留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛/铝层合板双面电子束焊接接头界面行为及力学性能

巩鹏飞 陈洪胜 王文先 柴斐 汪卓然 高会良

巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002
引用本文: 巩鹏飞, 陈洪胜, 王文先, 等. 钛/铝层合板双面电子束焊接接头界面行为及力学性能[J]. 复合材料学报, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002
GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002
Citation: GONG Pengfei, CHEN Hongsheng, WANG Wenxian, et al. Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6439-6449. doi: 10.13801/j.cnki.fhclxb.20221221.002

钛/铝层合板双面电子束焊接接头界面行为及力学性能

doi: 10.13801/j.cnki.fhclxb.20221221.002
基金项目: 山西省重点研发计划(202102150401003);中央引导地方项目(YDZJSX2022 A018);大学生创新创业训练计划项目(20210078)
详细信息
    通讯作者:

    陈洪胜,博士,副教授,硕士生导师,研究方向为先进金属基复合材料制备及成形技术 E-mail: chenhongsheng@tyut.edu.cn

  • 中图分类号: TB331

Interface behavior and mechanical properties of double-sided electron beam welded joint of Ti/Al laminate plates

Funds: Key R&D Plan of Shanxi Province (202102150401003); Central Government Guides Local Projects (YDZJSX2022 A018); Innovation and Entrepreneurship Training Program for College Students (20210078)
  • 摘要: 钛/铝层状复合板兼具了钛合金高强耐腐蚀和铝合金轻质、价格低廉的多重优势,在航空航天、汽车制造、水下装备等领域具有广泛的潜在应用前景。为探究Ti/Al层状复合构件的连接行为,采用真空电子束焊(EBW)对Ti/Al层状复合板进行焊接,对焊接接头的微观组织、界面行为及力学性能进行了研究。研究结果表明:相比于单面焊,先Al后Ti双面焊可以有效提高Ti/Al层状复合板焊接接头的力学性能,焊接接头界面处无明显缺陷,在焊接接头Ti/Al界面处存在明显的金属间化合物(IMCs)层,化合物的形成顺序分别为TiAl3、TiAl、TiAl2。其中,TiAl2是TiAl作为中间物经过一系列反应的产物。在保持Al层电子束流为43 mA不变条件下,随着Ti层焊接电子束流的增大,焊接接头的抗拉强度和延伸率均呈现先增大后减小的趋势,抗拉强度和延伸率最高可达304.6 MPa和10.4%,达到了母材强度的57%,焊接接头的断裂机制主要为在IMCs位置产生的脆性断裂。

     

  • 图  1  示意图:(a) 热压工艺流程;(b) 电子束焊接(EBW)设备原理;(c) 焊接方式

    TC4—Ti6Al4V; LMCs—Laminar composites

    Figure  1.  Schematic diagram: (a) Hot pressing process flow; (b) Principle of vacuum electron beam welding (EBW) equipment; (c) Welded types

    图  2  Type A焊接接头微观形貌: ((a), (c)) 60 mA;((b), (d)) 70 mA

    BM—Base metal; HAZ—Heat affected zone; FZ—Fusion zone

    Figure  2.  Microstructure of Type A welded joint: ((a), (c)) 60 mA; ((b), (d)) 70 mA

    图  3  Type B焊接接头微观组织形貌:(a) Ti/Al界面处;(b) Ti层FZ处;(c) Al层FZ处;(d) Al层HAZ和BM处

    Figure  3.  Microstructure of Type B welded joint: (a) Ti/Al interface; (b) Ti layer FZ; (c) Al layer FZ; (d) Al layer HAZ and BM

    图  4  Type C焊接接头成形示意图:((a)~(c)) 70 mA;((d)~(f)) 75 mA;((g)~(i)) 80 mA

    IMCS—Intermetallic compounds

    Figure  4.  Type C welding joint forming diagram: ((a)-(c)) 70 mA; ((d)-(f)) 75 mA; ((g)-(i)) 80 mA

    图  5  焊接接头成形示意图:(a) Type A;(b) Type B;(c) Type C

    Figure  5.  Welding joint forming diagram: (a) Type A; (b) Type B; (c) Type C

    图  6  焊接接头熔合区界面处EDS图谱:(a) 界面处SEM图像;(b) 面扫图;(c) Line 1线扫图;(d) Line 2线扫图;(e) 点扫图

    Figure  6.  EDS spectrum at the interface of fusion zone: (a) SEM image at the interface; (b) Map scanning; (c) Line scanning of Line 1; (d) Line scanning of Line 2; (e) Point scanning

    图  7  Type C焊接接头的XRD图谱

    Figure  7.  XRD patterns of Type C welded joint

    图  8  Type C焊接接头显微硬度:(a) 沿焊缝深度方向;(b) 垂直焊缝方向

    Figure  8.  Type C microhardness of welded joint: (a) Along the depth of the weld; (b) Vertical weld direction

    图  9  Type C焊接接头拉伸性能:(a) 应力-应变曲线;(b) 极限抗拉强度(UTS)、屈服强度(YS)和延伸率(EL)

    R—Radius

    Figure  9.  Type C tensile properties of welded joints: (a) Stress-strain curves; (b) Ultimate tensile strength (UTS), yield strength (YS) and elongation (EL)

    图  10  Type C焊接接头断口形貌:(a) 宏观图;(b) 断口EDS图谱;(c) Ti/Al界面处;(d) 图10(c)中(d)处的放大图;(e) 图10(c)EDS面扫图;(f) Ti层;((g), (h)) Al层

    Figure  10.  Type C fracture profile of welded joint: (a) Macrograph; (b) Fracture EDS; (c) Ti/Al interface; (d) Put a large area of (d) in Fig.10(c); (e) EDS scanning map of Fig.10(c); (f) Ti layer; ((g), (h)) Al layer

    表  1  TC4钛合金化学成分

    Table  1.   Chemical composition of TC4 titanium alloy wt%

    TiAlVFeOCNH
    Balance6.24.00.250.150.0980.010.004
    下载: 导出CSV

    表  2  6061铝合金化学成分

    Table  2.   Chemical composition of 6061 aluminum alloy wt%

    AlMgTiSiZnFeCuMnCr
    Balance1.050.10.620.180.410.20.120.17
    下载: 导出CSV

    表  3  EBW工艺参数

    Table  3.   EBW process parameters

    Electron
    beam
    current/mA
    Single-side welding
    (Type A)
    Double-side welding
    Type BType C
    Ti side60/70/8050/60/6570/75/80
    Al side40/4543/45
    下载: 导出CSV

    表  4  不同温度下Ti-Al IMCs的吉布斯自由能[19]

    Table  4.   Gibbs free energy of Ti-Al IMCs at different temperatures[19]

    IMCsGibbs free energy ΔGf
    TiAl3−40349.6+10.37T
    TiAl−37445.1+16.79T
    Ti3Al−29633.6+6.71T
    TiAl2−43858.4+11.02T
    Ti2Al5−40495.4+9.53T
    Note: T—Temperature.
    下载: 导出CSV
  • [1] 李蕊, 王浩. Ti811和TC4钛合金基材属性对激光熔覆自润滑耐磨复合涂层组织与性能的影响[J]. 复合材料学报, 2022, 39(12): 5984-5995.

    LI Rui, WANG Hao. Effect of Ti811 and TC4 titanium alloy substrate on microstructures and properties of laser cladding self-lubricating composite coatings[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5984-5995(in Chinese).
    [2] CHEN C, SUN G R, DU W B, et al. Influence of heat input on the appearance, microstructure and microhardness of pulsed gas metal arc welded Al alloy weldment[J]. Journal of Materials Research and Technology,2022,21:121-130. doi: 10.1016/j.jmrt.2022.09.028
    [3] MO T Q, CHEN J, CHEN Z J, et al. Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion arbed Al/Ti laminated composites[J]. Materials Characterization,2020,170:110731. doi: 10.1016/j.matchar.2020.110731
    [4] XU M F, CHEN Y H, ZHANG T M, et al. Microstructure evolution and mechanical properties of wrought/wire arc additive manufactured Ti-6Al-4V joints by electron beam welding[J]. Materials Characterization,2022,190:112090. doi: 10.1016/j.matchar.2022.112090
    [5] 陈国庆, 树西, 柳峻鹏, 等. 真空电子束焊接技术应用研究现状[J]. 精密成形工程, 2018, 10(1):31-39. doi: 10.3969/j.issn.1674-6457.2018.01.004

    CHEN Guoqing, SHU Xi, LIU Junpeng, et al. Development status of applications of vacuum electron beam welding technology[J]. Journal of Netshape Forming Engineering,2018,10(1):31-39(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.01.004
    [6] 范林好. Re/GH3128电子束焊接接头组织和力学性能研究[D]. 上海: 上海工程技术大学, 2021.

    FAN Linhao. Study on microstructure and mechanical properties of Re/GH3128 electron beam welded joint[D]. Shanghai: Shanghai University of Engineering Science, 2021(in Chinese).
    [7] 曲树平. 7075/TC4(TA1)异种金属电子束焊接工艺及机制研究[D]. 兰州: 兰州理工大学, 2019.

    QU Shuping. Study on electron beam welding process and mechanism of 7075/TC4(TA1) dissimilar metals[D]. Lanzhou: Lanzhou University of Technology, 2019(in Chinese).
    [8] 赵啸, 高恩志, 徐荣正. 铜/铝异质金属层状复合板搅拌摩擦焊接技术研究[J]. 稀有金属材料与工程, 2022, 51(5):1752-1758.

    ZHAO Xiao, GAO Enzhi, XU Rongzheng. Research on friction stir welding technology of Al-Cu composite plates[J]. Rare Metal Materials and Engineering,2022,51(5):1752-1758(in Chinese).
    [9] 李福山. 铝/铜复合板电子束焊接技术研究[D]. 沈阳: 沈阳航空航天大学, 2020.

    LI Fushan. Study on electron beam welding technology of Al/Cu composite plate[D]. Shenyang: Shenyang Aerospace University, 2020(in Chinese).
    [10] 王毅. Ti/Al异种金属电子束熔钎焊重熔改性连接工艺研究[D]. 南京: 南京理工大学, 2018.

    WANG Yi. Study on modified bonding technology of Ti/Al dissimilar metals by electron beam welding and brazing[D]. Nanjing: Nanjing University of Science and Technology, 2018(in Chinese).
    [11] 吴新勇, 廖娟, 薛新, 等. 钛/铝异种合金脉冲激光焊接接头裂纹产生机制[J]. 精密成形工程, 2018, 10(6):95-101. doi: 10.3969/j.issn.1674-6457.2018.06.016

    WU Xinyong, LIAO Juan, XUE Xin, et al. Mechanism of crack generation inpulsed laser welded joint of titanium/aluminum dissimilar alloy[J]. Journal of Netshape Forming Engineering,2018,10(6):95-101(in Chinese). doi: 10.3969/j.issn.1674-6457.2018.06.016
    [12] 吴新勇. 钛/铝异种轻合金脉冲激光焊接工艺及接头性能研究[D]. 福州: 福州大学, 2020.

    WU Xinyong. Study on pulse laser welding technology and joint properties of Ti/Al dissimilar light alloy[D]. Fuzhou: Fuzhou University, 2020(in Chinese).
    [13] LIU J P, CHEN G Q, MA Y R, et al. Formation mechanism and control of welding cracks in dissimilar materials of Ni50Ti50 SMA and Ti-6Al-4V[J]. Journal of Manufacturing Processes,2022,75:552-564. doi: 10.1016/j.jmapro.2022.01.014
    [14] 宋玉强, 马圣东, 李世春. Al/Ti扩散层形成的扩散溶解机制[J]. 焊接学报, 2014, 35(6):49-52, 89,115.

    SONG Yuqiang, MA Shengdong, LI Shichun. Diffusion and dissolve mechanism of Al/Ti diffusion layer formation[J]. Transactions of the China Welding Institution,2014,35(6):49-52, 89,115(in Chinese).
    [15] 韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J]. 中国有色金属学报, 2020, 30(6):1270-1280. doi: 10.11817/j.ysxb.1004.0609.2020-35787

    HAN Jianchao, LIU Chang, JIA Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals,2020,30(6):1270-1280(in Chinese). doi: 10.11817/j.ysxb.1004.0609.2020-35787
    [16] LU R H, LIU Y T, YAN M, et al. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding[J]. Journal of Materials Processing Technology,2021,297:117246. doi: 10.1016/j.jmatprotec.2021.117246
    [17] PUKENAS A, CHEKHONIN P, SCHARNWEBER J, et al. TiAl-based semi-finished material produced by reaction annealing of Ti/Al layered composite sheets[J]. Materials Today Communications,2022,30:103083. doi: 10.1016/j.mtcomm.2021.103083
    [18] GLASSER L. Additive single atom values for thermodynamics II: Enthalpies, entropies and Gibbs energies for formation of ionic solids[J]. Chemical Thermodynamics and Thermal Analysis,2022,7:100069. doi: 10.1016/j.ctta.2022.100069
    [19] KATTNER U R, LIN J C, CHANG Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transactions A,1992,23(8):2081-2090. doi: 10.1007/BF02646001
    [20] 孙彦波, 马凤梅, 肖文龙, 等. Ti-Al系金属间化合物基叠层结构材料的制备技术与组织性能特征[J]. 航空材料学报, 2014, 34(4):98-111. doi: 10.11868/j.issn.1005-5053.2014.4.010

    SUN Yanbo, MA Fengmei, XIAO Wenlong, et al. Preparation and performance characteristics for multilayered Ti-Al intermetallics alloys[J]. Journal of Aeronautical Materials,2014,34(4):98-111(in Chinese). doi: 10.11868/j.issn.1005-5053.2014.4.010
    [21] 袁树春, 章文滔, 陈玉华, 等. 焊接工艺参数对Ti/Al异种金属磁脉冲焊接接头微观组织及力学性能的影响[J]. 电焊机, 2022, 52(6):118-125. doi: 10.7512/j.issn.1001-2303.2022.06.15

    YUAN Shuchun, ZHANG Wentao, CHEN Yuhua, et al. Effects of welding parameters on microstructure and mechanical properties of Ti/Al dissimilar metal magnetic pulse welded joints[J]. Electric Welding Machine,2022,52(6):118-125(in Chinese). doi: 10.7512/j.issn.1001-2303.2022.06.15
    [22] 张立辉. 使用高熵合金填充材料的钛合金/铝合金激光搭接焊接头组织与性能研究[D]. 长春: 吉林大学, 2022.

    ZHANG Lihui. Microstructure and properties of laser lap joints of titanium/aluminum alloy using high entropy alloy filler materials[D]. Changchun: Jilin University, 2022(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  387
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2022-12-13
  • 录用日期:  2022-12-14
  • 网络出版日期:  2022-12-23
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回