留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚硅氮烷原位功能化碳纤维设计及其高温抗氧化性能

邓紫怡 赵新星 张建 余木火 王刚 孙泽玉

邓紫怡, 赵新星, 张建, 等. 聚硅氮烷原位功能化碳纤维设计及其高温抗氧化性能[J]. 复合材料学报, 2023, 40(11): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20230418.001
引用本文: 邓紫怡, 赵新星, 张建, 等. 聚硅氮烷原位功能化碳纤维设计及其高温抗氧化性能[J]. 复合材料学报, 2023, 40(11): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20230418.001
DENG Ziyi, ZHAO Xinxing, ZHANG Jian, et al. In-situ polysilazane modified carbon fiber for high temperature anti-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20230418.001
Citation: DENG Ziyi, ZHAO Xinxing, ZHANG Jian, et al. In-situ polysilazane modified carbon fiber for high temperature anti-oxidation[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20230418.001

聚硅氮烷原位功能化碳纤维设计及其高温抗氧化性能

doi: 10.13801/j.cnki.fhclxb.20230418.001
基金项目: 纤维材料改性国家重点实验室开放课题 (KF2203),氢能专项;上海市“科技创新行动计划”高新技术领域项目(19511106703);中央高校基本科研业务费专项资金(2232020G-12)
详细信息
    通讯作者:

    孙泽玉,博士,讲师,硕士生导师,研究方向为高性能纤维及复合材料 E-mail: sunzeyu@dhu.edu.cn

  • 中图分类号: TQ34;TB332

In-situ polysilazane modified carbon fiber for high temperature anti-oxidation

Funds: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Open Topic (KF2203), Hydrogen Energy Special Project; High-tech Field Projects of Action Plan for Science and Technology Innovation of Shanghai (19511106703); Special Funds for the Basic Scientific Research Expenses of Central Government Universities (2232020G-12)
  • 摘要: 由于碳纤维在高温含氧的环境下易被氧化,且与基体发生强界面反应而导致其性能劣化,影响了其在复合材料领域的应用。本文通过在碳纤维表面构筑聚丙烯腈(PAN)过渡层及有机聚硅氮烷(OPSZ)陶瓷前驱体层,经低温固化与高温裂解后形成C-Si3N4保护涂层,制备了具有高温抗氧化效能的PAN-OPSZ/碳纤维。扫描电镜与能谱仪的结果表明:PAN层的涂覆有助于Si元素在碳纤维表面附着,将PAN溶液的浓度从1%提高到3%,Si元素的相对含量随即从2.81%提高到了8.26%。采用PAN与OPSZ浓度为3wt%制备的PAN-OPSZ/碳纤维的拉伸强度仅比未涂层碳纤维降低了2.08%,表明其未对碳纤维力学性能造成明显降低。制备的PAN-OPSZ/碳纤维的抗氧化能力得到了显著提高,在700℃的空气气氛下失重率低于8wt%,而未涂层碳纤维的失重率高达70wt%。以上结果说明,PAN-OPSZ涂层能有效提高碳纤维的高温抗氧化性,在碳纤维增强复合材料领域具有十分广阔的应用前景。

     

  • 图  1  聚丙烯腈(PAN)-有机聚硅氮烷(OPSZ)/碳纤维的制备过程

    CFs—Carbon fibers

    Figure  1.  Process of the preparation of polyacrylonitrile (PAN)-organopolysilazane (OPSZ)/carbon fiber

    图  2  不同热处理温度下的碳纤维单丝拉伸性能

    Figure  2.  Single-filament tensile properties of carbon fibers at different heat treatment temperatures

    图  3  涂层碳纤维在氮气下1200℃烧结后的SEM图像

    Figure  3.  SEM images of coated carbon fiber under N2 up to 1200°C

    图  4  不同裂解温度的PAN-OPSZ/碳纤维的SEM图像:(a) 1200℃;(b) 1450℃;((c), (d)) 1600℃

    Figure  4.  SEM images of PAN-OPSZ/carbon fiber at various pyrolysis temperature: (a) 1200℃; (b) 1450℃; ((c), (d)) 1600℃

    图  5  涂层碳纤维的面分析:(a) SEM图像; (b) Si元素面分布

    Figure  5.  EDS analysis of coated carbon fiber: (a) SEM image; (b) Si element surface distribution

    图  6  对比不同碳纤维的XRD图谱:(a) 不同浓度;(b) 不同烧结温度

    Figure  6.  Comparisons of XRD patterns of carbon fibers: (a) Different concentrations; (b) Various pyrolysis temperature

    图  7  3%PAN涂覆组1450℃烧结后涂层纤维的TG (a)和DTG (b)

    dm/dt—Mass change rate of samples per unit time

    Figure  7.  TG (a) and DTG (b) analyses of 3%PAN-OPSZ/carbon fibers after sintering at 1450℃

    图  8  1450℃烧结后涂层碳纤维的900℃ TG-DTG曲线

    Figure  8.  900℃ TG-DTG curves of coated carbon fibers after sintering at 1450℃

    图  9  无涂层和有涂层CF的单丝拉伸强度:(a)不同OPSZ浓度;(b)不同PAN浓度

    Figure  9.  Single silk tensile strength of uncoated and coated CF: (a) Different OPSZ concentrations; (b) Different PAN concentrations

    表  1  样品名释义

    Table  1.   Interpretation of samples

    Sample Coating Heat treatment
    Raw CF
    1200℃-CF 1200℃ for 2 h
    1450℃-CF 1450℃ for 2 h
    1600℃-CF 1600℃ for 2 h
    Uncoated CF 400℃ for 0.5 h
    0%PAN-9%OPSZ/CF 9%OPSZ
    2%PAN-9%OPSZ/CF 2%PAN and 9%OPSZ
    0%PAN-3%OPSZ/CF 3%OPSZ
    1%PAN-3%OPSZ/CF 1%PAN and 3%OPSZ
    2%PAN-3%OPSZ/CF 2%PAN and 3%OPSZ
    3%PAN-3%OPSZ/CF 3%PAN and 3%OPSZ
    3%PAN-5%OPSZ/CF 3%PAN and 5%OPSZ
    3%PAN-7%OPSZ/CF 3%PAN and 7%OPSZ
    3%PAN-9%OPSZ/CF 3%PAN and 9%OPSZ
    1200℃-uncoated CF 1200℃ for 2 h
    1450℃-uncoated CF 1450℃ for 2 h
    1200℃-coated CF 3%PAN and 9%OPSZ 1200℃ for 2 h
    1450℃-coated CF 3%PAN and 9%OPSZ 1450℃ for 2 h
    1600℃-coated CF 3%PAN and 9%OPSZ, 1600℃ for 2 h
    下载: 导出CSV

    表  2  涂层碳纤维的EDS面分析

    Table  2.   EDS analysis data of coated CF

    SampleCoatingT/℃ElementElement/wt%Atom/at%
    1 1%PAN-3%OPSZ/CF 1200 C 85.36 88.97
    Si 2.81 1.25
    O 7.15 5.59
    N 4.69 4.19
    2 3%PAN-3%OPSZ/CF 1200 C 74.75 81.74
    Si 8.26 3.86
    O 13.16 10.80
    N 3.83 3.59
    3 1%PAN-9%OPSZ/CF 1200 C 82.49 86.92
    Si 3.87 1.75
    O 8.76 6.93
    N 4.87 4.40
    4 1%PAN-3%OPSZ/CF 1450 C 80.30 86.74
    Si 7.04 3.26
    O 6.93 4.53
    N 5.73 5.47
    5 3%PAN-3%OPSZ/CF 1450 C 70.11 78.29
    Si 11.76 5.61
    O 3.49 2.92
    N 12.79 12.25
    6 1%PAN-9%OPSZ/CF 1450 C 71.97 79.04
    Si 7.80 3.66
    O 2.83 2.33
    N 14.25 13.42
    Note: T—Temperature.
    下载: 导出CSV

    表  3  3%PAN涂覆组1450℃烧结后涂层纤维在700℃的热重分析数据

    Table  3.   Thermogravinmetric analysis data at 700℃ of 3%PAN/carbon fibers after sintering at 1450℃

    SampleT1/℃T2/℃W1/wt%W2/wt%
    Uncoated CF 510 630 15.8 70.4
    3%PAN-3%OPSZ/CF 700 700 0.1 7.5
    3%PAN-5%OPSZ/CF 700 700 0.8 7.9
    3%PAN-7%OPSZ/CF 700 700 0.9 8.2
    3%PAN-9%OPSZ/CF 700 700 1.0 6.4
    Notes: T1—Initial decomposition temperature; T2—Maximum decomposition temperature in the first stage; W1—Mass loss fraction at 700℃; W2—Total mass loss fraction.
    下载: 导出CSV

    表  4  1450℃烧结后的涂层碳纤维在900℃的热重分析数据

    Table  4.   Thermogravinmetric analysis data at 900℃ of 1450℃-coated carbon fiber

    SampleT1/℃W1/wt%W2/wt%Total weight-lessness time/min
    Uncoated CF 705 58.8 100.0 4.50
    3%PAN-3%OPSZ/CF 735 30.8 92.6 8.00
    3%PAN-5%OPSZ/CF 739 28.4 84.2 8.50
    3%PAN-7%OPSZ/CF 750 22.5 87.3 14.25
    3%PAN-9%OPSZ/CF 780 13.8 82.0 15.00
    下载: 导出CSV

    表  5  无涂层和有涂层CF的单丝拉伸性能

    Table  5.   Single silk tensile performance of uncoated and coated CF

    SampleTensile strength/
    MPa
    Standard deviation of tensile strength/MPaCoefficient of variation (CV) for tensile strength
    value/%
    Relative loss value of tensile strength/%
    1450℃-CF 2444 293 11.98
    1450℃-3%OPSZ/CF 2099 237 11.30 14.11
    1450℃-1%PAN-3%OPSZ/CF 2179 305 13.99 10.84
    1450℃-2%PAN-3%OPSZ/CF 2278 290 12.74 6.78
    1450℃-3%PAN-3%OPSZ/CF 2393 246 11.23 2.08
    1450℃-3%PAN-5%OPSZ/CF 2002 189 9.44 18.08
    1450℃-3%PAN-7%OPSZ/CF 1496 175 11.69 38.78
    1450℃-4%PAN-3%OPSZ/CF 1842 239 12.99 24.63
    下载: 导出CSV
  • [1] 刘晨曦, 于惠舒, 张楠楠, 等. 碳纤维增强铝基复合材料的研究现状[J]. 钢铁研究学报, 2021, 33(12):1205-1218. doi: 10.13228/j.boyuan.issn1001-0963.20210027

    LIU Chenxi, YU Huishu, ZHANG Nannan, et al. Research status of carbon fiber reinforced aluminum matrix compo-sites[J]. Journal of Iron and Steel Research,2021,33(12):1205-1218(in Chinese). doi: 10.13228/j.boyuan.issn1001-0963.20210027
    [2] 韦玉堂, 崔素华. 车用碳纤维增强Al-Cu基复合材料的微观组织及力学性能研究[J]. 粉末冶金工业, 2019, 29(4):42-46. doi: 10.13228/j.boyuan.issn1006-6543.20190029

    WEI Yutang, CUI Suhua. Microstructure and mechanical properties of carbon fiber reinforced Al-Cu matrix compo-sites for vehicles[J]. Powder Metallurgy Industry,2019,29(4):42-46(in Chinese). doi: 10.13228/j.boyuan.issn1006-6543.20190029
    [3] 李晋. 金属基复合材料的现状与未来发展[J]. 现代盐化工, 2022, 49(2):22-23. doi: 10.3969/j.issn.1005-880X.2022.02.009

    LI Jin. Status and future development of metal-based composites[J]. Modern Salt and Chemical Industry,2022,49(2):22-23(in Chinese). doi: 10.3969/j.issn.1005-880X.2022.02.009
    [4] 罗益锋. 新形势下全球碳纤维及其复合材料产业发展动向[J]. 高科技纤维与应用, 2022, 47(1):11-20. doi: 10.3969/j.issn.1007-9815.2022.01.001

    LUO Yifeng. Development trend of global carbon fibers and carbon fiber composites industries in new situations[J]. Hi-Tech Fiber and Application,2022,47(1):11-20(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.01.001
    [5] 靳高岭. 我国碳纤维产业现状及发展前景[J]. 高科技纤维与应用, 2021, 46(3):11-14. doi: 10.3969/j.issn.1007-9815.2021.03.001

    JIN Gaoling. The status quo and development prospect of carbon fiber industry in China[J]. Hi-Tech Fiber and Application,2021,46(3):11-14(in Chinese). doi: 10.3969/j.issn.1007-9815.2021.03.001
    [6] 史清宇, 曹雄, 李积元, 等. FSP制备碳纤维增强铝基复合材料的强韧化机理[J]. 清华大学学报(自然科学版), 2017, 57(8):792-797.

    SHI Qingyu, CAO Xiong, LI Jiyuan, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University (Natural Science Edition),2017,57(8):792-797(in Chinese).
    [7] 徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010, 33(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002

    XU Yuguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010,33(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002
    [8] ZHOU W, LONG L, XIAO P, et al. Comparison in dielectric and microwave absorption properties of SiC coated carbon fibers with PyC and BN interphases[J]. Surface and Coatings Technology,2019,359:272-277. doi: 10.1016/j.surfcoat.2018.10.104
    [9] 王玲玲, 肖春, 王坤杰, 等. 不同制备方法下(C/C)/ZrB2-SiC复合材料的抗烧蚀性能[J]. 复合材料学报, 2019, 36(12):2878-2886.

    WANG Lingling, XIAO Chun, WANG Kunjie, et al. Ablation performance of (C/C)/ZrB-SiC composites by different fabrication methods[J]. Acta Materiae Compositae Sinica,2019,36(12):2878-2886(in Chinese).
    [10] WANG L Y, LUO R Y, CUI G Y. Effect of pyrolysis tempera-ture on the mechanical evolution of SiCf/SiC composites fabricated by PIP[J]. Ceramics International,2020,46(2):1297-1306. doi: 10.1016/j.ceramint.2019.09.087
    [11] WEN Z L, XIAO P, LI Z, et al. Microstructure and oxidation behavior of sol-gel mullite coating on SiC-coated carbon/carbon composites[J]. Journal of the European Ceramic Society,2015,35(14):3789-3796. doi: 10.1016/j.jeurceramsoc.2015.06.033
    [12] 晋磊. 溶胶-凝胶法制备碳/碳复合材料抗氧化涂层的研究[D]. 北京: 北京化工大学, 2018.

    JIN Lei. Research about preparation of anti-oxidation coating by sol-gel method for carbon-carbon composites[D]. Beijing: Beijing University of Chemical Technology, 2018(in Chinese).
    [13] 赵晓莉, 齐暑华, 刘建军, 等. 正交设计法优化碳纤维表面连续镀镍工艺及性能[J]. 工程塑料应用, 2019, 47(3):55-59, 64. doi: 10.3969/j.issn.1001-3539.2019.03.011

    ZHAO Xiaoli, QI Shuhua, LIU Jianjun, et al. Optimization of continuous nickel plating on carbon fiber surface by orthogonal design[J]. Engineering Plastics Application,2019,47(3):55-59, 64(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.03.011
    [14] 孙晨薇, 王丹, 邹铭, 等. 聚硅氮烷防护涂层材料的研究进展[J]. 涂料工业, 2021, 51(9):81-88. doi: 10.12020/j.issn.0253-4312.2021.9.81

    SUN Chenwei, WANG Dan, ZOU Ming, et al. Research progress in polysilazane-based protective coatings materials[J]. Paint & Coatings Industry,2021,51(9):81-88(in Chinese). doi: 10.12020/j.issn.0253-4312.2021.9.81
    [15] 王丹, 张宗波, 王晓峰, 等. 聚硅氮烷旋涂介电材料研究进展[J]. 微纳电子技术, 2017, 54(8):514-521. doi: 10.13250/j.cnki.wndz.2017.08.002

    WANG Dan, ZHANG Zongbo, WANG Xiaofeng, et al. Research progress of polysilazane based spin-on-dielectric materials[J]. Micronanoelectronic Technology,2017,54(8):514-521(in Chinese). doi: 10.13250/j.cnki.wndz.2017.08.002
    [16] LO T N H, HWANG H S, LEE J, et al. Synthesis of new semi-fluorinated polysilazanes and their amphiphobic coating applications[J]. Progress in Organic Coatings,2020,148:105853. doi: 10.1016/j.porgcoat.2020.105853
    [17] SHAYED M A, CHERIF C, HUND R D, et al. Carbon and glass fibers modified by polysilazane based thermal resistant coating[J]. Textile Research Journal,2010,80(11):1118-1128. doi: 10.1177/0040517509357648
    [18] 马百胜. 聚硅氮烷转化SiCN陶瓷结构性能及传感器应用[D]. 西安: 西北工业大学, 2018.

    MA Baisheng. Research on microstructures and properties of polysilizane derived SiCN ceramics and their application in sensors[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [19] BAWANE K, LU K, LI Q, et al. High temperature oxidation behaviors of SiON coated AISI 441 in Ar+O2, Ar+H2O and Ar+CO2 atmospheres[J]. Corrosion Science,2020,166:108429-108436. doi: 10.1016/j.corsci.2020.108429
    [20] 师建军, 张宗波, 冯志海, 等. 低密度碳粘接碳纤维复合材料(CBCF)抗氧化改性研究[J]. 无机材料学报, 2018, 33(7):728-734. doi: 10.15541/jim20170445

    SHI Jianjun, ZHANG Zongbo, FENG Zhihai, et al. Modification of oxidation resistance for low density carbon-bonded carbon fiber (CBCF) composite[J]. Journal of Inorganic Materials,2018,33(7):728-734(in Chinese). doi: 10.15541/jim20170445
    [21] 国家市场监督管理总局、国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2022.

    State Administration for Market Regulation, Standardization Administration. Determination of tensile properties of carbon fiber monofilament: GB/T 31290—2014[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [22] LONG M L, LI Y, QIN H X, et al. Formation mechanism of Si3N4 in reaction-bonded Si3N4-SiC composites[J]. Ceramics International,2016,42(15):16448-16452. doi: 10.1016/j.ceramint.2016.05.118
    [23] 瞿玲. 碳氮化法制备晶态SiCN的研究[D]. 武汉: 武汉科技大学, 2018.

    QU Ling. Preparation of crystalline SiCN by carbonitriding[D]. Wuhan: Wuhan University of Technology, 2018(in Chinese).
    [24] PARK D J, JUNG Y I, KIM H G, et al. Oxidation behavior of silicon carbide at 1200℃ in both air and water-vapor-rich environments[J]. Corrosion Science,2014,88:416-422. doi: 10.1016/j.corsci.2014.07.052
    [25] CAPPELEN H, JOHANSEN K H, MOTZFELDT K, et al. Oxidation of silicon carbide in oxygen and in water vapour at 1500℃[J]. Acta Chemica Scandinavica,1981,35(4):247-254.
    [26] 相宇博. 氮化物结合碳化硅耐火材料在不同气氛中的氧化行为研究[D]. 洛阳: 中钢集团洛阳耐火材料研究院, 2020.

    XIANG Yubo. Oxidation behavior of nitride-bonded silicon carbide refractories in different atmospheres[D]. Luoyang: Sinosteel Luoyang Refractory Research Institute, 2020(in Chinese).
    [27] 张梅英. 碳化硅涂层对碳纤维单丝拉伸性能的影响[D]. 兰州: 兰州理工大学, 2017.

    ZHANG Meiying. Effect of silicon carbide coating on tensile properties of carbon fiber monofilament[D]. Lanzhou: Lanzhou University of Technology, 2017(in Chinese).
    [28] 万小涵, 张广清, OSTROVSKI O. 碳热还原/氮化合成氮化硅工艺中碳化硅生成的分析[J]. 云南冶金, 2015, 44(3):47-49, 73. doi: 10.3969/j.issn.1006-0308.2015.03.011

    WAN Xiaohan, ZHANG Guangqing, OSTROVSKI O. Analysis on silicon carbide formation in the process of carbothermal reduction/nitration synthesis of silicon nitride[J]. Yunnan Metallurgy,2015,44(3):47-49, 73(in Chinese). doi: 10.3969/j.issn.1006-0308.2015.03.011
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  234
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 修回日期:  2023-03-24
  • 录用日期:  2023-04-09
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回