留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分子量聚乙烯纤维增强复合材料层合板层间断裂韧性

肖鹏程 邓健 王增贤 邵光冉 彭佑垒 卢天健

肖鹏程, 邓健, 王增贤, 等. 超高分子量聚乙烯纤维增强复合材料层合板层间断裂韧性[J]. 复合材料学报, 2023, 40(11): 6087-6097. doi: 10.13801/j.cnki.fhclxb.20230407.001
引用本文: 肖鹏程, 邓健, 王增贤, 等. 超高分子量聚乙烯纤维增强复合材料层合板层间断裂韧性[J]. 复合材料学报, 2023, 40(11): 6087-6097. doi: 10.13801/j.cnki.fhclxb.20230407.001
XIAO Pengcheng, DENG Jian, WANG Zengxian, et al. Interlaminar fracture toughness of ultra-high molecular weight polyethylene fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6087-6097. doi: 10.13801/j.cnki.fhclxb.20230407.001
Citation: XIAO Pengcheng, DENG Jian, WANG Zengxian, et al. Interlaminar fracture toughness of ultra-high molecular weight polyethylene fiber reinforced composite laminates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6087-6097. doi: 10.13801/j.cnki.fhclxb.20230407.001

超高分子量聚乙烯纤维增强复合材料层合板层间断裂韧性

doi: 10.13801/j.cnki.fhclxb.20230407.001
基金项目: 国家自然科学基金(11972185;12002157)
详细信息
    通讯作者:

    邓健,博士,副教授,硕士生导师,研究方向为飞行器先进复合材料结构设计 E-mail: dengjian@nuaa.edu.cn;

    卢天健,博士,教授,博士生导师,研究方向为固体力学 E-mail: tjlu@nuaa.edu.cn

  • 中图分类号: V258;TB332

Interlaminar fracture toughness of ultra-high molecular weight polyethylene fiber reinforced composite laminates

Funds: National Natural Science Foundation of China (11972185; 12002157)
  • 摘要: 作为装甲解决方案的一组重要材料,超高分子量聚乙烯(UHMWPE)纤维增强复合材料在冲击作用下主要的破坏模式之一是分层脱粘。针对UHMWPE复合材料层合板提出一种改进的双悬臂梁(DCB)试件,研究了其I型层间断裂韧性(GIC)和失效特性,分析了DCB试件厚度及纤维铺层方向对GIC的影响,讨论了层间断裂破坏机制及结构塑性对裂纹扩展过程的影响,评估了现有试验标准中层间断裂韧性计算方法的适用性。结果表明:较小厚度的DCB试件呈现明显的塑性行为,由此测得的层间断裂韧性受结构塑性的影响显著,适当增加试件厚度可有效避免塑性的影响。本文结果为UHMWPE复合材料进一步的动态层间性能及其理论模型的研究提供实验参考和数据支撑,对复合材料防护结构设计具有重要的工程意义。

     

  • 图  1  弯曲载荷作用下板的互反弯曲变形[22]

    Figure  1.  Anticlastic bending deformation of plates under bending load[22]

    L, W and t—Length, width and thickness of the rectangular plate, respectively; mx—Bending moment per unit width applied to the plate edges; Rx0 and Ry0—Radii of curvature of the corresponding deformation

    图  2  双悬臂梁(DCB)试件的中间分层界面纤维铺层:(a) 0°/0°;(b) 0°/90°;(c) 90°/90°

    Figure  2.  Intermediate delamination interface fiber layup directions of double cantilever beam (DCB) specimen: (a) 0°/0°; (b) 0°/90°; (c) 90°/90°

    图  3  超高分子量聚乙烯(UHMWPE)复合材料层压板的成型温度及压力设置

    Figure  3.  Forming temperature and pressure setting of ultra-high molecular weight polyethylene (UHMWPE) composite laminates

    图  4  (a) 带层间预制裂纹的DCB试件;(b) 粘贴刻度和加载合页的DCB试件

    P—Applied load

    Figure  4.  (a) DCB specimen with interlaminar pre-crack; (b) DCB specimen with pasted scale and loaded hinge

    图  5  厚度为5.2 mm (H5) (a)、10.3 mm (H10) (b)和20.6 mm (H20) (c)的DCB试件

    Figure  5.  DCB specimens with thickness of 5.2 mm (H5) (a), 10.3 mm (H10) (b) and 20.6 mm (H20) (c)

    图  6  UHMWPE复合材料I型层间断裂韧性试验

    Figure  6.  Mode I interlaminar fracture toughness test of UHMWPE composites

    图  7  ASTM D5528-13标准[15]中3种I型层间断裂韧性(GIC)计算方法的拟合参数:(a) 修正梁理论(MBT);(b) 柔度校正(CC);(c) 修正柔度校正(MCC)

    Figure  7.  Fitting parameters of three mode I interlaminar fracture toughness (GIC) calculation methods in ASTM D5528-13[15]: (a) Modified beam theory (MBT); (b) Compliance correction (CC); (c) Modified compliance correction (MCC)

    C = δ/P—Compliance of DCB specimen, where δ is the load point deflection and P is the applied load; a—Delamination of DCB specimen; Δ—Effective delamination extension to correct for rotation of DCB arms at delamination front for the MBT method; n = Δxy—Curve fitting parameters required for the CC method, where Δx is the incremental change in lga and Δy is the incremental change in lgC; h—Thickness of DCB specimen; A1—Slope of plot of a/h versus C1/3

    图  8  不同厚度DCB试件的载荷-张开位移曲线

    Figure  8.  Load-opening displacement curves of DCB specimens with different thicknesses

    图  9  中间界面为0°/0° (a)、0°/90° (b)和90°/90° (c)纤维铺层方向的H20试件裂纹扩展模式比较

    Figure  9.  Comparison of crack growth modes of H20 specimens with intermediate interface fiber layup directions of 0°/0° (a), 0°/90° (b) and 90°/90° (c)

    图  10  试验过程中DCB试件的变形对比:(a) H5;(b) H10;(c) H20

    Figure  10.  Deformation comparison of DCB specimens during the test: (a) H5; (b) H10; (c) H20

    图  11  不同厚度DCB试件的R曲线

    Figure  11.  R curves of DCB specimens with different thicknesses

    图  12  UHMWPE复合材料层合板层间界面破坏后的SEM图像

    Figure  12.  SEM images of the damaged interlaminar interface of UHMWPE composite laminates

    图  13  不同类型DCB试件的R曲线:不同计算方法的对比

    MBT—Modified beam theory; CC—Compliance calibration method; MCC—Modified compliance calibration method

    Figure  13.  R curves of DCB specimens with different types: Comparison of different calculation methods

    图  14  不同类型DCB试件的平均初始层间断裂韧性:不同计算方法的对比

    Figure  14.  Average initial interlaminar fracture toughness of DCB specimens with different types: Comparison of different calculation methods

  • [1] DAVID N V, GAO X L, ZHENG J Q. Ballistic resistant body armor: Contemporary and prospective materials and related protection mechanisms[J]. Applied Mechanics Reviews,2009,62(5):1201-1210.
    [2] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9):4286-4309. doi: 10.13801/j.cnki.fhclxb.20220803.002

    YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4286-4309(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220803.002
    [3] LIU B. Micromechanics of ultra-high molecular weight polyethylene fibre composites [D]. Cambridge: University of Cambridge, 2018.
    [4] GRUJICIC M, ARAKERE G, HE T, et al. A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade compo-sites[J]. Materials Science and Engineering: A,2008,498(1-2):231-241. doi: 10.1016/j.msea.2008.07.056
    [5] HERU UTOMO B D. High-speed impact modelling and testing of dyneema composite[D]. Delft: Delft University of Technology, 2011.
    [6] KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic lami-nates[J]. International Journal of Impact Engineering,2016,88:227-237.
    [7] KARTIKEYA S, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing,2020,82:106293. doi: 10.1016/j.polymertesting.2019.106293
    [8] KARTHIKEYAN K, RUSSELL B P, FLECK N A, et al. The effect of shear strength on the ballistic response of laminated composite plates[J]. European Journal of Mechanics-A/Solids,2013,42:35-53. doi: 10.1016/j.euromechsol.2013.04.002
    [9] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite[J]. International Journal of Impact Engineering,2015,75:174-183.
    [10] ZHANG R, QIANG L S, HAN B, et al. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation[J]. Composite Structures, 2020, 252: 112686.
    [11] ZHANG R, HAN B, ZHONG J Y, et al. Enhanced ballistic resistance of multilayered cross-ply UHMWPE laminated plates[J]. International Journal of Impact Engineering,2022,159:104035. doi: 10.1016/j.ijimpeng.2021.104035
    [12] GREENHALGH E S, BLOODWORTH V M, IANNUCCI L, et al. Fractographic observations on dyneema® composites under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing,2013,44:51-62. doi: 10.1016/j.compositesa.2012.08.012
    [13] BENMEDAKHENE S, KENANE M, BENZEGGAGH M L. Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring[J]. Composites Science and Technology,1999,59(2):201-208. doi: 10.1016/S0266-3538(98)00063-3
    [14] KARTIKEYA K, CHOUHAN H, RAM K, et al. Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles[J]. International Journal of Impact Engineering,2022,164:104211. doi: 10.1016/j.ijimpeng.2022.104211
    [15] ASTM International. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528—13[S]. West Conshohocken: ASTM International, 2013.
    [16] WANG Y J, ZHAO D M. Characterization of interlaminar fracture behaviour of woven fabric reinforced polymeric composites[J]. Composites,1995,26(2):115-124. doi: 10.1016/0010-4361(95)90411-R
    [17] GASSAN J, BLEDZKI A K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres[J]. Composites Science and Technology,1999,59(9):1303-1309. doi: 10.1016/S0266-3538(98)00169-9
    [18] HUANG B Z, HU X Z, LIU J. Modelling of interlaminar toughening from chopped Kevlar fibers[J]. Composites Science and Technology,2004,64(13):2165-2175.
    [19] BRUNNER A J, BLACKMAN B R K, DAVIES P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics,2008,75(9):2779-2794. doi: 10.1016/j.engfracmech.2007.03.012
    [20] 贺启林. 基于J-积分和构型力理论的材料断裂行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    HE Qilin. Study of material fracture behavior based on J-integral and configurational force theory[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [21] DING J C, XU W. Determination of mode I interlaminar fracture toughness of composite by a wedge-insert double cantilever beam and the nonlinear J integral[J]. Compo-sites Science and Technology,2021,206:108674. doi: 10.1016/j.compscitech.2021.108674
    [22] WANG J F, WAGONER R H, MATLOCK D K, et al. Anticlastic curvature in draw-bend springback[J]. International Journal of Solids and Structures,2005,42(5):1287-1307.
    [23] SWANSON S R. Anticlastic effects and the transition from narrow to wide behavior in orthotropic beams[J]. Compo-site Structures,2001,53(4):449-455. doi: 10.1016/S0263-8223(01)00055-1
    [24] GONG Y, CHEN X J, ZOU L H, et al. Experimental and numerical investigations on the mode I delamination growth behavior of laminated composites with different Z-pin fiber reinforcements[J]. Composite Structures,2022,287:115370. doi: 10.1016/j.compstruct.2022.115370
    [25] JAIN L K, DRANSFIELD K A, MAI Y W. Effect of reinforcing tabs on the mode I delamination toughness of stitched CFRPs[J]. Journal of Composite Materials,1998,32(22):2016-2041. doi: 10.1177/002199839803202202
    [26] SHANMUGAM L, NAEBE M, KIM J, et al. Recovery of mode I self-healing interlaminar fracture toughness of fiber metal laminate by modified double cantilever beam test[J]. Composites Communications,2019,16:25-29. doi: 10.1016/j.coco.2019.08.009
    [27] 谢宗蕻, 蔡书杰, 郭奇, 等. 碳纤维增强复合材料层间断裂韧度[J]. 航空材料学报, 2018, 38(4):137-142. doi: 10.11868/j.issn.1005-5053.2016.000189

    XIE Zonghong, CAI Shujie, GUO Qi, et al. Interfacial fracture toughness of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2018,38(4):137-142(in Chinese). doi: 10.11868/j.issn.1005-5053.2016.000189
    [28] 矫桂琼, 高健, 邓强. 复合材料的 Ⅰ 型层间断裂韧性[J]. 复合材料学报, 1994, 11(1):113-118.

    JIAO Guiqiong, GAO Jian, DENG Qiang. Mode I interlaminar fracture toughness of composite[J]. Acta Materiae Compositae Sinica,1994,11(1):113-118(in Chinese).
    [29] 董雁瑾, 杨海升, 白以龙. 玻璃纤维增强复合材料的I型层间断裂韧性[J]. 材料研究学报, 1999, 13(2):147-152.

    DONG Yanjin, YANG Haisheng, BAI Yilong. Mode I interlaminar fracture toughness of glass woven fibric reinforced composites[J]. Chinese Journal of Materials Research,1999,13(2):147-152(in Chinese).
    [30] RUSSELL B P, KARTHIKEYAN K, DESHPANDE V S, et al. The high strain rate response of ultra high molecular-weight polyethylene: From fibre to laminate[J]. International Journal of Impact Engineering,2013,60:1-9. doi: 10.1016/j.ijimpeng.2013.03.010
  • 加载中
图(14)
计量
  • 文章访问数:  833
  • HTML全文浏览量:  339
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-03-25
  • 录用日期:  2023-04-03
  • 网络出版日期:  2023-04-10
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回