留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于醋酸纤维素/MXene复合纤维膜的柔性触觉传感器

梁虎 张礼兵 吴婷 宋海军 汤成莉

梁虎, 张礼兵, 吴婷, 等. 基于醋酸纤维素/MXene复合纤维膜的柔性触觉传感器[J]. 复合材料学报, 2023, 40(11): 6228-6240. doi: 10.13801/j.cnki.fhclxb.20230217.001
引用本文: 梁虎, 张礼兵, 吴婷, 等. 基于醋酸纤维素/MXene复合纤维膜的柔性触觉传感器[J]. 复合材料学报, 2023, 40(11): 6228-6240. doi: 10.13801/j.cnki.fhclxb.20230217.001
LIANG Hu, ZHANG Libing, WU Ting, et al. Flexible tactile sensor based on cellulose acetate/MXene composite fiber thin film[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6228-6240. doi: 10.13801/j.cnki.fhclxb.20230217.001
Citation: LIANG Hu, ZHANG Libing, WU Ting, et al. Flexible tactile sensor based on cellulose acetate/MXene composite fiber thin film[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6228-6240. doi: 10.13801/j.cnki.fhclxb.20230217.001

基于醋酸纤维素/MXene复合纤维膜的柔性触觉传感器

doi: 10.13801/j.cnki.fhclxb.20230217.001
基金项目: 国家自然科学基金(61704067);浙江省基础公益研究计划(LGG20E050023);教育部产学合作协同育人项目(220506058211135)
详细信息
    通讯作者:

    张礼兵,博士,副教授,硕士生导师,研究方向为柔性电子功能器件及复合材料 E-mail: libinzhan@zjxu.edu.cn

  • 中图分类号: TB332

Flexible tactile sensor based on cellulose acetate/MXene composite fiber thin film

Funds: National Natural Science Foundation of China (61704067); Zhejiang Basic Public Welfare Research Program (LGG20E050023); Ministry of Education's Cooperative Education Project (220506058211135)
  • 摘要: 柔性触觉传感器在电子皮肤、智能机器人、可穿戴电子设备和医疗健康等方面具有广阔的应用潜力。针对压阻型柔性触觉传感器灵敏度低和响应/恢复性能差等问题,提出一种近场电流体动力学直写方法制备基于醋酸纤维素(CA)/MXene多层纳米片复合纤维薄膜的柔性触觉传感器,以具有多孔结构的CA纤维作为桥联剂,将MXene纳米片组装成连续的具有孔隙结构的三维(3D)导电网络。与传统的柔性触觉传感器制备方法相比,该方法通过高压静电场作用有效提高CA/MXene复合纤维薄膜的电学性能,从而提高了柔性触觉传感器的传感性能。测试结果表明:柔性触觉传感器触觉压力感知范围为9 Pa~10.2 kPa,在9 Pa~5.6 kPa压力范围内,该传感器的灵敏度为17.36 kPa−1,并且具有快速的响应/恢复性能(60.31/74.35 ms)。实验结果表明该柔性触觉传感器能够识别手指的运动状态、呼吸状态和脉搏等信号,在人体运动检测和生理信号监测等方面具有广阔的应用前景。

     

  • 图  1  醋酸纤维素(CA)/MXene混合溶液制备过程示意图

    DMF—N, N-dimethylformamide

    Figure  1.  Schematic diagram of cellulose acetate (CA)/MXene mixed solution preparation process

    图  2  近场电流体动力学直写原理图

    Figure  2.  Schematic diagram of near-field electrohydrodynamic direct writing

    图  3  近场电流体动力学喷印设备实物图

    Figure  3.  Digital picture of near-field electrohydrodynamic direct writing equipment

    图  4  CA/MXene复合纤维薄膜制备示意图

    Figure  4.  Schematic diagram for preparation of CA/MXene composite fiber thin film

    图  5  柔性触觉传感器的结构图

    PDMS—Polydimethylsiloxane

    Figure  5.  Structure diagram of flexible tactile sensor

    图  6  柔性触觉传感器的工作原理示意图

    Figure  6.  Schematic diagram of working principle for flexible tactile sensor

    图  7  ((a)~(c)) CA纤维薄膜截面SEM图像;((d)~(f)) CA/MXene复合纤维薄膜截面图像

    Figure  7.  ((a)-(c)) Cross sectional SEM images of CA fiber thin film; ((d)-(f)) Cross sectional SEM images of CA/MXene composite fiber thin film

    图  8  (a) CA和CA/MXene复合纤维薄膜的FTIR图谱;(b) CA、MXene和CA/MXene复合纤维薄膜的XRD图谱

    Figure  8.  (a) FTIR spectra of CA thin film and CA/MXene composite fiber thin film; (b) XRD patterns of CA fiber thin film, MXene thin film and CA/MXene composite fiber thin film

    图  9  (a) Ti3C2 MXene的原子力显微镜图像;(b) Ti3C2 MXene的原子力显微镜三维形貌;(c) 沿着图9(a)中水平实线测量的AFM高度分布图

    Figure  9.  (a) AFM image of Ti3C2 MXene; (b) AFM 3D image of Ti3C2 MXene; (c) AFM height profile measured along the horizontal solid line in Fig. 9(a)

    图  10  不同方法制备的柔性触觉传感器性能对比

    ΔR=RRp; R—Initial resistance of the sensor without external pressure; Rp—Resistance of the sensor under external pressure; NFED—Near-field electrohydrodynamic direct-writing

    Figure  10.  Performance comparison of flexible tactile sensors prepared by different methods

    图  11  (a) 不同质量比的CA/MXene复合纤维薄膜的传感性能;(b) 灵敏度和感知范围;(c) 响应/恢复时间;(d) 耐用性测试

    S1—Sensitivity within the pressure range from 9 Pa to 5.6 kPa; S2—Sensitivity within the pressure range from 5.6 kPa to10.2 kPa

    Figure  11.  (a) Sensing properties of CA/MXene composite fiber thin films with different mass ratios; (b) Sensitivity and sensing range; (c) Response/recovery time; (d) Durability test

    图  12  柔性触觉传感器用于书写信号测试:(a) 铅笔手写示意图;(b) 手写字母“C”;(c) 手写单词“OK”;(d) 手写单词“time”

    Figure  12.  Flexible tactile sensor for writing signal test: (a) Schematic diagram of handwriting with pencil; (b) Handwritten letter “C”; (c) Handwritten word “OK”; (d) Handwritten word “time”

    图  13  人体运动健康检测电信号:(a) 运动部位检测示意图;(b) 手指捏压纸张;(c) 手指点击鼠标;(d) 佩戴口罩呼吸;(e) 手腕脉搏;(f) 脉搏信号局部放大

    P—Percussion wave; T—Tidal wave; D—Diastolic wave

    Figure  13.  Electric signal of human motion health detection: (a) Schematic diagram of motion part detection; (b) Press the paper with your fingers; (c) Click the mouse with your finger; (d) Breath detection wearing mask; (e) Pulse of wrist; (f) Partial enlargement of pulse signal

    表  1  基于MXene柔性传感器性能比较

    Table  1.   Performance comparison of flexible MXene-based sensors

    MaterialTypeS/kPa−1Re/Rc/msPs/kPaReference
    CA/MXene Piezoresistive 17.370 60.31/74.35 0.009-10.2 This work
    MXene/CS Piezoresistive 14.100 143/139 0.003-5.0 [38]
    MXene/PpyNW/VSNP/PAM Capacitive 6.740 90/240 0-12.0 [39]
    MXene/Sponge Piezoresistive 1.520 226/323 0-100.0 [40]
    MXene/TPU/PAN/F127 Piezoresistive 0.208 60/120 0-160.0 [41]
    MXene/Nonwoven fabric Piezoresistive 6.310 300/260 Up to 150.0 [42]
    Notes: S—Sensitivity of the sensor; Re—Response performance of the sensor; Rc—Recovery performance of the sensor; Ps—Pressure range of the sensor; CA—Cellulose acetate; CS—Chitosan; PpyNW—Polypyrrole nanowires; VSNP—Vinyl-hybrid-silica nanoparticle; PAM—Polyacrylamide; TPU—Thermoplastic polyurethanes; PAN—Polyacrylonitrile; F127—PEO-PPO-PEO triblock copolymer; PEO—Poly(ethylene oxide); PPO—poly(propylene oxide).
    下载: 导出CSV
  • [1] 汪延成, 鲁映彤, 丁文, 等. 柔性触觉传感器的三维打印制造技术研究进展[J]. 机械工程学报, 2020, 56(19):239-252. doi: 10.3901/JME.2020.19.239

    WANG Yancheng, LU Yingtong, DING Wen, et al. Recent progress on three-dimensional printing processes to fabricate flexible tactile sensors[J]. Journal of Mechanical Engineering,2020,56(19):239-252(in Chinese). doi: 10.3901/JME.2020.19.239
    [2] SUN X G, LIU T Z, ZHOU J, et al. Recent applications of different microstructure designs in high performance tactile sensors: A review[J]. IEEE Sensors Journal,2021,21(9):10291-10303. doi: 10.1109/JSEN.2021.3061677
    [3] DEMPSEY S J, SZABLEWSKI M, ATKINSON D. Tactile sensing in human-computer interfaces: The inclusion of pressure sensitivity as a third dimension of user input[J]. Sensors and Actuators A: Physical,2015,232(8):229-250.
    [4] CAI Y W, ZHANG X N, WANG G G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin[J]. Nano Energy,2021,81(3):105663.
    [5] ZHANG J H, YAO H M, MO J Y, et al. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency[J]. Nature Communications,2022,13(1):5076.
    [6] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.

    HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese).
    [7] FU X A, ZHANG J Q, XIAO J L, et al. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands[J]. Nanoscale,2021,13(44):18780-18788. doi: 10.1039/D1NR03265H
    [8] 张锦桐, 周刚, 陈桂婷, 等. 电极与介电层褶皱接触对压电式柔性电子皮肤性能的影响[J]. 复合材料学报, 2020, 37(12):3194-3200. doi: 10.13801/j.cnki.fhclxb.20200416.002

    ZHANG Jintong, ZHOU Gang, CHEN Guiting, et al. Effect of folded contact between electrode and dielectric layer on the performance of piezoelectric flexible electronic skin[J]. Acta Materiae Compositae Sinica,2020,37(12):3194-3200(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200416.002
    [9] KIM M P, KIM Y R, KO H. Anisotropic silver nanowire dielectric composites for self-healable triboelectric sensors with multi-directional tactile sensitivity[J]. Nano Energy,2022,92(2):106704.
    [10] ZHANG H, LIU N S, SHI Y L, et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces,2016,8(34):22374-22381.
    [11] WAN Y B, WANG Y, GUO C F. Recent progresses on flexible tactile sensors[J]. Materials Today Physics,2017,1(6):61-73.
    [12] CHUN S, JUNG H, CHOI Y, et al. A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology[J]. Carbon,2015,94(11):982-987.
    [13] PYO S, LEE J, KIM W, et al. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range[J]. Advanced Functional Materials,2019,29(35):1902484. doi: 10.1002/adfm.201902484
    [14] CAO J E, ZHANG X X. Modulating the percolation network of polymer nanocomposites for flexible sensors[J]. Jour-nal of Applied Physics,2020,128(22):220901. doi: 10.1063/5.0033652
    [15] ZAMMALI M, LIU S J, YU W. A flexible, transparent, ultralow detection limit capacitive pressure sensor[J]. Advanced Materials Interfaces,2022,9(17):2200015. doi: 10.1002/admi.202200015
    [16] JEONG D W, JANG N S, KIM K H, et al. A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network[J]. RSC Advances,2016,6(78):74418-74425. doi: 10.1039/C6RA15385B
    [17] DEYSHER G, SHUCK E, HANTANASIRISAKUL K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals[J]. ACS Nano,2020,14(1):204-217. doi: 10.1021/acsnano.9b07708
    [18] SHAHZAD F, IQBAL A, KIM H, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32(51):2002159. doi: 10.1002/adma.202002159
    [19] MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensi-tive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications,2017,8(10):1207. doi: 10.1038/s41467-017-01136-9
    [20] WANG D Y, WANG L L, LOU Z, et al. Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors[J]. Nano Energy,2020,78(12):105252.
    [21] BLACHECHEN L S, SOUZA M A, PETRI D F S. Effect of humidity and solvent vapor phase on cellulose esters films[J]. Cellulose,2012,19(2):443-457. doi: 10.1007/s10570-012-9654-z
    [22] CHENG M, QIN Z Y, HU J, et al. Facile one-step preparation of acetylated cellulose nanocrystals and their reinforcing function in cellulose acetate film with improved interfacial compatibility[J]. Cellulose,2021,28(4):2137-2148.
    [23] LIU W Y, ZHOU Z H, LIAO X Z, et al. Tailoring ordered microporous structure of cellulose-based membranes through molecular hydrophobicity design[J]. Carbohydrate Polymers,2020,229(2):115425.
    [24] NIU H S, ZHANG H Y, YUE W J, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: A review[J]. Small,2021,17(41):2100804. doi: 10.1002/smll.202100804
    [25] ABD M A, PAUL R, ARAVELLI A, et al. Hierarchical tactile sensation integration from prosthetic fingertips enables multi-texture surface recognition[J]. Sensors,2021,21(13):4324. doi: 10.3390/s21134324
    [26] VIOLA F A, SPANU A, RICCI P C, et al. Ultrathin, flexible and multimodal tactile sensors based on organic field-effect transistors[J]. Scientific Reports,2018,8(5):8073.
    [27] YEO J C, KENRY, YU J H, et al. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability, and sensitivity[J]. ACS Sensors,2016,1(5):543-551. doi: 10.1021/acssensors.6b00115
    [28] CASTRO H F, CORREIA V, SOWADE E, et al. All-inkjet-printed low-pass filters with adjustable cutoff frequency consisting of resistors, inductors and transistors for sensor applications[J]. Organic Electronics,2016,38(11):205-212.
    [29] LUO Y Y, ZHAO L B, LUO G X, et al. All electrospun fabrics based piezoelectric tactile sensor[J]. Nanotechnology,2022,33(41):415502. doi: 10.1088/1361-6528/ac7ed5
    [30] WANG Y C, JIN J E, LU Y T, et al. 3D printing of liquid metal based tactile sensor for simultaneously sensing of temperature and forces[J]. International Journal of Smart and Nano Materials,2021,12(3):269-285. doi: 10.1080/19475411.2021.1948457
    [31] LI X L, PARK H, LEE M H, et al. High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer[J]. Organic Electronics,2018,62:400-406. doi: 10.1016/j.orgel.2018.08.032
    [32] MKHIZE N, BHASKARAN H. Electrohydrodynamic jet printing: Introductory concepts and considerations[J]. Small Science,2022,2(2):2100073. doi: 10.1002/smsc.202100073
    [33] CHEN J Z, WU T, ZHANG L B, et al. Fabrication of flexible organic electronic microcircuit pattern using near-field electrohydrodynamic direct-writing method[J]. Journal of Materials Science: Materials in Electronics,2019,30(19):17863-17871. doi: 10.1007/s10854-019-02138-7
    [34] YANG C H, TANG Y, TIAN Y P, et al. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance[J]. Advanced Energy Materials,2018,8(31):1802087. doi: 10.1002/aenm.201802087
    [35] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. doi: 10.1002/aelm.201600255
    [36] ZHONG S J, ZHANG J W, YUAN S X, et al. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling[J]. Chemical Engineering Journal,2023,451:138558.
    [37] PAN L J, CHORTOS A, YU G H, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications,2014,5:3002. doi: 10.1038/ncomms4002
    [38] WANG L L, WANG D P, WANG K, et al. Biocompatible MXene/chitosan-based flexible bimodal devices for real-time pulse and respiratory rate monitoring[J]. ACS Materials Letters,2021,3(7):921-929. doi: 10.1021/acsmaterialslett.1c00246
    [39] CAI Y C, SHEN J E, YANG C W, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range[J]. Science Advances,2020,6(48):eabb5367. doi: 10.1126/sciadv.abb5367
    [40] WEI Q K, CHEN G R, PAN H, et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing[J]. Small Methods,2022,6(2):2101051. doi: 10.1002/smtd.202101051
    [41] CHANG K Q, GUO M H, PU L, et al. Wearable nanofibrous tactile sensors with fast response and wireless communication[J]. Chemical Engineering Journal,2023,451:138578. doi: 10.1016/j.cej.2022.138578
    [42] YU Q H, SU C L, BI S Y, et al. Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces,2022,14(7):9632-9643. doi: 10.1021/acsami.2c00980
    [43] LOU Z, CHEN S, WANG L L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring[J]. Nano Energy,2016,23(5):7-14.
    [44] BAEK S, LEE Y, BAEK J, et al. Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays[J]. ACS Nano,2022,16(1):368-377.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  150
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-01-16
  • 录用日期:  2023-01-30
  • 网络出版日期:  2023-02-17
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回