留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P-rGO/ENR复合材料的制备及其介电性能

李安琦 袁莹欣 刘洪福 陆鹏林 徐天怡 观姗姗

李安琦, 袁莹欣, 刘洪福, 等. P-rGO/ENR复合材料的制备及其介电性能[J]. 复合材料学报, 2023, 40(11): 6173-6181. doi: 10.13801/j.cnki.fhclxb.20230112.004
引用本文: 李安琦, 袁莹欣, 刘洪福, 等. P-rGO/ENR复合材料的制备及其介电性能[J]. 复合材料学报, 2023, 40(11): 6173-6181. doi: 10.13801/j.cnki.fhclxb.20230112.004
LI Anqi, YUAN Yingxin, LIU Hongfu, et al. Preparation and dielectric properties of P-rGO/ENR composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6173-6181. doi: 10.13801/j.cnki.fhclxb.20230112.004
Citation: LI Anqi, YUAN Yingxin, LIU Hongfu, et al. Preparation and dielectric properties of P-rGO/ENR composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6173-6181. doi: 10.13801/j.cnki.fhclxb.20230112.004

P-rGO/ENR复合材料的制备及其介电性能

doi: 10.13801/j.cnki.fhclxb.20230112.004
基金项目: 国家自然科学基金(51903133)
详细信息
    通讯作者:

    观姗姗,博士,副教授,硕士生导师,研究方向为多功能基复合材料的研发 E-mail: guanqust@163.com

  • 中图分类号: TB332

Preparation and dielectric properties of P-rGO/ENR composites

Funds: National Natural Science Foundation of China (51903133)
  • 摘要: 高介电聚合物基复合材料因其介电性能优良、质轻、易加工等优点,在储能、传感和发电等领域具有广泛的应用前景。然而如何实现高介电常数和低介电损耗兼顾仍是目前该领域一项亟待解决的重要科学问题。为此,本文基于一种在填料与基体间“搭建桥梁”的策略,以氧化石墨烯(GO)为填料,环氧化天然橡胶(ENR)胶乳为基体,植酸(PA)为改性剂,通过乳液共混协同热压原位还原法制备了具有隔离结构的ENR基介电复合材料(P-rGO/ENR)。结果表明:PA作为“桥接”剂,分别与ENR和GO中的环氧基团发生了开环反应,大大增强了GO与ENR之间的界面作用。同时,在胶乳粒子的体积排斥效应下,GO纳米片自组装并包覆在ENR胶乳微球表面,最终GO相互连接并建立了良好的三维隔离网络。在100 Hz下,GO质量分数为2wt%时,P-rGO/ENR复合材料的介电常数高达569903,电导率也达到了10−4 S/cm,且介电损耗仍保持在较低水平(<5)。

     

  • 图  1  P-rGO/ENR(50)复合薄膜、纯环氧化天然橡胶(ENR)和氧化石墨烯(GO)粉末的红外图谱

    Figure  1.  Infrared spectra of P-rGO/ENR(50) composite film, pure epoxidized natural rubber (ENR) and graphene oxide (GO) powder

    图  2  P-rGO/ENR(50)和GO的XPS图谱

    Figure  2.  XPS spectra of P-rGO/ENR(50) and GO

    图  3  P-rGO/ENR(50)复合材料断面的SEM和TEM图像

    Figure  3.  Cross-section SEM and TEM images of P-rGO/ENR(50) composites

    图  4  P-rGO/ENR(50)复合材料界面相互作用示意图

    Figure  4.  Schematic diagram of interfacial interaction of P-rGO/ENR(50) composites

    图  5  不同GO含量的P-rGO/ENR(50)的介电常数(a)及介电损耗(b)

    Figure  5.  Dielectric constant (a) and dielectric loss (b) of P-rGO/ENR(50) composites with different GO content

    图  6  不同环氧化程度P-rGO/ENR复合材料的介电性能对比

    Figure  6.  Comparison of dielectric properties of P-rGO/ENR composites with different epoxidation degrees

    图  7  rGO/ENR(50)和P-rGO/ENR(50)复合材料的介电和导电性能对比

    Figure  7.  Comparison of dielectric and conductive properties of rGO/ENR(50) and P-rGO/ENR(50) composites

    表  1  不同复合材料的成分组成

    Table  1.   Composition of different composite materials

    Composite materials Material composition
    Matrix Filler Modifying agent
    P-rGO/ENR(50) ENR latex (50%) GO PA
    P-rGO/ENR(25) ENR latex (25%) GO PA
    P-rGO/NR NR latex GO PA
    rGO/ENR(50) ENR latex (50%) GO
    Note: 50% and 25% indicate the degree of epoxidation; ENR—Epoxidized natural rubber; GO—Graphene oxide; PA—Phytic acid; NR—Natural rubber; P-rGO―Phytic acid and reduced graphene oxide.
    下载: 导出CSV
  • [1] 王继华, 柳军旺, 王春锋, 等. 聚偏氟乙烯基复合材料的制备及介电性能[J]. 复合材料学报, 2021, 38(5):1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006

    WANG Jihua, LIU Junwang, WANG Chunfeng, et al. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica,2021,38(5):1426-1434(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200922.006
    [2] 马佳晨. 含氟聚合物/钛酸钡介电复合材料的制备及性能研究[D]. 济南: 济南大学, 2020.

    MA Jiachen. Preparation and properties of fluoropolymer/BaTiO3 dielectric composites[D]. Jinan: University of Jinan, 2020(in Chinese).
    [3] 申翰林. 基于回复电压法的油浸式变压器状态检测关键技术的研究[D]. 成都: 西南交通大学, 2012.

    SHEN Hanlin. Research on the key technologies in status detection of oil-immersed transformers based on recovery voltage measurement[D]. Chengdu: Southwest Jiaotong University, 2012(in Chinese).
    [4] OOMMEN T V, PREVOST T A. Cellulose insulation in oil-filled power transformers: Part II maintaining insulation integrity and life[J]. IEEE Electrical Insulation Magazine,2006,22(2):5-14. doi: 10.1109/MEI.2006.1618996
    [5] 唐萍, 张荣, 陈志强, 等. 碳纳米管-聚乙烯复合材料的介电性能[J]. 功能高分子学报, 2016, 29(3):290-295. doi: 10.14133/j.cnki.1008-9357.2016.03.006

    TANG Ping, ZHANG Rong, CHEN Zhiqiang, et al. Dielectric properties of carbon nanotubes-polyethylene compo-sites[J]. Journal of Functional Polymers,2016,29(3):290-295(in Chinese). doi: 10.14133/j.cnki.1008-9357.2016.03.006
    [6] 张文杰. 石墨烯改性及其与橡胶复合材料制备与性能[D]. 长春: 长春工业大学, 2022.

    ZHANG Wenjie. Preparation and properties of the modified graphene and their rubber composites[D]. Changchun: Changchun University of Technology, 2022(in Chinese).
    [7] STANKOVICH S, PINER R D, CHEN X Q, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-158. doi: 10.1039/B512799H
    [8] 罗睿, 黄娇, 杨尚科, 等. 石墨烯功能化改性聚偏氟乙烯介电复合材料的制备及其性能[J]. 复合材料学报, 2022, 39(8):3815-3827. doi: 10.13801/j.cnki.fhclxb.20210916.001

    LUO Rui, HUANG Jiao, YANG Shangke, et al. Preparation and properties of graphene functionalized polyvinylidene fluoride dielectric composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3815-3827(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210916.001
    [9] SAMET M, LEVCHENKO V, BOITEUX G, et al. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteris-tic frequencies and scaling laws[J]. Journal of Chemical Physics,2015,142(19):194703. doi: 10.1063/1.4919877
    [10] 王明路, 宁南英, 张静, 等. 氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能[J]. 复合材料学报, 2016, 33(6):1192-1197. doi: 10.13801/j.cnki.fhclxb.20160107.006

    WANG Minglu, NING Nanying, ZHANG Jing, et al. Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1192-1197(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160107.006
    [11] WANG X Y, NARITA A, MÜLLEN K. Precision synthesis versus bulk-scale fabrication of graphenes[J]. Nature Reviews Chemistry,2017,2(1):1-10.
    [12] CHUNG C, KIM Y K, SHIN D, et al. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research,2013,46(10):2211-2224. doi: 10.1021/ar300159f
    [13] 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10):4580-4589.

    MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica,2022,39(10):4580-4589(in Chinese).
    [14] 齐凯, 龚龑, 李昕, 等. 氧化石墨烯膜的还原条件探究及应用[J]. 北京服装学院学报(自然科学版), 2020, 40(1):14-20. doi: 10.16454/j.cnki.issn.1001-0564.2020.01.003

    QI Kai, GONG Yan, LI Xin, et al. Study on reduction condition of graphene oxide films and its application[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition),2020,40(1):14-20(in Chinese). doi: 10.16454/j.cnki.issn.1001-0564.2020.01.003
    [15] 代坤, 张荣正, 郑国强, 等. 具有隔离结构的导电高分子复合材料的研究进展[J]. 高分子通报, 2012(6):10-17. doi: 10.14028/j.cnki.1003-3726.2012.06.003

    DAI Kun, ZHANG Rongzheng, ZHENG Guoqiang, et al. Progress on conductive polymer composites with segre-gated conductive network[J]. Polymer Bulletin,2012(6):10-17(in Chinese). doi: 10.14028/j.cnki.1003-3726.2012.06.003
    [16] LUO Y Y, ZHAO P F, YANG Q, et al. Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks[J]. Composites Science and Technology,2014,100:143-151. doi: 10.1016/j.compscitech.2014.05.037
    [17] ZHAN Y H, LAVORGNA M, BUONOCORE G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry,2012,22(21):10464-10468. doi: 10.1039/c2jm31293j
    [18] 李明伟, 杨绍斌. NiMn2O4/还原氧化石墨烯复合材料的制备及其超级电容性能[J]. 化工进展, 2021, 40(3):1545-1550.

    LI Mingwei, YANG Shaobin. Preparation of NiMn2O4/reduced graphene oxide composites and their supercapacitor properties[J]. Chemical Industry and Engineering Progress,2021,40(3):1545-1550(in Chinese).
    [19] GURZĘDA B, KRAWCZYK P. Potential oscillations affected by the electrochemical overoxidation of graphite in aqueous nitric acid[J]. Electrochimica Acta,2018,267:102-109. doi: 10.1016/j.electacta.2018.02.058
    [20] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [21] GUO Q Q, CAO J, HAN Y Y, et al. Biological phytic acid as a multifunctional curing agent for elastomers: Towards skin-touchable and flame retardant electronic sensors[J]. Green Chemistry,2017,19(14):3418-3427. doi: 10.1039/C7GC01138E
    [22] LIN T F, ZHANG X H, TANG Z H, et al. Renewable conjugated acids as curatives for high-performance rubber/silica composites[J]. Green Chemistry,2015,17(6):3301-3305. doi: 10.1039/C5GC00834D
    [23] RAZMJOOEI F, SINGH K P, BAE E J, et al. A new class of electroactive Fe- and P- functionalized graphene for oxygen reduction[J]. Journal of Materials Chemistry A,2015,3(20):11031-11039. doi: 10.1039/C5TA00970G
    [24] CARJA I D, SERBEZEANU D, VLAD-BUBULAC T, et al. A straightforward, eco-friendly and cost-effective approach towards flame retardant epoxy resins[J]. Journal of Materials Chemistry A,2014,2(38):16230-16241. doi: 10.1039/C4TA03197K
    [25] HU X S, SHEN Y, ZHANG Y T, et al. Synthesis of flower-like CuS/reduced graphene oxide (RGO) composites with significantly enhanced photocatalytic performance[J]. Journal of Alloys and Compounds,2017,695:1778-1785. doi: 10.1016/j.jallcom.2016.11.008
    [26] LI S B, ZHU T, DONG L C, et al. Boosted visible light photodegradation activity of boron doped rGO/g-C3N4 nanocomposites: The role of C—O—C bonds[J]. New Journal of Chemistry,2018,42(21):17644-17651. doi: 10.1039/C8NJ03571G
    [27] AL-GAASHANI R, NAJJAR A, ZAKARIA Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods[J]. Ceramics International,2019,45(11):14439-14448. doi: 10.1016/j.ceramint.2019.04.165
    [28] HAO Y S, SANI L A, GE T J, et al. Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel[J]. Applied Surface Science,2017,419:826-837. doi: 10.1016/j.apsusc.2017.05.079
    [29] GUO Q Q, LUO Y Y, LIU J Z, et al. A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface[J]. Journal of Materials Che-mistry C,2018,6(8):2139-2147. doi: 10.1039/C7TC05758J
    [30] LI Y H, SHI Y J, CAI F Y, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent[J]. Composites Part A: Applied Science and Manufacturing,2015,78:318-326. doi: 10.1016/j.compositesa.2015.08.031
    [31] QUAN B, LIANG X H, JI G B, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspec-tive[J]. Journal of Alloys and Compounds,2017,728:1065-1075. doi: 10.1016/j.jallcom.2017.09.082
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  98
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2022-12-30
  • 录用日期:  2023-01-03
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回