留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网格式柔性应变传感器的制备及应用

许利强 孙权 詹政 杨润洪 唐智杰 鹿业波

许利强, 孙权, 詹政, 等. 网格式柔性应变传感器的制备及应用[J]. 复合材料学报, 2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002
引用本文: 许利强, 孙权, 詹政, 等. 网格式柔性应变传感器的制备及应用[J]. 复合材料学报, 2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002
XU Liqiang, SUN Quan, ZHAN Zheng, et al. Fabrication and application of mesh flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002
Citation: XU Liqiang, SUN Quan, ZHAN Zheng, et al. Fabrication and application of mesh flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002

网格式柔性应变传感器的制备及应用

doi: 10.13801/j.cnki.fhclxb.20220804.002
基金项目: 嘉兴市科技计划项目(2021 AY10061);浙江省大学生创新活动计划(2022 R417 A032);嘉兴学院大学生科研训练计划(CD8517211438)
详细信息
    通讯作者:

    鹿业波,博士,教授,研究方向为柔性传感器 E-mail: luyebo@zjxu.edu.cn

  • 中图分类号: TB332

Fabrication and application of mesh flexible strain sensor

Funds: Science and Technology Bureau Project of Jiaxing (2021 AY10061); Xinmiao Talents Program of Zhejiang (2022 R417 A032); SRT Program of Jiaxing University (CD8517211438)
  • 摘要: 鉴于柔性应变传感器在人体运动监测、健康监测等领域的广泛应用,设计出兼具高灵敏度和大应变范围的柔性应变传感器具有重要的意义。本文基于Ecoflex-石墨烯复合材料,通过模板法制备了四边形和六边形网格式柔性应变传感器。通过对比两种不同网格结构传感器的应变范围与拉伸断裂极限,发现六边形网格柔性应变传感器的综合性能更优异,并在80%应变条件下进行拉伸/释放疲劳寿命检测,此传感器表现出良好的可靠性,同时该传感器在手肘关节运动和人体不同呼吸状况监测方面表现良好。将六边形网格柔性应变传感器组合构建多通道检测系统,实现了多种手势识别,这在人工智能和运动识别领域具有广阔的市场应用前景。

     

  • 图  1  网格柔性应变传感器制备流程图

    Figure  1.  Fabrication flowchart of mesh flexible strain sensor

    图  2  (a) 传感器表面SEM图像;((b)~(d)) 传感器EDS元素分布图;(e) Ecoflex与Ecoflex-石墨烯的XRD图谱

    Figure  2.  (a) SEM images of sensor surface; ((b)-(d)) Sensor EDS element distribution map; (e) XRD patterns of Ecoflex and Ecoflex-graphene

    图  3  (a) 四边形网格传感器模型有限元分析;(b) 六边形网格传感器模型有限元分析

    E—Total strain

    Figure  3.  (a) Finite element analysis of quadrilateral mesh sensor model; (b) Finite element analysis of hexagonal mesh sensor model

    图  4  (a) 传感器断裂极限载荷与拉伸应变关系曲线;(b) 传感器电阻变化率与拉伸应变关系曲线;((c), (d)) 传感器断裂实物图;(e) 六边形网格柔性应变传感器20000次拉伸/释放曲线;(f) 六边形网格柔性应变传感器在80%应变下响应与恢复时间

    Figure  4.  (a) Relationship curve between the ultimate breaking load and the tensile strain of the sensor; (b) Relationship curve between sensor resistance changes rate and tensile strain; ((c), (d)) Sensor fracture diagram; (e) Hexagonal mesh flexible strain sensor 20000 stretch/release curve; (f) Response and recovery time of hexagonal mesh flexible strain sensor under 80% strain

    图  5  (a) 手肘弯曲图;(b) 手肘弯曲20°、35°、50°、65°、90°信号反馈曲线;(c) 手肘由0°到90°连续弯曲信号反馈曲线

    Figure  5.  (a) Elbow bend; (b) Elbow bending 20°, 35°, 50°, 65°, 90° signal feedback curve; (c) Elbow from 0° to 90° continuous bending signal feedback curve

    图  6  (a) 人体呼吸检测图;(b) 浅呼吸、正常呼吸和深呼吸的信号反馈曲线

    Figure  6.  (a) Human breath detection; (b) Signal feedback curve of shallow breathing, normal breathing and deep breathing

    图  7  (a) 石头、剪刀、布手势与发光二极管(LED)显示结果;(b) 石头、剪刀、布手势识别信号曲线

    ADC—Analog-to-digital converter

    Figure  7.  (a) Rock-scissors-paper gesture and light-emitting diode (LED) display results; (b) Rock-scissors-paper gesture recognition signal curves

    表  1  Ecoflex-石墨烯不同含量电阻率与拉伸应变参数对比

    Table  1.   Comparison of resistivity and tensile strain parameters of different Ecoflex-graphene contents

    SampleMass ratio of
    Ecoflex : graphene
    Electrical resistivity/(Ω·m)Strain/%
    a 1∶0.10 10350.00 460
    b 1∶0.11 2420.00 320
    c 1∶0.12 58.91 245
    d 1∶0.13 1.94 160
    e 1∶0.14 1.05 114
    f 1∶0.15 0.68 95
    下载: 导出CSV
  • [1] ZHAO S, LI J, CAO D, et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features[J]. ACS Applied Materials & Interfaces,2017,9(14):12147-12164.
    [2] WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small,2017,13(25):1602790. doi: 10.1002/smll.201602790
    [3] TRICOLI A, NASIRI N, DE S. Wearable and miniaturized sensor technologies for personalized and preventive medicine[J]. Advanced Functional Materials,2017,27(15):1605271. doi: 10.1002/adfm.201605271
    [4] JASON N N, HO M D, CHENG W. Resistive electronic skin[J]. Journal of Materials Chemistry C,2017,5(24):5845-5866. doi: 10.1039/C7TC01169E
    [5] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J]. Advanced Materials,2016,28(22):4338-4372. doi: 10.1002/adma.201504244
    [6] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755
    [7] XU F, LI X, SHI Y, et al. Recent developments for flexible pressure sensors: A review[J]. Micromachines,2018,9(11):1-17.
    [8] KHAN S, ALI S, BERMAK A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications[J]. Sensors,2019,19(5):1-34. doi: 10.1109/JSEN.2018.2885905
    [9] HEO J S, HOSSAIN M F, KIM I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review[J]. Sensors,2020,20(14):1-29. doi: 10.1109/JSEN.2020.2999769
    [10] XU H, ZHANG M K, LU Y F, et al. Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions[J]. Advanced Materials Technologies,2020,5(2):1901056. doi: 10.1002/admt.201901056
    [11] YIN B, WEN Y, HONG T, et al. Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame[J]. ACS Applied Materials & Interfaces,2017,9(37):32054-32064.
    [12] AN B, MA Y, LI W, et al. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing[J]. Chemical Communications,2016,52(73):10948-10951. doi: 10.1039/C6CC05910D
    [13] ZHOU K, ZHANG C, XIONG Z, et al. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor[J]. Advanced Functional Materials,2020,30(38):2070257. doi: 10.1002/adfm.202070257
    [14] YANG T, WANG W, HUANG Y, et al. Accurate monitoring of small strain for timbre recognition via ductile fragmentation of functionalized graphene multilayers[J]. ACS Applied Materials & Interfaces,2020,12(51):57352-57361.
    [15] SUN X, SUN J, LI T, et al. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites[J]. Nano-Micro Letters,2019,11(1):57. doi: 10.1007/s40820-019-0288-7
    [16] LEE H, KIM M J, KIM J H, et al. Highly flexible graphene nanoplatelet-polydimethylsiloxane strain sensors with proximity-sensing capability[J]. Materials Research Express,2020,7(4):054603.
    [17] POPOV V I, KOTIN I A, NEBOGATIKOVA N A, et al. Graphene-PEDOT : PSS humidity sensors for high sensitive, low-cost, highly-reliable, flexible, and printed electronics[J]. Materials,2019,12(21):1-9.
    [18] JEONG S, HEO S, KIM H J. Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes[J]. Journal of Materials Science: Materials in Electronics,2021,32(4):4727-4736. doi: 10.1007/s10854-020-05210-9
    [19] ALI S, MADDIPATLA D, NARAKATHU B B, et al. Flexible capacitive pressure sensor based on PDMS substrate and Ga-In liquid metal[J]. IEEE Sensors Journal,2019,19(1):97-104. doi: 10.1109/JSEN.2018.2877929
    [20] ZHANG Y, REN E, TANG H, et al. Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors[J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14145-14156. doi: 10.1007/s10854-020-03969-5
    [21] SLOBODIAN P, DANOVA R, OLEJNIK R, et al. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring[J]. Polymers for Advanced Technologies,2019,30(7):1891-1898. doi: 10.1002/pat.4621
    [22] 金凡, 吕大伍, 张天成, 等. 基于微结构的柔性压力传感器设计、制备及性能[J]. 复合材料学报, 2021, 38(10):3133-3150. doi: 10.13801/j.cnki.fhclxb.20210520.004

    JIN Fan, LV Dawu, ZHANG Tiancheng, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica,2021,38(10):3133-3150(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210520.004
    [23] ZHANG S, WEN L, WANG H, et al. Vertical CNT-Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors[J]. Journal of Materials Chemistry C,2018,6(19):5132-5139. doi: 10.1039/C7TC05571D
    [24] ZHOU W, LI Y, LI P, et al. Metal mesh as a transparent omnidirectional strain sensor[J]. Advanced Materials Technologies,2019,4(4):1800698. doi: 10.1002/admt.201800698
    [25] XU A, WANG Y, GAO J, et al. Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties[J]. Green Chemistry,2019,21(16):4449-4456. doi: 10.1039/C9GC01918A
    [26] JIBRIL L, RAMIREZ J, ZARETSKI A V, et al. Single-nanowire strain sensors fabricated by nanoskiving[J]. Sensors and Actuators A: Physical,2017,263:702-706. doi: 10.1016/j.sna.2017.07.046
    [27] MA J, WANG P, CHEN H, et al. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection[J]. ACS Applied Materials & Interfaces,2019,11(8):8527-8536.
    [28] WANG Y, GONG S, WANG S J, et al. Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors[J]. Materials Horizons,2016,3(3):208-213. doi: 10.1039/C5MH00284B
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  940
  • HTML全文浏览量:  411
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-11
  • 录用日期:  2022-07-28
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回