    图  3  不同Al元素含量时Ti/Mg 接头处界面形貌和线扫描结果[32]

    AZ31B, AZ61A, and AZ91D—Grades of magnesium alloys

    Figure  3.  Interface morphology and line scanning results of Ti/Mg joints with different Al content[32]

    图  4  采用不同镀层时镁/钛界面的形貌;(a) 电镀Ni[48];(b) 纯Ni箔[47];(c) Ni纳米颗粒[50];(d) Cu纳米颗粒[50];(e) Cu-Ni纳米颗粒[50];(f) Cu-Ni箔[49]

    AZ31—Grades of magnesium alloys; P1 and P2—Locations of EDS point scanning when investigating the microstructure; L1, L2, and L4—Reaction layer near the Mg side

    Figure  4.  SEM images of Mg/Ti interface with different coatings: (a) Electroplating Ni[48]; (b) Pure Ni foil[47]; (c) Ni nanoparticles[50]; (d) Cu nanoparticles[50]; (e) Cu-Ni nanoparticles[50]; (f) Cu-Ni foil[49]

    图  5  退火温度为300℃时复合板材三点原位弯曲过程中微观组织演变[63]

    RD—Rolling direction; ND—Normal direction

    Figure  5.  Microstructure evolution of the sample annealing at 300℃ during in-situ three-point bending[63]

    图  6  不同温度下采用Ni做中间层时TC4/AZ91D双金属材料界面显微组织扫描图像:(a) 660℃;(b) 690℃;(c) 720℃;(d) 750℃[68]

    A-G—Region used for high-magnification SEM imaging when investigating the middle layer tissue; I, II, and III—Three reaction layers

    Figure  6.  SEM images of interface microstructures of the TC4/AZ91D bimetals with nickel coating and at different temperature: (a) 660℃; (b) 690℃; (c) 720℃; (d) 750℃[68]

    图  7  TC4颗粒与复合材料基体界面的TEM显微图:(a)界面形貌;(b) Al3Ti的SAED形貌[82]

    Figure  7.  TEM micrographs of the interface between TC4 particles and the composite matrix: (a) Interface morphology; (b) SAED morphology of Al3Ti[82]

    图  8  Mg-NiTi互穿相复合材料的制备过程(a)与三维结构((b), (c))[89]

    SLM—Selective laser melting

    Figure  8.  Formation (a) and 3D architecture ((b), (c)) of Mg-NiTi interpenetrating-phase composite[89]

    图  9  3D打印Ti-6Al-4V支架及其渗透Mg-Ti互穿相复合材料的生物仿生结构:(a) 砖石结构;(b) 骨骼结构;(c)仿海螺外壳的交叉层状结构[90]

    Figure  9.  Bioinspired architectures of 3D printed Ti-6Al-4V scaffolds and their infiltrated Mg-Ti composites: (a) Brick-and-mortar; (b) Bouligand; (c) Crossed-lamellar architectures[90]

    图  10  颗粒特征的光学显微图像:(a)纯镁;(b) Mg-10%Ti[96]

    Figure  10.  Optical micrographs of particle characteristics: (a) Pure Mg; (b) Mg-10%Ti[96]

    图  11  热力学模型计算结果:(a) 温度T=958 K时Al-Ni、Al-Mg、Mg-Ni和Mg-Ti二元熔体的生成焓ΔHAl-Ni、ΔHAl-Mg、ΔHMg-Ni和ΔHMg-Ti曲线图[71];(b) T=2000 K时Mg-Ni、Mg-Al、Mg-Ti和Ni-Al、Ni-Ti、Al-Ti二元熔体的生成焓ΔHMg-Ni、ΔHMg-Al、ΔHMg-Ti、ΔHNi-Al、ΔHNi-Ti和ΔHAl-Ti曲线图[27]

    X—Percentage of element content

    Figure  11.  Calculation results of thermodynamic model: (a) Temperature T=958 K, formation enthalpy ΔHAl-Ni, ΔHAl-Mg, ΔHMg-Ni and ΔHMg-Ti curves of Al-Ni, Al-Mg, Mg-Ni and Mg-Ti binary melts[71]; (b) T=2000 K, formation enthalpy ΔHMg-Ni, ΔHMg-Al, ΔHMg-Ti, ΔHNi-Al, ΔHNi-Ti, ΔHAl-Ti curves of Mg-Ni, Mg-Al, Mg-Ti and Ni-Al, Ni-Ti, Al-Ti binary melts[27]

    表  1  钛/镁双金属复合材料的界面强化方法和失效强度

    Table  1.   Interfacial strengthening methods and failure strength of Ti/Mg bimetallic composites

    Materials and join methodInterface strengthening methods and bonding strength
    TA2/AZ31B CMTAZ61 welding wire—262 N/mm[13]
    AZ91 welding wire—242 N/mm[14]
    Ti/AZ31B TIGAZ31B welding wire—228 N/mm[18]
    TC4(Ti-6Al-4V)/AZ31B LWElectroplating Cu—2314 N (85.7% of AZ31B strength)
    AZ31B welding wire—200 MPa (85.1% of AZ31B strength)[20]
    AZ91 welding wire—2057 N (50% of AZ31B strength)[21]
    Electroplating Ni—2387 N (88.5% of AZ31B strength)[27]
    TC4/AZ31B CMTAl foil—72 MPa[45],
    Ni foil—61 MPa[46],
    Cu foil—61 MPa[46],
    Ni/Cu laminated foil—57 MPa [49],
    electroplating Ni—61 MPa[48]
    TC4/AZ31B hot rollingAl sheet—521 MPa[60]
    TC4/AZ91D solid-liquid
    compound casting
    Electroplating Ni—105 MPa[71]
    Electroplating Cu—65 MPa[72]
    Hot dip plating Al—49 MPa[74]
    Hot dip plating Zn—34 MPa[73]
    Zn/Al—67 MPa [76]
    Hot dip plating TiAlSi—80 MPa[75]
    Magnetron sputtering FeCoNiCr HEA layer—94 MPa[77]
    TC4 lattice structure—77 MPa[78]
    TC4(10%)/AZ91D stir castingAl element—250 MPa[81]
    powder metallurgyAl element—303 MPa[97]
    Notes: TA2—Ti content is 99wt%; AZ31B—Al and Zn contents are 3wt% and 1wt%; CMT—Cold metal transfer; TIG—Tungsten inert gas welding; LW—Laser welding; AZ91D—Al and Zn content is 9wt% and 1wt% (The suffix letters B and D are identification codes used to identify different alloys with different specific components or small differences in element content); AZ61—Al and Zn contents are 6wt% and 1wt%; AZ91—Al and Zn contents are 9wt% and 1wt%; HEA—High-entropy alloy.
    下载: 导出CSV
  • [1] MORDIKE B L, EBERT T. Magnesium: Properties-applications-potential[J]. Materials Science and Engineering: A,2001,302(1):37-45. doi: 10.1016/S0921-5093(00)01351-4
    [2] 曾小勤, 王渠东, 吕宜振, 等. 镁合金应用新进展[J]. 铸造, 1998(11):41-45. doi: 10.3321/j.issn:1001-4977.1998.11.002

    ZENG Xiaoqin, WANG Qudong, LYU Yizhen, et al. New progress in the application of magnesium alloy[J]. Foundry,1998(11):41-45(in Chinese). doi: 10.3321/j.issn:1001-4977.1998.11.002
    [3] 龙思远, 徐绍勇, 曹韩学, 等. 长安汽车轻量化与镁合金应用[J]. 现代零部件, 2010, 8(11):32-36.

    LONG Siyuan, XU Shaoyong, CAO Hanxue, et al. Changan automobile lightweighting and magnesium alloy application[J]. Modern Components,2010,8(11):32-36(in Chinese).
    [4] 宁兴龙. 镁合金在自行车上的应用[J]. 稀有金属快报, 2003,22(9):11-12.

    NING Xinglong. Magnesium alloy in bicycle applications[J]. Rare Metals Letters,2003,22(9):11-12(in Chinese).
    [5] 赵志远. 铸造稀土镁合金在我国航空工业中的应用[J]. 材料工程, 1993(7):8-10.

    ZHAO Zhiyuan. The application of RE-containing magnesium casting alloys in aviation industry in China[J]. Journal of Materials Engineering,1993(7):8-10(in Chinese).
    [6] 杨亚鹏. AZ91D镁合金激光冲击强化力学性能及新型LSP系统工艺研究[D]. 太原: 中北大学, 2019.

    YANG Yapeng. Study on mechanical properties of AZ91D magnesium alloy by laser shock peening and new LSP system process[D]. Taiyuan: North University of China, 2019(in Chinese).
    [7] PETERS M, KUMPFERT J, WARD C H, et al. Titanium alloys for aerospace applications[J]. Advanced Engineering Materials,2003,5(6):419-427. doi: 10.1002/adem.200310095
    [8] 何阳, 屈孝和, 王越, 等. 钛合金的发展及应用综述[J]. 装备制造技术, 2014, 238(10):160-161. doi: 10.3969/j.issn.1672-545X.2014.10.058

    HE Yang, QU Xiaohe, WANG Yue, et al. The development and application of overview of titanium alloy[J]. Equipment Manufacturing Technology,2014,238(10):160-161(in Chinese). doi: 10.3969/j.issn.1672-545X.2014.10.058
    [9] 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009.

    TANG Renzheng, TIAN Rongzhang. Binary alloy phase diagram and intermediate phase crystal structure[M]. Changsha: Central South University Press, 2009(in Chinese).
    [10] GAO M, MEI S W, LI X Y, et al. Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer[J]. Scripta Materialia,2012,67(2):193-196. doi: 10.1016/j.scriptamat.2012.04.015
    [11] 闫志飞, 田光元, 苏辉, 等. 高性能镁合金的研究进展[J]. 铸造技术, 2023, 44(2):101-113.

    YAN Zhifei, TIAN Guangyuan, SU Hui, et al. Research progress of high performance magnesium alloys[J]. Foundry Technology,2023,44(2):101-113(in Chinese).
    [12] 贾剑平, 毕凯强, 刘丹, 等. 冷金属过渡技术的研究现状与展望[J]. 热加工工艺, 2015, 44(1):6-8, 5. doi: 10.14158/j.cnki.1001-3814.2015.01.002

    JIA Jianping, BI Kaiqiang, LIU Dan, et al. Research status and prospect of cold metal transfer[J]. Hot Working Technology,2015,44(1):6-8, 5(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.01.002
    [13] CAO R, WANG T, WANG C, et al. Cold metal transfer welding-brazing of pure titanium TA2 to magnesium alloy AZ31B[J]. Journal of Alloys and Compounds,2014,605(2):12-20.
    [14] 王涛. 镁/钛异种金属冷金属过渡技术(CMT)焊接性研究[D]. 兰州: 兰州理工大学, 2013.

    WANG Tao. The analysis of CMT weldability for dissimilar metals between magnesium and pure titanium[D]. Lanzhou: Lanzhou University of Technology, 2013(in Chinese).
    [15] 王岑, 曹睿, 林巧力, 等. 镁/钛异种金属冷金属过渡焊接的温度场模拟[J]. 焊接学报, 2015, 36(4):17-20, 114.

    WANG Cen, CAO Rui, LIN Qiaoli, et al. Numerical simulation on temperature distribution of cold metal transfer joining magnesium to titanium dissimilar metals[J]. Transactions of the China Welding Institution,2015,36(4):17-20, 114(in Chinese).
    [16] 车洪艳, 刘国辉, 王岑, 等. 镁/钛异种金属冷金属过渡焊接头应力场的有限元模拟[J]. 机械工程材料, 2017, 41(5):105-110. doi: 10.11973/jxgccl201705021

    CHE Hongyan, LIU Guohui, WANG Cen, et al. Finite element simulation on stress field of Mg/Ti dissimilar metal joint welded by cold metal transfer method[J]. Materials for Mechanical Engineering,2017,41(5):105-110(in Chinese). doi: 10.11973/jxgccl201705021
    [17] XU C, SHENG G M, DENG Y Q, et al. Microstructure and mechanical properties of tungsten inert gas welded-brazed Mg/Ti lap joints[J]. Science and Technology of Welding and Joining,2014,19(5):443-450. doi: 10.1179/1362171814Y.0000000208
    [18] XU C, SHENG G, WANG H, et al. Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology[J]. Science and Technology of Welding and Joining,2014,19(8):703-707. doi: 10.1179/1362171814Y.0000000245
    [19] GAO M, WANG Z M, LI X Y, et al. Laser keyhole welding of dissimilar Ti-6Al-4V titanium alloy to AZ31B magnesium alloy[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and MaterialS Science,2012,43(1):163-172. doi: 10.1007/s11661-011-0825-6
    [20] GAO M, WANG Z M, YAN J, et al. Dissimilar Ti/Mg alloy butt welding by fibre laser with Mg filler wire-preliminary study[J]. Science and Technology of Welding and Joining,2011,16(6):488-496. doi: 10.1179/1362171811Y.0000000033
    [21] TAN C W, CHEN B, MENG S H, et al. Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler[J]. Materials & Design,2016,99:127-134.
    [22] FRONCZEK D M, WOJEWODA-BUDKA J, CHULIST R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design,2016,91:80-89.
    [23] TAN C W, SONG X G, CHEN B, et al. Enhanced interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti joints with Al element from filler[J]. Materials Letters,2016,167:38-42. doi: 10.1016/j.matlet.2015.12.119
    [24] 檀财旺, 巩向涛, 李俐群, 等. 镁/钛异种金属预置Al夹层光纤激光熔钎焊接特性[J]. 中国激光, 2015, 42(1):114-121.

    TAN Caiwang, GONG Xiangtao, LI Liqun, et al. Laser welding-brazing characteristics of dissimilar metals Mg/Ti with Al interlayers[J]. Chinese Journal of Lasers,2015,42(1):114-121(in Chinese).
    [25] 檀财旺, 黄煜华, 陈波, 等. 镁/钛激光熔钎焊界面微观结构与元素热力学行为分析[J]. 中国激光, 2016, 43(3):87-95.

    TAN Caiwang, HUANG Yuhua, CHEN Bo, et al. Microstructure and thermodynamic behavior of laser welded-brazed Mg/Ti dissimilar joint[J]. Chinese Journal of Lasers,2016,43(3):87-95(in Chinese).
    [26] TAN C W, LU Q S, CHEN B, et al. Influence of laser power on microstructure and mechanical properties of laser welded-brazed Mg to Ni coated Ti alloys[J]. Optics & Laser Technology,2017,89:156-167.
    [27] TAN C W, YANG J, ZHAO X Y, et al. Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint[J]. Journal of Alloys and Compounds,2018,764:186-201. doi: 10.1016/j.jallcom.2018.06.039
    [28] ZHANG Z, TAN C, WANG G, et al, Laser welding-brazing of immiscible AZ31B Mg and Ti-6Al-4V alloys using an electrodeposited Cu interlayer[J]. Journal of Materials Engineering & Performance, 2018, 27(3): 1414-1426.
    [29] YAO F J, YOU G Q, WANG L, et al. Design, fabrication, microstructure, and mechanical properties of interlayer-free vacuum diffusion bonding Mg/Ti composites[J]. Vacuum, 2022, 199: 110947.
    [30] GOGHERI M S, KASIRI-ASGARANI M, BAKHSHESHI-RAD H R, et al. Mechanical properties, corrosion behavior and biocompatibility of orthopedic pure titanium-magnesium alloy screw prepared by friction welding[J]. Transactions of Nonferrous Metals Society of China,2020,30(11):2952-2966. doi: 10.1016/S1003-6326(20)65434-6
    [31] 高兴国. 用摩擦搅拌焊接法对纯钛与AZ31镁合金焊接性能的研究[J]. 稀有金属快报, 2007, 26(12):44-45.

    GAO Xingguo. Study on the welding performance of pure titanium and AZ31 magnesium alloy by friction stir welding method[J]. Rare Metals Letters,2007,26(12):44-45(in Chinese).
    [32] AONUMA M, NAKATA K. Effect of alloying elements on interface microstructure of Mg-Al-Zn magnesium alloys and titanium joint by friction stir welding[J]. Materials Science and Engineering: B,2009,161(1-3):46-49. doi: 10.1016/j.mseb.2009.02.020
    [33] AONUMA M, NAKATA K. Effect of calcium on intermetallic compound layer at interface of calcium added magnesium-aluminum alloy and titanium joint by friction stir welding[J]. Materials Science and Engineering: B,2010,173(1-3):135-138. doi: 10.1016/j.mseb.2009.12.015
    [34] AONUMA M, NAKATA K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding[J]. Materials Science and Engineering: B,2012,177(7):543-548. doi: 10.1016/j.mseb.2011.12.031
    [35] CHOI J W, LIU H H, USHIODA K, et al. Dissimilar friction stir welding of immiscible titanium and magnesium[J]. Materialia,2019,7:100389. doi: 10.1016/j.mtla.2019.100389
    [36] DINAHARAN I, ZHANG S, CHEN G Q, et al. Titanium particulate reinforced AZ31 magnesium matrix compo-sites with improved ductility prepared using friction stir processing[J]. Materials Science and Engineering: A,2020,772:138793. doi: 10.1016/j.msea.2019.138793
    [37] LI R D, LI J L, XIONG J T, et al. Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process[J]. Transactions of Nonferrous Metals Society of China,2012,22(11):2665-2671. doi: 10.1016/S1003-6326(11)61515-X
    [38] 梅张强. 基于Al合金化强化的Mg/Ti电阻点焊和激光熔钎焊研究[D]. 武汉: 湖北工业大学, 2012.

    MEI Zhangqiang. Based on the strengthening of the Al alloying Mg/Ti resistance spot welding and laser molten brazing research[D]. Wuhan: Hubei University of Technology, 2012(in Chinese).
    [39] 侯庆磊. 镁/钛合金异种金属电阻点焊接头组织和力学性能的研究[D]. 合肥: 合肥工业大学, 2021.

    HOU Qinglei. Study on microstructures and mechanical properties of resistance spot welded joints of magnesium and titanium alloy dissimilar metals[D]. Hefei: Hefei University of Technology, 2021(in Chinese).
    [40] HABIB M A, RUAN L Q, KIMURA R, et al. Cladding of titanium and magnesium alloy by explosive welding using underwater shockwave technique and effect on interface[J]. Materials Science Forum,2013,767:160-165. doi: 10.4028/www.scientific.net/MSF.767.160
    [41] 张婷婷, 王文先, 魏屹, 等. 钛/铝/镁爆炸焊复合板波形界面及力学性能[J]. 焊接学报, 2017, 38(8):33-36, 130. doi: 10.12073/j.hjxb.20151021001

    ZHANG Tingting, WANG Wenxian, WEI Qi, et al. Wavy interface and mechanical properties of explosive welded Ti/Al/Mg cladded plate[J]. Transactions of the China Welding Institution,2017,38(8):33-36, 130(in Chinese). doi: 10.12073/j.hjxb.20151021001
    [42] 武佳琪. 镁/钛异种金属爆炸焊接界面微观组织及性能的研究[D]. 太原: 太原理工大学, 2015.

    WU Jiaqi. Study on the interface microsiructure and the mechanical prorertie for the Mg/Ti composite materials with explosive welding[D]. Taiyuan: Taiyuan University of Technology, 2015(in Chinese).
    [43] PRIPANAPONG P, KARIYA S, LUANGVARANUNT T, et al. Corrosion behavior and strength of dissimilar bonding material between Ti and Mg alloys fabricated by spark plasma sintering[J]. Materials,2016,9(8):665. doi: 10.3390/ma9080665
    [44] REN D X, ZHAO K M, PAN M, et al. Ultrasonic spot welding of magnesium alloy to titanium alloy[J]. Scripta Materialia,2017,126:58-62. doi: 10.1016/j.scriptamat.2016.08.003
    [45] 熊江涛, 张赋升, 李京龙, 等. 镁合金与钛合金的瞬间液相扩散焊[J]. 稀有金属材料与工程, 2006, 35(10):1677-1680. doi: 10.3321/j.issn:1002-185X.2006.10.040

    XIONG Jiangtao, ZHANG Fusheng, LI Jinglong, et al. Transient liquid phase bonding of magnesium alloy (AZ31B) and titanium alloy (Ti6Al4V) using aluminium interlayer[J]. Rare Metal Materials and Engineering,2006,35(10):1677-1680(in Chinese). doi: 10.3321/j.issn:1002-185X.2006.10.040
    [46] 秦倩. 镁-钛异种材料的瞬间液相扩散连接[D]. 西安: 西安科技大学, 2015.

    QIN Qian. Study on the Mg alloy and Ti alloy joint by transient liquid phase bonding process[D]. Xi'an: Xi'an University of Science and Technology, 2015(in Chinese).
    [47] ATIEH A M, KHAN T I. Effect of process parameters on semi-solid TLP bonding of Ti-6Al-4V to Mg-AZ31[J]. Journal of Materials Science,2013,48(19):6737-6745. doi: 10.1007/s10853-013-7475-6
    [48] ATIEH A M, KHAN T I. TLP bonding of Ti-6Al-4V and Mg-AZ31 alloys using pure Ni electro-deposited coats[J]. Journal of Materials Processing Technology,2014,214(12):3158-3168. doi: 10.1016/j.jmatprotec.2014.07.028
    [49] ATIEH A M, KHAN T I. Transient liquid phase (TLP) brazing of Mg-AZ31 and Ti-6Al-4V using Ni and Cu sandwich foils[J]. Science and Technology of Welding and Joining,2014,19(4):333-342. doi: 10.1179/1362171814Y.0000000196
    [50] ATIEH A M, KHAN T I. Application of Ni and Cu nanoparticles in transient liquid phase (TLP) bonding of Ti-6Al-4V and Mg-AZ31 alloys[J]. Journal of Materials Science,2014,49(22):7648-7658. doi: 10.1007/s10853-014-8473-z
    [51] 王鹏举. 热轧钛/铝/镁层状复合板结构与性能研究[D]. 重庆: 重庆大学, 2020.

    WANG Pengju. Research on the structure and properties of hot rolled Ti/Al/Mg laminated plates[D]. Chongqing: Chongqing University, 2020(in Chinese).
    [52] WANG T L, NIE H H, MI Y J, et al. Microstructures and mechanical properties of Ti/Al/Mg/Al/Ti laminates with various rolling reductions[J]. Journal of Materials Research,2019,34(2):344-353. doi: 10.1557/jmr.2018.428
    [53] 孟宣. Ti/Al/Mg/Al/Ti叠层板热轧复合与组织性能研究[D]. 秦皇岛: 燕山大学, 2016.

    MENG Xuan. Study on hot-rolled composite and microstructure properties of Ti/Al/Mg/Al/Ti laminates[D]. Qinhuangdao: Yanshan University, 2016(in Chinese).
    [54] NIE H H, HAO X W, CHEN H S, et al. Effect of twins and dynamic recrystallization on the microstructures and mechanical properties of Ti/Al/Mg laminates[J]. Materials & Design,2019,181:107948.
    [55] 马旻. 钛/铝/镁叠层板热轧复合及组织与性能研究[D]. 秦皇岛: 燕山大学, 2016.

    MA Yu. Study on microstructure and properties of hot rolled Ti/Al/Mg laminates[D]. Qinhuangdao: Yanshan University, 2016(in Chinese).
    [56] MI Y J, NIE H H, WANG T L, et al. Effect of anisotropy on microstructures and mechanical properties of rolled Ti/Al/Mg/Al/Ti laminates[J]. Journal of Materials Engineering and Performance,2019,28(7):4143-4151. doi: 10.1007/s11665-019-04172-2
    [57] LUO W B, FENG Y Z, XUE Z Y, et al. Effect of Al layer thickness on the bonding and mechanical behavior of a Mg-(Al-)Ti laminated sheet prepared by hot-rolling after differential preheating treatment[J]. Materials, 2022, 15(8): 2805.
    [58] MOTEVALLI P D, EGHBALI B. Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Materials Science and Engineering: A,2015,628:135-142. doi: 10.1016/j.msea.2014.12.067
    [59] 胡宏波. 铝/镁/钛层状复合板轧制工艺与结合界面研究[D]. 重庆: 重庆大学, 2015.

    HU Hongbo. Research on roll bonding process of Al/Mg/Ti multilayered composite sheet and its bonding interface[D]. Chongqing: Chongqing University, 2015(in Chinese).
    [60] 伍侠. 镁铝钛层状复合板制备工艺与性能研究[D]. 重庆: 重庆大学, 2015.

    WU Xia. Study on the fabrication and properties of magnesium aluminum titanium laminated sheet[D]. Chongqing: Chongqing University, 2015(in Chinese).
    [61] 张岩. 热轧制备Ti/Al/Mg复合板与组织性能研究[D]. 秦皇岛: 燕山大学, 2014.

    ZHANG Yan. The roll-bonding processes and properties of Ti/Al/Mg laminated composites[D]. Qinhuangdao: Yanshan University, 2014(in Chinese).
    [62] 祁梓宸. 异温轧制制备钛/铝/镁复合板工艺方法和组织性能研究[D]. 秦皇岛: 燕山大学, 2021.

    QI Zichen. Study on process method and microstructure properties of Ti/Al/Mg laminated composites prepared by differential temperature rolling[D]. Qinhuangdao: Yanshan University, 2021(in Chinese).
    [63] NIE H H, ZHENG L W, KANG X P, et al. In-situ investigation of deformation behavior and fracture forms of Ti/Al/Mg/Al/Ti laminates[J]. Transactions of Nonferrous Metals Society of China,2021,31(6):1656-1664. doi: 10.1016/S1003-6326(21)65605-4
    [64] 王文焱, 史士钦, 尚郑平, 等. 铸轧法制备钛铝复合板的界面组织与性能[J]. 特种铸造及有色合金, 2016, 36(10):1084-1088.

    WANG Wenyan, SHI Shiqing, SHANG Zhengping, et al. Interfacial microstructure and properties of Ti-Al rolling-casted composite plate[J]. Special Casting & Nonferrous Alloys,2016,36(10):1084-1088(in Chinese).
    [65] KENEVISI M S, MOUSAVI KHOIE S M, ALAEI M. Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint[J]. Mechanics of Materials,2013,64:69-75. doi: 10.1016/j.mechmat.2013.04.011
    [66] QI Z C, XIAO H, YU C, et al. Preparation, microstructure and mechanical properties of CP-Ti/AA6061-Al laminated composites by differential temperature rolling with induction heating[J]. Journal of Manufacturing Processes,2019,44:133-144. doi: 10.1016/j.jmapro.2019.05.053
    [67] 刘平, 刘腾, 王渠东. 固液双金属复合铸造研究进展[J]. 材料导报, 2014, 28(1):26-30.

    LIU Ping, LIU Teng, WANG Qudong. Research progress on liquid-solid bimetal compound casting[J]. Materials Review,2014,28(1):26-30(in Chinese).
    [68] WEN F L, ZHAO J H, YUAN M W, et al. Influence of Ni interlayer on interfacial microstructure and mechanical properties of Ti-6Al-4V/AZ91D bimetals fabricated by a solid-liquid compound casting process[J]. Journal of Magnesium and Alloys,2021,9(4):1382-1395. doi: 10.1016/j.jma.2020.05.021
    [69] 张敏, 王莹, 王普, 等. Ni夹层AZ31B/Cu异种材料接触反应钎焊接头组织及性能分析[J]. 热加工工艺, 2017, 46(17):38-42.

    ZHANG Min, WANG Ying, WANG Pu, et al. Analysis of microstructures and properties of contact reactive brazing bonded joint of AZ31B and Cu dissimilar material with Ni interlayer[J]. Hot Working Technology,2017,46(17):38-42(in Chinese).
    [70] LI T T, SONG G, YU P N, et al. Interfacial microstructure evolution in fusion welding of immiscible Mg/Fe system[J]. Materials & Design,2019,181:107903.
    [71] ZHAO J H, WEN F L, FENG K Q, et al. Interface microstructure regulation of Mg/Ti bimetals by thermal diffusion treatment of Ni-coated TC4 alloy[J]. Intermetallics,2022,147:107594. doi: 10.1016/j.intermet.2022.107594
    [72] WEN F L, ZHAO J H, FENG K Q, et al. Investigation of Cu interlayer on joint formation of Ti/Mg bimetal fabricated by liquid-solid compound casting process[J]. Metals and Materials International,2022,28(7):1711-1724. doi: 10.1007/s12540-021-01027-1
    [73] SHANGGUAN J J, ZHAO J H, SHI Y, et al. Effects of Zn interlayer on microstructures and mechanical properties of TC4/AZ91D bimetal via solid-liquid compound casting process[J]. International Journal of Metalcasting,2022,16(1):419-434. doi: 10.1007/s40962-021-00612-9
    [74] SHANGGUAN J J, ZHAO J H, ZHANG J X, et al. Improving shear strength of Ti/Mg bimetal composites prepared by hot-dip aluminizing and solid-liquid compound casting[J]. Advanced Engineering Materials,2022,24(11):2200298.
    [75] SHANGGUAN J J, ZHAO J H, XU B, et al. The role of TiAlSi intermetallic compounds in metallurgical bonding mechanism of Ti/Mg bimetal composite[J]. Materials Science and Engineering: A,2022,846:143295.
    [76] ZHAO J H, SHANGGUAN J J, GU C, et al. Microstructures and mechanical properties of TC4/AZ91D bimetal prepared by solid-liquid compound casting combined with Zn/Al composite interlayer[J]. Transactions of Nonferrous Metals Society of China,2022,32(4):1144-1158. doi: 10.1016/S1003-6326(22)65862-X
    [77] CHENG J, ZHAO J H, WANG C, et al. Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting[J]. China Foundry,2023,20(1):1-11. doi: 10.1007/s41230-022-2105-z
    [78] WU Y B, ZHAO J H, PENG W L, et al. Optimization of additive manufactured Ti-based pyramidal lattice structure applied to interface strengthening of Mg/Ti bimetal composite[J/OL]. Transactions of Nonferrous Metals Society of China: 1-25[2023-11-15]. http://kns.cnki.net/kcms/detail/43.1239.tg.20230224.1420.004.html.
    [79] 谢耀, 康跃华, 李新涛, 等. 搅拌铸造金属Ti颗粒增强AZ91D复合材料的组织与力学性能[J]. 铸造, 2021, 70(7):793-799.

    XIE Yao, KANG Yuehua, LI Xintao. Microstructure and mechanical properties of metal Ti particles reinforced AZ91D composite processed by stir casting[J]. Foundry,2021,70(7):793-799(in Chinese).
    [80] 张晓辉. 搅拌铸造金属Ti颗粒增强AZ91D镁基复合材料高温塑性变形组织与力学性能研究[D]. 沈阳: 沈阳工业大学, 2022.

    ZHANG Xiaohui. Hot deformation microstructure and mechanical properties of metal Ti particulate reinforced AZ91D magnesium matrix composites processed by stir casting[D]. Shenyang: Shenyang University of Technology, 2022(in Chinese).
    [81] WANG X J, WANG X M, HU X S, et al. Effects of hot extrusion on microstructure and mechanical properties of Mg matrix composite reinforced with deformable TC4 particles[J]. Journal of Magnesium and Alloys,2020,8(2):421-430. doi: 10.1016/j.jma.2019.05.015
    [82] WANG X M, WANG X J, HU X S, et al. Processing, microstructure and mechanical properties of Ti6Al4V particles-reinforced Mg matrix composites[J]. Acta Metallurgica Sinica-English Letters,2016,29(10):940-950. doi: 10.1007/s40195-016-0473-3
    [83] AFSHARNADERI A, MALEKAN M, EMAMY M, et al. Microstructure evolution and mechanical properties of the AZ91 magnesium alloy with Sr and Ti additions in the As-cast and As-aged conditions[J]. Journal of Materials Engineering and Performance,2019,28(11):6853-6863. doi: 10.1007/s11665-019-04396-2
    [84] CANDAN S, UNAL M, KOC E, et al. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy[J]. Journal of Alloys and Compounds,2011,509(5):1958-1963. doi: 10.1016/j.jallcom.2010.10.100
    [85] CHENG J H, GUSSEV M, ALLEN J, et al. Deformation and failure of print cast A356/316L composites: Digital image correlation and finite element modeling[J]. Materials & Design,2020,195:109061.
    [86] RAIMONDI L, TOMESANI L, DONATI L, et al. Lattice material infiltration for hybrid metal-composite joints: Manufacturing and static strenght[J]. Composite Structures,2021,269:114069. doi: 10.1016/j.compstruct.2021.114069
    [87] ZHANG M Y, ZHAO N, YU Q, et al. On the damage tolerance of 3D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures[J]. Nature Communications, 2022, 13(1): 1-13.
    [88] ZHANG M Y, YU Q, LIU Z Q, et al. Compressive properties of 3D printed Mg-NiTi interpenetrating-phase composite: Effects of strain rate and temperature[J]. Composites Part B: Engineering, 2021, 215: 108783.
    [89] ZHANG M Y, YU Q, LIU Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency[J]. Science Advances, 2020, 6(19): 5581.
    [90] ZHANG M Y, ZHAO N, YU Q, et al. On the damage tolerance of 3D printed Mg-Ti interpenetrating-phase compo-sites with bioinspired architectures[J]. Nature Communications,2022,13(1):1-13. doi: 10.1038/s41467-021-27699-2
    [91] YANG X X, HUANG W Y, ZHAN D S, et al. Biodegradability and cytocompatibility of 3D-printed Mg-Ti interpenetrating phase composites[J]. Frontiers in Bioengineering and Biotechnology, 2022,10: 891632.
    [92] 黄培云. 粉末冶金原理[M]. 北京: 冶金工业出版社, 1997: 5-6.

    HUANG Peiyun. Powder metallurgy principle[M]. Beijing: Metallurgical Industry Press, 1997: 5-6(in Chinese).
    [93] YU H, SUN Y, WAN Z P, et al. Nanocrystalline Ti/AZ61 magnesium matrix composite: Evolution of microstructure and mechanical property during annealing treatment[J]. Journal of Alloys and Compounds,2018,741:231-239. doi: 10.1016/j.jallcom.2018.01.136
    [94] DINAHARAN I, ZHANG S, CHEN G Q, et al. Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing[J]. Journal of Magnesium and Alloys,2022,10(4):979-992. doi: 10.1016/j.jma.2020.09.026
    [95] ZHANG C L, WANG X J, WANG X M, et al. Fabrication, microstructure and mechanical properties of Mg matrix composites reinforced by high volume fraction of sphere TC4 particles[J]. Journal of Magnesium and Alloys,2016,4(4):286-294. doi: 10.1016/j.jma.2016.10.003
    [96] RASHAD M, PAN F S, ASIF M, et al. Improved mechanical proprieties of "magnesium based composites" with titanium-aluminum hybrids[J]. Journal of Magnesium and Alloys,2015,3(1):1-9. doi: 10.1016/j.jma.2014.12.010
    [97] LUO H, LI J B, YE J L, et al. Influence of Ti-6Al-4V particles on the interfacial microstructure and strength-ductility synergetic mechanism of AZ91 magnesium alloy[J]. Materials Characterization,2022,191:112154. doi: 10.1016/j.matchar.2022.112154
    [98] UMEDA J, KAWAKAMI M, KONDOH K, et al. Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials[J]. Materials Chemistry and Physics,2010,123(2):649-657.
    [99] ESEN Z Y, BÜTEV E, KARAKAŞ M S. A comparative study on biodegradation and mechanical properties of pressureless infiltrated Ti/Ti-6Al-4V-Mg composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,63:273-286. doi: 10.1016/j.jmbbm.2016.06.026
    [100] OUYANG S H, HUANG Q L, LIU Y, et al. Powder metallurgical Ti-Mg metal-metal composites facilitate osteoconduction and osseointegration for orthopedic application[J]. Bioactive Materials,2019,4:37-42. doi: 10.1016/j.bioactmat.2018.12.001
    [101] LIU Y, LI K Y, LUO T, et al. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications[J]. Materials Science and Engineering: C,2015,56:241-250.
    [102] KALANTARI S M, ARABI H, MIRDAMADI S, et al. Biocompatibility and compressive properties of Ti-6Al-4V scaffolds having Mg element[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,48:183-191. doi: 10.1016/j.jmbbm.2015.04.015
    [103] BALOG M, IBRAHIM A M H, KRIZIK P, et al. Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties[J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,90:45-53. doi: 10.1016/j.jmbbm.2018.10.008
    [104] KONDOH K, KAWAKAMI M, IMAI H, et al. Wettability of pure Ti by molten pure Mg droplets[J]. Acta Materialia,2010,58(2):606-614. doi: 10.1016/j.actamat.2009.09.039
    [105] 郗雨林, 柴东朗, 张文兴, 等. 钛合金颗粒增强镁基复合材料的制备与性能[J]. 稀有金属材料与工程, 2006, 35(2):144-147. doi: 10.3321/j.issn:1002-185X.2006.02.032

    CHI Yulin, CHAI Donglang, ZHANG Wenxing, et al. Fabrication and properties of Ti-6Al-4V particles reinforced magnesium matrix composite by powder metallurgy[J]. Rare Metal Materials and Engineering,2006,35(2):144-147(in Chinese). doi: 10.3321/j.issn:1002-185X.2006.02.032
    [106] YU H, ZHOU H P, SUN Y, et al. Microstructures and mechanical properties of ultrafine-grained Ti/AZ31 magnesium matrix composite prepared by powder metallurgy[J]. Advanced Powder Technology,2018,29(12):3241-3249. doi: 10.1016/j.apt.2018.09.001
    [107] HASSAN S F, GUPTA M. Development of ductile magnesium composite materials using titanium as reinforcement[J]. Journal of Alloys and Compounds,2002,345(1):246-251.
    [108] PÉREZ P, GARCÉS G, ADEVA P. Mechanical properties of a Mg-10(vol.%)Ti composite[J]. Composites Science and Technology,2004,64(1):145-151. doi: 10.1016/S0266-3538(03)00215-X
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  834
  • HTML全文浏览量:  280
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-05-10
  • 录用日期:  2023-05-17
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回