留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化三维石墨烯复合气凝胶对U(VI)的吸附行为

王子鸣 赵家印 秦凯文 张爽 王英财 刘云海 柳玉辉

王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对U(VI)的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153. doi: 10.13801/j.cnki.fhclxb.20230113.001
引用本文: 王子鸣, 赵家印, 秦凯文, 等. 功能化三维石墨烯复合气凝胶对U(VI)的吸附行为[J]. 复合材料学报, 2023, 40(11): 6139-6153. doi: 10.13801/j.cnki.fhclxb.20230113.001
WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153. doi: 10.13801/j.cnki.fhclxb.20230113.001
Citation: WANG Ziming, ZHAO Jiayin, QIN Kaiwen, et al. Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153. doi: 10.13801/j.cnki.fhclxb.20230113.001

功能化三维石墨烯复合气凝胶对U(VI)的吸附行为

doi: 10.13801/j.cnki.fhclxb.20230113.001
基金项目: 国家自然科学基金委员会地区科学基金项目(22266003);江西省科技厅青年基金项目(20212BAB213005 )
详细信息
    通讯作者:

    刘云海,博士,教授,博士生导师,研究方向为放射性核素吸附分离与污染治理 E-mail:yhliu@ecut.edu.cn;

    柳玉辉,博士,副教授,硕士生导师,研究方向为放射性核素吸附分离与污染治理、乏燃料干法后处理 E-mail:liuyuhui@ecut.edu.cn

  • 中图分类号: TB33;X703.1

Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel

Funds: National Regional Science Foundation of China (22266003); Youth Fund Project of Jiangxi Provincial Department of Science and Technology (20212BAB213005)
  • 摘要: 核工业循环链中产生的大量含铀废水会对人类健康及生态环境造成损害,因此高效处理含铀废水是保障核工业可持续发展及人类生态安全的重要一环。以氧化石墨烯为前驱体自组装合成了聚乙烯亚胺(PEI)功能化的复合气凝胶(MGO/PEI),并用于去除水溶液中的U(Ⅵ)。通过探究不同PEI投放量、稳定性、pH值、时间、U(Ⅵ)浓度及温度对U(VI)的去除影响。结果表明:在298 K、pH=6时,最大吸附量为1027.01 mg·g−1,符合准二级动力学模型和Langmuir等温吸附模型。热力学常数表明MGO/PEI对U(Ⅵ)的吸附是一个自发吸热的过程。XPS分析表明去除机制主要是由于氨基及含氧官能团与U(VI)的表面络合。

     

  • 图  1  氧化石墨烯/聚乙烯亚胺复合气凝胶(MGO/PEI)的制备流程示意图

    GO—Graphene oxide; MCC—Microcrystalline cellulose

    Figure  1.  Schematic for the preparation process of graphene oxide/polyethyleneimine composite aerogel (MGO/PEI)

    图  2  MGO/PEI复合气凝胶可能的合成机制

    Figure  2.  Possible synthesis mechanism of MGO/PEI composite aerogel

    图  3  GO/PEI (a)、MGO/PEI1 (b)、MGO/PEI2 (c)、MGO/PEI3 (d)、MGO/PEI4 (e) 的SEM图像和MGO/PEI3 (f) 的横截面

    Figure  3.  SEM images of GO/PEI (a), MGO/PEI1 (b), MGO/PEI2 (c), MGO/PEI3 (d), MGO/PEI4 (e) and intersecting surface image of MGO/PEI3 (f)

    图  4  MGO/PEI1 (a)、MGO/PEI2 (b)、MGO/PEI3 (c) 的TEM及Mapping图像

    Figure  4.  TEM and Mapping images of MGO/PEI1 (a), MGO/PEI2 (b), MGO/PEI3 (c)

    图  5  (a) GO和MGO/PEI的XRD图谱;(b) GO、MCC、GO/PEI及MGO/PEI的FTIR图谱;(c) MGO/PEI的Raman图谱

    ID/IG—Intensity ratio of peak D to peak G

    Figure  5.  (a) XRD patterns of GO and MGO/PEI; (b) FTIR spectras of GO, MCC, GO/PEI and MGO/PEI; (c) Raman spectras of MGO/PEI

    图  6  (a) MGO/PEI的TG曲线;(b) 不同负荷对MGO/PEI的压缩过程;(c) MGO/PEI3的亲水接触角;(d) MGO/PEI3在U(VI)溶液中的时间稳定性

    Figure  6.  (a) TG curves of MGO/PEI; (b) Digital images of the compression process of MGO/PEI when loaded by different mass; (c) Water contact angel images of MGO/PEI3; (d) Time stability digital images of MGO/PEI3 in U(VI) solution

    图  7  (a) pH值对MGO/PEI吸附U(VI)的影响;(b) U(VI)在不同pH下的物种形态(C0=50 mg·L−1PCO2=38.5035 Pa);(c)接触时间对MGO/PEI吸附U(VI)的影响;(d)接触时间对MGO/PEI去除U(VI)的影响

    Figure  7.  (a) Effect of pH on the adsorption of U(VI) by MGO/PEI; (b) Species morphology of U(VI) at different pH (C0=50 mg·L−1, PCO2=38.5035 Pa); (c) Effect of contact time on the adsorption of U(VI) by MGO/PEI; (d) Effect of contact time on the removal rate of U(VI) by MGO/PEI

    qe—Equilibrium adsorption capacity; t—Adsorption time; C0—Initial concentration; Pco2—Atmospheric pressure of dioxide in the air

    图  8  准一级动力学模型 (a)、准二级动力学模型 (b)、Elovich模型 (c)、粒子内扩散模型 (d)

    Figure  8.  Pseudo-first order kinetics model (a), Pseudo-second order kinetics model (b), Elovich model (c), Internal diffusion model (d)

    qt—Adsorption capacity at time t

    图  9  MGO/PEI对U(VI)的Langmuir和Freundlich吸附等温模型

    Figure  9.  Langmuir and Freundlich adsorption isothermal models of U(VI) on MGO/PEI

    Ce—Concentration at adsorption equilibrium

    图  10  温度对MGO/PEI吸附U(VI)的影响

    Figure  10.  Effect of temperature on the adsorption of U(VI) by MGO/PEI

    Kd—Distribution coefficient; T—Kelvin temperature

    图  11  吸附前后MGO/PEI的XPS谱图对比:(a)全谱;(b) U4f精细谱;(c) C1s精细谱;(d) N1s精细谱;(e) O1s精细谱

    Figure  11.  XPS spectra of MGO/PEI before and after adsorption: (a) Survey scan; High resolution scans of U4f (b), C1s (c), N1s (d), O1s (e)

    图  12  吸附后MGO/PEI的SEM图像及EDS能谱图

    Figure  12.  SEM image and EDS of MGO/PEI after adsorption

    图  13  MGO/PEI对U(VI)的洗脱性能 (a) 和循环利用性能 (b)

    Figure  13.  Elution performance (a) and recycling performance (b) of MGO/PEI on U(VI)

    图  14  MGO/PEI在混合溶液下的吸附量 (a)、去除率及分配系数Kd (b)

    Figure  14.  Adsorption capacity (a), removal rate and distribution coefficient Kd (b) of MGO/PEI in mixed solution

    表  1  不同吸附剂的PEI掺杂量

    Table  1.   PEI doping amount of different adsorbents

    Adsorbent Doping mass ratio
    MCC GO PEI
    GO/PEI 1 1
    MGO/PEI1 1 1 1
    MGO/PEI2 1 1 3
    MGO/PEI3 1 1 5
    MGO/PEI4 1 1 7
    下载: 导出CSV

    表  2  MGO/PEI的Mapping元素含量

    Table  2.   Mapping element content of MGO/PEI

    AdsorbentElements content/at%
    CNO
    MGO/PEI187.816.755.44
    MGO/PEI285.478.715.72
    MGO/PEI384.649.565.80
    下载: 导出CSV

    表  3  MGO/PEI对U(VI)的准一级、准二级和Elovich动力学参数

    Table  3.   Pseudo-first order kinetic, Pseudo-second order kinetic and Elovich kinetic parameters of U(VI) on MGO/PEI

    Adsorbentqe, exp./
    (mg·g−1)
    Pseudo-first order modelPseudo-second order modelElovich model
    qe,cal./(mg·g−1)k1/min−1R2qe,cal./(mg·g−1)k2/(g·mg−1·min−1)R2α/(mg·g−1·min−1)β/(mg·g−1)R2
    MGO/PEI1104.38 93.641.51×10−10.94102.581.76×10−30.975.36×1015.89×10−20.95
    MGO/PEI2246.57240.544.55×10−10.95250.603.15×10−30.992.02×1054.55×10−20.70
    MGO/PEI3249.47246.705.71×10−10.96251.584.18×10−30.982.24×1055.48×10−20.69
    Notes: qe, exp.—Experimental equilibrium adsorption capacity; qe, cal.—Calculated equilibrium adsorption capacity; k1—Rate constants of Pseudo-first-order model; k2—Rate constants of Pseudo-second-order model; α—Initial adsorption rate of Elovich model; β—Desorption constant of Elovich model; R2—Fitting constant.
    下载: 导出CSV

    表  4  MGO/PEI对U(VI)离子内扩散动力学参数

    Table  4.   Internal diffusion kinetic parameters of U(VI) on MGO/PEI


    Adsorbent
    Intraparticle diffusion model
    ki1
    /(mg·g−1·min1/2)
    R2ki2
    /(mg·g−1·min1/2)
    R2
    MGO/PEI118.920.842.360.88
    MGO/PEI235.490.860.430.85
    MGO/PEI331.720.740.040.36
    Note: kiRate constants of Webber-Morris model.
    下载: 导出CSV

    表  5  MGO/PEI对U(VI)的吸附等温模型参数

    Table  5.   Adsorption isothermal model parameters of U(VI) on MGO/PEI

    AdsorbentLangmuir modelFreundlich model
    qm/(mg·g−1)kL/(L·mg−1)R2kF/((mg·g−1)·(mg·L−1)−1/n)nR2
    MGO/PEI1 179.530.020.95 18.262.430.84
    MGO/PEI2 537.290.840.91269.056.250.89
    MGO/PEI31027.010.400.97392.984.540.78
    Notes: qm—Constants for adsorption capacity of Langmuir model; kL—Constants for affinity of Langmuir model; kF—Constant of Freundlich model; n—Favorability factor of the adsorption.
    下载: 导出CSV

    表  6  MGO/PEI对U(VI)的热力学参数

    Table  6.   Thermodynamics parameters of U(VI) on MGO/PEI

    AdsorbentΔHο/(kJ·mol−1)ΔSο/(kJ·mol−1)ΔGο/(kJ·mol−1)
    298 K308 K318 K328 K338 K
    MGO/PEI15.0730.48−33.40−35.91−38.47−41.00−43.53
    MGO/PEI20.8720.53−43.65−45.36−47.07−48.77−50.48
    MGO/PEI30.9421.90−46.47−48.29−50.11−51.93−53.75
    Notes: ΔHο—Heat of the adsorption; ΔSο—Standard entropy change; ΔGο—Gibbs free energy of adsorption.
    下载: 导出CSV

    表  7  不同气凝胶复合吸附剂对U(VI)的吸附性能比较

    Table  7.   Comparison of U(VI) adsorption performance of different aerogel composite adsorbents

    AdsorbentpHAdsorption time/minAdsorption capacity/(mg·g−1)Adsorption
    mechanism
    Refs.
    CNFs aerogels5.0100 440.60Carboxyl coordination complex[38]
    GONRs aerogels4.5 60 430.60Oxygen functional groups chemical adsorption[39]
    CS-PTADMA3 aerogels6.0480 160.00Coordination and electrostatic adsorption[40]
    MgO-N aerogels4.01001061.80Electrical interaction and surface complexation[41]
    GO@PDA/CS aerogels6.0 50 415.90Coordination of nitrogen and oxygen functional groups[42]
    IAA-CTSA aerogels6.5360 847.50Cation-π interaction, surface complexation and electrostatic interaction[43]
    Pr2O3 aerogels7.0240 770.60Inner-sphere surface complexation[44]
    MGO/PEI aerogels6.0 401027.01Complexation of amide carbonyl and hydroxyl function groupsThis work
    Notes: CNFs aerogels—Cellulose nanofibers aerogels; GONRs aerogels—Graphene oxide nanoribbons aerogels; CS-PTADMA3 aerogels—Chitosan-based aerogels; GO@PDA/CS aerogels—Chitosan crosslinked dopamine modified graphene oxide aerogels; IAA-CTSA aerogels—Indole-modified cross-linked chitosan aerogel.
    下载: 导出CSV
  • [1] BAEK J. Do nuclear and renewable energy improve the environment? Empirical evidence from the United States[J]. Ecological Indicators,2016,66:352-356. doi: 10.1016/j.ecolind.2016.01.059
    [2] KONG L J, ZHU Y T, WANG M, et al. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC[J]. Journal of Hazardous Materials,2016,320:435-441. doi: 10.1016/j.jhazmat.2016.08.060
    [3] LI Z J, WANG L, YUAN L Y, et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite[J]. Journal of Hazardous Materials,2015,290:26-33. doi: 10.1016/j.jhazmat.2015.02.028
    [4] SEMNANI F, ASADI Z, SAMADFAM M, et al. Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: Effects of pH, contact time, temperature and presence of phosphate[J]. Annals of Nuclear Energy,2012,48:21-24. doi: 10.1016/j.anucene.2012.05.010
    [5] EBAID Y Y, NASR M M, SANTOS J K B, et al. Behavior of uranium series in groundwater of the Wajid Formation, Wadi AdDawasir, Saudi Arabia[J]. Environmental Monitoring and Assessment,2020,192(9):1-13.
    [6] MISHRA S, MAITY S, BHALKE S, et al. Thermodynamic and kinetic investigations of uranium adsorption on soil[J]. Journal of Radioanalytical and Nuclear Chemistry,2012,294(1):97-102. doi: 10.1007/s10967-011-1506-z
    [7] CACCIN M, GIACOBBO F, DA ROS M, et al. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon[J]. Journal of Radioanalytical and Nuclear Chemistry,2013,297(1):9-18. doi: 10.1007/s10967-012-2305-x
    [8] WANG M M, QIU J, TAO X Q, et al. Effect of pH and ionic strength on U(IV) sorption to oxidized multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,288(3):895-901. doi: 10.1007/s10967-011-1018-x
    [9] RETHINASABAPATHY M, KANG S M, JANG S C, et al. Three-dimensional porous graphene materials for environmental applications[J]. Carbon Letters,2017,22(1):1-13.
    [10] WANG H, SUN K, TAO F, et al. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells[J]. Angewandte Chemie International Edition,2013,52(35):9210-9214. doi: 10.1002/anie.201303497
    [11] ZHAO Q, ZHU X Y, CHEN B L. Stable graphene oxide/poly(ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water[J]. Chemical Engineering Journal,2018,334:1119-1127. doi: 10.1016/j.cej.2017.11.053
    [12] NARDECCHIA S, CARRIAZO D, FERRER M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications[J]. Chemical Society Reviews,2013,42(2):794-830. doi: 10.1039/C2CS35353A
    [13] ZHAO Q A, CHEN B L. Concurrent enhancement of structure stability and adsorption capacity of freeze-dried graphene oxide aerogels via the removal of oxidation debris nanoparticles on nanosheets[J]. Environmental Science: Nano,2021,8(4):1000-1009. doi: 10.1039/D0EN01135E
    [14] TANGTUBTIM S, SAIKRASUN S. Adsorption behavior of polyethyleneimine-carbamate linked pineapple leaf fiber for Cr(VI) removal[J]. Applied Surface Science,2019,467-468:596-607. doi: 10.1016/j.apsusc.2018.10.204
    [15] LIANG X T, LIANG B, WEI J Y, et al. A cellulose-based adsorbent with pendant groups of quaternary ammonium and amino for enhanced capture of aqueous Cr(VI)[J]. International Journal of Biological Macromolecules,2020,148:802-810. doi: 10.1016/j.ijbiomac.2020.01.184
    [16] WANG X, FENG J H, CAI Y W, et al. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution[J]. Science of the Total Environment,2020,708:134575. doi: 10.1016/j.scitotenv.2019.134575
    [17] KANI A N, DOVI E, ARYEE A A, et al. Polyethylenimine modified tiger nut residue for removal of Congo red from solution[J]. Desalination and Water Treatment,2021,215:209-221. doi: 10.5004/dwt.2021.26765
    [18] O'CONNELL D W, BIRKINSHAW C, O'DWYER T F. Heavy metal adsorbents prepared from the modification of cellulose: A review[J]. Bioresource Technology,2008,99(15):6709-6724. doi: 10.1016/j.biortech.2008.01.036
    [19] LI M Z, WANG X Y, ZHAO R, et al. A novel graphene-based micro/nano architecture with high strength and conductivity inspired by multiple creatures[J]. Scientific Reports,2021,11(1):1387. doi: 10.1038/s41598-021-80972-8
    [20] HUANG B, LIN F C, TANG L R, et al. Research advances of functional cellulose-based hydrogels and its applications[J]. Journal of Forestry Engineering,2022,7(2):1-13.
    [21] WANG X Y, WAN K, XIE P B, et al. Ultralight, high capacitance, mechanically strong graphene-cellulose aerogels[J]. Molecules, 2021, 26(16): 4891.
    [22] JIANG Q S, KACICA C, SOUNDAPPAN T, et al. An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors[J]. Journal of Materials Chemistry A,2017,5(27):13976-13982. doi: 10.1039/C7TA03824K
    [23] STOBINSKI L, LESIAK B, MALOLEPSZY A, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,195:145-154. doi: 10.1016/j.elspec.2014.07.003
    [24] ANDONOVIC B, ADEMI A, GROZDANOV A, et al. Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data[J]. Beilstein Journal of Nanotechnology,2015,6:2113-2122. doi: 10.3762/bjnano.6.216
    [25] WANG X Y, XIE P B, HE L, et al. Ultralight, mechanically enhanced, and thermally improved graphene-cellulose-polyethyleneimine aerogels for the adsorption of anionic and cationic dyes[J]. Nanomaterials, 2022, 12(10): 1727.
    [26] KANG Y J, CHUN S J, LEE S S, et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano,2012,6(7):6400-6406. doi: 10.1021/nn301971r
    [27] KIM H, NAMGUNG R, SINGHA K, et al. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool[J]. Bioconjugate Chemistry,2011,22(12):2558-2567. doi: 10.1021/bc200397j
    [28] XIE X Q, WANG Y F, XIONG Z, et al. Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres[J]. Journal of Radioanalytical and Nuclear Che-mistry,2020,326(3):1867-1877. doi: 10.1007/s10967-020-07455-4
    [29] ZHOU X H, CHEN Z X, YAN D H, et al. Deposition of Fe-Ni nanoparticles on polyethyleneimine-decorated graphene oxide and application in catalytic dehydrogenation of ammonia borane[J]. Journal of Materials Chemistry,2012,22(27):13506-13516. doi: 10.1039/c2jm31000g
    [30] ZHANG Y, CHEN B, ZHANG L M, et al. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide[J]. Nanoscale,2011,3(4):1446-1450. doi: 10.1039/c0nr00776e
    [31] GENG J J, YIN Y W, LIANG Q W, et al. Polyethyleneimine cross-linked graphene oxide for removing hazardous hexavalent chromium: Adsorption performance and mechanism[J]. Chemical Engineering Journal,2019,361:1497-1510. doi: 10.1016/j.cej.2018.10.141
    [32] LIU H Y, KUILA T, KIM N H, et al. In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties[J]. Journal of Materials Chemistry A,2013,1(11):3739-3746. doi: 10.1039/c3ta01228j
    [33] JIANG F W, ZHAO W J, WU Y M, et al. A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications[J]. Applied Surface Science,2019,479:963-973. doi: 10.1016/j.apsusc.2019.02.193
    [34] XU H H, ZHU S D, XIA M Z, et al. Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal[J]. Journal of Hazardous Materials,2022,423:127192. doi: 10.1016/j.jhazmat.2021.127192
    [35] WANG X, LIU Q, LIU J Y, et al. 3D self-assembly polyethyleneimine modified graphene oxide hydrogel for the extraction of uranium from aqueous solution[J]. Applied Surface Science,2017,426:1063-1074. doi: 10.1016/j.apsusc.2017.07.203
    [36] LI Y, ZHANG M C, GUO X H, et al. Growth of high-quality covalent organic framework nanosheets at the interface of two miscible organic solvents[J]. Nanoscale Horizons,2018,3(2):205-212. doi: 10.1039/C7NH00172J
    [37] HOU Y, CHAI D F, LI B N, et al. Polyoxometalate-incorporated metallacalixarene@graphene composite electrodes for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11(23):20845-20853.
    [38] WANG Y, LI Y X, ZHANG Y P, et al. Nanocellulose aerogel for highly efficient adsorption of uranium(VI) from aqueous solution[J]. Carbohydrate Polymers,2021,267:118233. doi: 10.1016/j.carbpol.2021.118233
    [39] LI Y, HE H J, LIU Z C, et al. A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium(VI) and thorium(IV) adsorption[J]. Journal of Radioanalytical and Nuclear Chemistry,2021,328(1):289-298. doi: 10.1007/s10967-021-07619-w
    [40] YANG L R, HUANG C Q, LUO X, et al. Chitosan-based aerogel with anti-swelling for U(VI) adsorption from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,630:127527. doi: 10.1016/j.colsurfa.2021.127527
    [41] XIONG T, LI Q C, LI K D, et al. Construction of novel magnesium oxide aerogel for highly efficient separation of uranium(VI) from wastewater[J]. Separation and Purification Technology,2022,295:121296. doi: 10.1016/j.seppur.2022.121296
    [42] LIAO Y, WANG M, CHEN D J. Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium(VI) adsorption[J]. Industrial & Engineering Chemistry Research,2018,57(25):8472-8483.
    [43] WANG Y, AI Y Y, LIU X L, et al. Indole-functionalized cross-linked chitosan for effective uptake of uranium(VI) from aqueous solution[J]. Polymer Chemistry,2022,13(12):1751-1762. doi: 10.1039/D1PY01725J
    [44] LIAO J, LIU P, XIE Y, et al. Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution[J]. Science of the Total Environment,2021,768:144212. doi: 10.1016/j.scitotenv.2020.144212
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  113
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-31
  • 网络出版日期:  2023-01-14
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回