Processing math: 0%

原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究

龚明, 张代军, 张嘉阳, 付善龙, 李军, 陈祥宝

龚明, 张代军, 张嘉阳, 等. 原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究[J]. 复合材料学报, 2023, 40(3): 1740-1750. DOI: 10.13801/j.cnki.fhclxb.20220516.002
引用本文: 龚明, 张代军, 张嘉阳, 等. 原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究[J]. 复合材料学报, 2023, 40(3): 1740-1750. DOI: 10.13801/j.cnki.fhclxb.20220516.002
GONG Ming, ZHANG Daijun, ZHANG Jiayang, et al. Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1740-1750. DOI: 10.13801/j.cnki.fhclxb.20220516.002
Citation: GONG Ming, ZHANG Daijun, ZHANG Jiayang, et al. Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1740-1750. DOI: 10.13801/j.cnki.fhclxb.20220516.002

原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究

基金项目: 国家重点研发项目(2020YFC1910203)
详细信息
    通讯作者:

    张代军,博士,研究员,研究方向为树脂基复合材料  E-mail:15810534483@139.com

  • 中图分类号: TB332

Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites

Funds: National Key Research and Development Project (2020YFC1910203)
  • 摘要: 基于热塑性复合材料易修复的特性,开展了碳纤维增强聚甲基丙烯酸甲酯(PMMA)基复合材料修复技术研究。研究了工艺温度、压力和时间对复合材料力学性能的影响规律。结果表明:在200℃、0.75 MPa压力下保持10 min可以获得优化的复合材料力学性能。引入低速冲击损伤,使用热压修复工艺修复碳纤维增强PMMA基复合材料的损伤。通过X射线断层扫描测试、超声波无损检测技术和断面摄像方法评估了此复合材料的损伤行为和修复效果。结果表明:低速冲击对碳纤维增强PMMA基复合材料的损伤分为低变形量区域的纵向开裂与分层和高变形量区域的纤维断裂与基体失效的混合模式。碳纤维增强PMMA基复合材料损伤试样经过热压修复后,损伤外形恢复良好,损伤区域大小显著减少,内部的开裂和分层等损伤恢复良好,复合材料压缩强度从140 MPa恢复至263 MPa,达到未损伤复合材料压缩性能(307 MPa)的85.7%。
    Abstract: According to the repairability of thermoplastic composites, the repair process of carbon fiber reinforced PMMA composites was studied. The effects of temperature, pressure, and time on the mechanical properties of the composites were compared. Results show that the optimal repaired properties of composites could be obtained at 200℃ and 0.75 MPa pressure for 10 minutes. By introducing low-speed impact damage, the damaged parts of the composites were repaired by a hot pressing process. The composite's damage behaviors and repair effect were investigated by nondestructive testing and cross-section photography. Experimental results show that the impact damage of carbon fiber reinforced PMMA composites can be divided into two types: Lengthways cracking and delamination in small deformation areas and the mixed-mode of fiber fracture and resin failure in big deformation areas. After repairing, the damaged shape and the internal delamination damages of the damaged samples are recovered well, the volume of the damaged area is significantly reduced, and the compressive strength of the composite is recovered from 140 MPa to 263 MPa, which is 85.7% of the undamaged composite (307 MPa).
  • 城市化及工业化的快速发展极大地促进了水泥制品的产出,随即引发的一系列环境问题,如巨大能源资源消耗、二氧化碳及其他温室气体排放等引起了全世界的强烈担忧[1]。为此,国内外学者做出了巨大的努力来降低其环境负面效应并寻求可替代方案。凭借绿色可持续性[2-3],碱激发材料(Alkali-activated material,AAM)近年来获得了广泛关注[4-6]。然而,类似于普通混凝土,AAM脆性大及抗拉强度低等缺点从一定程度上限制了该材料的推广应用。

    借鉴高延性水泥基复合材料的设计理念,在AAM体系中引入适量纤维,研制出了高延性碱激发纤维增强复合材料(Alkali-activated fiber reinforced composites,AAFRC);相似地,伴随有多条细密裂缝开裂的应变硬化行为也是AAFRC的显著特征[7-9]

    赤泥(RM,也称铝土矿渣)是精制铝/氧化铝过程中产出的固体废物[10],每生产1吨氧化铝就会产出1.0~1.5吨的RM[11]。大量RM被随机存储在蓄水库或干堆在田地中,并没有得到有效的再利用[12],如何开发RM的潜在资源化利用已经成为一个亟需解决的问题。

    尽管人们从不同角度对赤泥进行了大量的再利用尝试,包括作为吸收剂、中和剂、混凝剂和催化剂及从中回收铁、铝等有价金属和一些稀土元素[10,13],且取得了一些进展,但由于一些技术或经济限制[14],仅在这些领域回收利用如此大量的RM仍是不切实际的。考虑到RM潜在的火山灰效应[15],土木工程领域的应用有望使其成为可能。近年来相关报道表明,RM已成功被用于制造水泥、砖和混凝土等建筑材料[16];且也开展了以RM为原料生产AAM的研究。例如,He等[17]提出了一种基于混合RM和稻壳灰的新型AAM;Ye等[18]利用碱热RM合成了单组分AAM;Hu等[19]在低浓度NaOH激发下制备了一种RM-粉煤灰AAM。值得注意的是,现有RM-AAM的强度在大多数情况下无法与普通混凝土相比,即20 MPa [17-19];而且类似于传统AAM的脆性缺点依然存在,这些弊端阻碍了该材料的实际工程应用。

    基于此,本文采用RM混合矿渣和硅灰并掺加聚乙烯(PE)纤维制备中高强、高延性的碱激发复合材料,通过单轴拉、压试验探究其宏观力学性能,结合三点抗弯与单裂缝拉伸等细观试验探究其高延性机制,并基于XRD及FTIR技术分析其水化产物,以期为RM的高附加值资源化利用提供新思路。

    赤泥(RM,山东魏桥创业集团有限公司)、矿渣(GGBS,河北天岩矿业公司)、硅灰(SF,山东温特实业有限公司)、普通河砂、自来水、碱激发剂及PE纤维(浙江全米特新材料科技有限公司)。其中,RM、GGBS及SF的主要化学组成见表1,其粒径分布见图1;碱激发剂由模数为3.3的水玻璃(山东优索化工有限公司)及99%的NaOH颗粒(国药集团化学药剂有限公司)配制而成;PE纤维性能参数如下:直径24 μm,长度12 mm,密度980 kg/m3,弹性模量110 GPa,抗拉强度3000 MPa,伸长率2%~3%。

    表  1  赤泥(RM)、矿渣(GGBS)及硅灰(SF)的化学组成
    Table  1.  Chemical compositions of red mud (RM), ground granulated blast furnace slag (GGBS) and silica fume (SF) wt%
    MaterialCaOSiO2Al2O3Fe2O3MgOSO3TiO2Na2OK2OP2O5
    RM0.4610.1817.4353.790.120.767.740.070.20
    GGBS44.3933.2013.200.386.310.820.330.28
    SF0.4992.260.891.970.960.421.31
    下载: 导出CSV 
    | 显示表格
    图  1  RM、GGBS和SF的粒径分布
    Figure  1.  Diameter distributions of RM, GGBS and SF

    基于前期预试验(0wt%~60wt%RM取代GGBS和SF)结果,选用40wt%RM掺量开展本研究。试件的具体配合比见表2,水胶比为0.39,PE/GGBS-SF为不含RM的对照组。

    表  2  高延性碱激发纤维增强复合材料(AAFRC)配合比
    Table  2.  Mixture proportion of alkali-activated fiber reinforced composites (AAFRC)
    MixtureRM/wt%SF/wt%GGBS/wt%Sand/wt%NaOH/wt%Na2SiO3/wt%Water/wt%Polyethylene
    (PE) fiber/vol%
    PE/GGBS-SF0.0010.3344.7714.503.0013.7012.601.90
    PE/RM-GGBS-SF22.046.2026.8614.503.0013.7012.601.90
    下载: 导出CSV 
    | 显示表格

    试件制备过程:将RM、GGBS、SF及砂按表2中配比倒入容量为5 L的水泥胶砂搅拌机慢速搅拌2~4 min,使原料混合均匀;将水和碱激发剂(Na2SiO3和NaOH提前配制冷却至室温)倒入,快速搅拌3~5 min直至浆体具有一定流动度;加入PE纤维,快速搅拌5~8 min,使纤维均匀分散。搅拌完毕后,立即将拌合物装入模具振捣密实,放置于实验室环境(温度为20℃~22℃、相对湿度为70%±5%)中养护24 h后脱模;试块表面覆盖保鲜膜,放置于80℃的烘箱中加热2 h后继续在室温中养护至28天。

    单轴拉伸试件为“狗骨状”[20],中间标准段长度为80 mm,具体尺寸详见图2。采用济南川佰仪器设备有限公司生产的WDW-300型电子万能试验机,加载速度为0.3 mm/min。试验时,试件两边分别固定一套位移传感器(Linear variable displacement transducers,LVDT)记录标准段长度的变化,取两个测量结果的平均值来计算拉伸应变。

    图  2  狗骨试件尺寸
    Figure  2.  Dimensions of the dog-bone specimen

    参考ASTM C109[21],选用边长为50 mm的立方体试件进行抗压试验,加载速率为1.5 mm/min。注意保证试件承压表面的平整度,以最大程度地减少测试过程中的不确定性。

    为探究基体韧度对AAFRC拉伸延性的影响,根据ASTM E399[22]进行三点抗弯试验。首先依照表2配合比制作尺寸为354 mm×75 mm×40 mm的无纤维棱柱体试件,然后采用1.2中养护方法将试件养护至28天;试验前,用切割机在试件的中部底端切出一个30 mm深的切口(图3),试验时试件底部跨径为300 mm,加载速率为0.3 mm/min。

    通过单裂缝拉伸试验[23],获得纤维最大桥接应力σoc和纤维桥接余能Jb。试件形状为“小狗骨”(图4);养护至28天后,在试件中心分别沿宽度、厚度方向切割6.5 mm、2 mm深的凹槽(宽度小于0.6 mm),以便形成单裂缝。

    图  3  三点抗弯试件尺寸
    Figure  3.  Dimensions of the three-point bending specimen
    图  4  单裂缝拉伸试件尺寸
    Figure  4.  Dimensions of single crack tensile specimen

    采用D8 Advance Bruker型XRD测试仪(赛默飞世尔(中国)科技有限公司)与Tensor-Bruker型光谱仪(德国布鲁克AXS有限公司)分析PE/RM-GGBS-SF的水化产物。为了避免砂和纤维的影响,根据表2配制不含砂和纤维的净浆试件,养护至28天后磨成粉末用于微观分析。

    两种AAFRC的典型拉伸应力-应变曲线如图5所示。初裂强度(初始裂缝的拉伸应力)、抗拉强度(极限拉伸应力)及拉伸应变(极限拉伸应力对应的应变)详见表3

    图  5  AAFRC的拉伸应力-应变曲线
    Figure  5.  Tensile stress-strain curves of AAFRC

    可以看出,RM的引入导致AAFRC的初裂、抗拉强度均有所下降。与参照试件(PE/GGBS-SF)相比,PE/RM-GGBS-SF的初裂强度降低了12.1%,为(1.89±0.41) MPa;抗拉强度降低了26.4%,为(2.43±0.04) MPa。在碱激发体系中,CaO与SiO2是生成胶凝产物、贡献强度的重要组分。由表1可知,RM中CaO与SiO2的含量明显低于GGBS和SF (即CaO:0.46wt% vs 44.39wt%+0.49wt%,SiO2:10.18wt% vs 33.20wt%+92.26wt%);且RM中的SiO2主要以石英相的形式存在[16]。RM的掺入会明显减少体系内Ca、Si含量,从而减少水化凝胶产物的生成,导致强度降低。同时,由图1可知,绝大多数RM的粒径大于GGBS和SF,RM的引入可能会降低基体的密实度,从而对强度不利。另一方面,RM中包含较多的碱金属(Na2O+K2O=7.74%+0.07%),导致复合材料体系内的碱性得以提升,有利于强度的发展[24]。当前试验结果可认为由上述机制共同作用产生,强度的降低则说明,本研究中反应组分减少及RM较大粒径带来的不利影响可能占主导地位。

    表  3  AAFRC的拉伸性能
    Table  3.  Tensile properties of AAFRC
    MixtureInitial cracking strength/MPaTensile strength/MPaTensile strain/%
    PE/GGBS-SF2.15±0.133.30±0.133.07±0.32
    PE/RM-GGBS-SF1.89±0.412.43±0.043.58±0.11
    下载: 导出CSV 
    | 显示表格

    对比二者拉伸应变发现,RM的引入提高了AAFRC的拉伸延性;相比参照试件,PE/RM-GGBS-SF的拉伸应变增加了16.6%,高达3.5%。纤维增强脆性基体复合材料的拉伸延性受基体初裂强度的影响,通常情况下,初裂强度越低,获得较大应变的可能性越大[23]。仅从这点来看,当前的应变结果可以通过基体初裂强度的变化合理地得以解释。不过,具体的应变机制比较复杂,更多的参数(包括基体、纤维、基体-纤维界面特性等)都影响着试件的拉伸行为,进一步的讨论将在2.3节(基于细观试验[25])给出。

    表4为两种AAFRC的抗压强度,其中PE/GGBS-SF抗压强度为(69.13±2.16) MPa,PE/RM-GGBS-SF抗压强度为(48.83±1.86) MPa。掺入RM后,抗压强度降低了29.4%。抗压强度与初裂、抗拉强度的变化相似,表明上述强度变化机制可能也同样适用于抗压强度。也即,反应组分减少导致胶凝产物含量降低及较大粒径RM引入导致基体的不致密,可能也是抗压强度减少的主要原因。总体来看,尽管RM的引入使AAFRC的强度有所下降,但仍处于较高水平,近50 MPa的抗压强度可满足大部分工程的使用要求;且拉伸应变水平与高延性水泥基复合材料近乎相当[26]。因此,可以认为RM制备高延性碱激发复合材料具有一定的可行性,这为实现其大规模、高附加值的资源化利用提供了新的思路。

    表  4  AAFRC抗压强度
    Table  4.  Compressive strength of AAFRC
    MixtureCompressive strength/MPa
    PE/GGBS-SF69.13±2.16
    PE/RM-GGBS-SF48.83±1.86
    下载: 导出CSV 
    | 显示表格

    纤维增强脆性基体复合材料产生应变硬化行为需要满足两个核心准则[23]:(1) 强度准则:基体初始开裂强度σcr必须小于纤维最大桥接应力σoc;(2) 能量准则:基体断裂能Jtip不得超过纤维桥接余能Jb。此外,两个应变硬化性能指数PSHS(强度指数,σoc/σcr)和PSHE(能量指数,Jb/Jtip) 可用来评估复合材料的应变硬化潜力,饱和应变硬化行为的实现需要满足两个更严格的条件:(1) PSHS\geqslant 1.20~1.35;(2) PSHE\geqslant 2.7~3.0[27-28]。理论上,PSH指标越大,越容易获取较高的拉伸延性[25]

    基于三点抗弯试验得到的峰值荷载FQ,按照以下各式可计算出基体断裂韧度Km和基体断裂能Jtip

    {K}_{\mathrm{m}}=\frac{1.5\left({F}_{\mathrm{Q}}+\dfrac{mg}{2} \times{10}^{-3}\right)\times {10}^{-3} S {{a}_{0}}^{0.5}}{t{h}^{2}}f \left(\alpha \right) (1)
    f \left(\alpha \right)=\frac{1.99-\alpha \left(1-\alpha \right)\left(2.15-3.93\alpha +2.7{\alpha }^{2}\right)}{\left(1+2\alpha \right){\left(1-\alpha \right)}^{\frac{3}{2}}} (2)
    \alpha ={a}_{0}/h (3)
    {J}_{\mathrm{t}\mathrm{i}\mathrm{p}}=\frac{{{K}_{\mathrm{m}}}^{2}}{{E}_{\mathrm{m}}} (4)

    式中:m为试件质量;S为试件跨度;a0为切槽深度;th分别为试件宽度和高度;Em为拉伸试验获得的弹性模量;f(α)为形状参数;g=9.8 N/kg。

    结果详见表5。可以看出,相比于对照试件,PE/RM-GGBS-SF的Km表现出下降趋势,与基体初裂强度的变化相一致;基体断裂能Jtip也从(5.05±0.23) J·m−2减小至(4.28±0.75) J·m−2,较小的Jtip有利于获得较大的{J}_{\mathrm{b}}{{{'}}}/{J}_{\mathrm{tip}} ,这从一定程度上反映了PE/RM-GGBS-SF获取较高拉伸应变(延性)的潜能,或者认为RM的掺入使基体趋于多缝开裂:

    {J}_{\mathrm{b}}{{{'}}}={\sigma }_{\mathrm{o}\mathrm{c}}{\delta }_{\mathrm{o}\mathrm{c}}-{\int }_{0}^{{\delta }_{\mathrm{o}\mathrm{c}}}\sigma \left(\delta \right)\mathrm{d}\delta (5)

    式中:σocδoc分别为纤维最大桥接应力与对应的裂缝开口位移;σ(δ)为纤维桥接应力。

    表  5  AAFRC的基体断裂韧度与基体断裂能
    Table  5.  Matrix fracture toughness and fracture energy of AAFRC
    MixtureMass m/kgPeak load FQ/kNKm/(MPa·m1/2)Jtip/(J·m−2)
    PE/GGBS-SF1.99±0.060.27±0.030.30±0.055.05±0.23
    PE/RM-GGBS-SF2.03±0.050.23±0.040.26±0.074.28±0.75
    Notes: Km—Fracture toughness of matrix; Jtip—Fracture energy of matrix.
    下载: 导出CSV 
    | 显示表格

    单裂缝拉伸试验得到应力-裂缝开口位移曲线如图6所示,由此可得到纤维最大桥接应力σoc和相应的裂缝开口位移δoc,进而根据式(5)可计算出纤维桥接余能 {J}_{\mathrm{b}}{{{'}}} 。结合已经得到的基体初裂强度σcr和基体断裂能Jtip,即可计算出PSHSPSHE性能指数,结果如表6所示。

    图  6  AAFRC的单裂缝拉伸应力-开口位移曲线
    Figure  6.  Stress-crack opening displacement curves of AAFRCfrom single crack tensile tests
    表  6  AAFRC单裂缝拉伸试验结果与强度指数PSHS及能量指数PSHE
    Table  6.  Results from single crack tensile test and strength index PSHS and energy index PSHE of AAFRC
    MixturePeak stress σoc/MPaCrack opening δoc/mmJb′/(J·m−2)PSHSPSHE
    PE/GGBS-SF3.14±0.050.24±0.0450.23±37.331.47±0.1110.30±7.86
    PE/RM-GGBS-SF3.03±0.090.20±0.0763.58±24.831.72±0.3916.37±8.67
    Notes: Jb′—Complementary energy of fibers.
    下载: 导出CSV 
    | 显示表格

    表6可看出,本研究中两种AAFRC的PSH指数均大于1 (即σoc>σcr,且Jb>Jtip),表明产生应变硬化行为的两个核心准则均得到满足,这合理地解释了两种试件表现出明显应变硬化行为(图5)的原因。进一步注意到,两种试件的PSH指数均满足饱和应变硬化条件:PE/GGBS-SF的PSHS指数略大于1.30,PSHE指数远大于3.0;PE/RM-GGBS-SF的两个性能指数均明显大于各自建议值。基于此,两种试件获得较高拉伸应变性能(3%以上)的结果得到了较好的印证。此外,对比PE/GGBS-SF 与PE/RM-GGBS-SF拉伸应变与PSH指数之间的关系,发现随着RM引入后拉伸应变的增加,PSHSPSHE指数均表现出增加趋势。这从一定程度上说明,使用PSH指数理解本研究中碱激发复合材料体系的拉伸延性行为是可行的。

    图7(a)7(b)分别为矿粉、RM及两种AAFRC试样的XRD图谱。可以看出,矿粉的主要衍射峰为白云石相(CaMg(CO3)2),RM则为赤铁矿(Fe2O3)和针铁矿(FeO(OH))相。随着碱激发反应的进行,两种AAFRC体系内均未出现白云石相;而PE/RM-GGBS-SF的XRD衍射峰则含有明显的赤铁矿和针铁矿相,这主要与RM的引入密切相关[22]。而且,RM及PE/RM-GGBS-SF的XRD图谱中均出现了较多的赤铁矿衍射峰,这也很好地对应了RM化学组分中较高的Fe2O3含量(表1)。值得注意,两种AAFRC试样的XRD图谱均在20°~36°之间出现了明显的隆起,这是无定形(或类凝胶状)地聚合反应产物的典型衍射模式[29]。即碱激发体系内生成了与地聚合反应产物相似的胶凝物相。不过,引入RM后,隆起部位趋于平缓,这从一定程度上说明了PE/RM-GGBS-SF体系中胶凝产物量的减少,很好地对应了宏观力学强度降低的试验结果。

    图  7  RM和GGBS (a) 及AAFRC (b) 的XRD图谱
    Figure  7.  XRD patterns of RM, GGBS (a) and AAFRC (b)

    对比图8两种AAFRC的FTIR图谱,发现两种试样的波带起伏状态基本保持一致、不同特征波峰出现的位置没有明显差异,这说明RM的掺入并没有导致新物质的产生。3415 cm−1与1630 cm−1处的波峰分别与(H)—OH基团的伸缩振动、弯曲振动有关[30],(H)—OH基团可能源自于样品表面的物理吸附水[29],也可能来自于反应产物中的化学结合水[31]。这两个波峰峰强均比参照试样弱,结合XRD图谱分析结果,可以认为波峰减弱的主要原因为水化产物的减少。1402 cm−1与875 cm−1处的波峰分别对应CO32−基团中C—O—C键的不对称伸缩[31]与平面外弯曲振动[32],说明两种材料体系内均发生了碳化。根据Yu等[32]和Zhang等[33]的研究,1035 cm−1处波峰的出现归因于Si—O—Al/Si键的不对称伸缩振动,表明体系内有铝硅酸盐无定型产物,例如水化硅铝酸钙(C-A-S-H)及碱性硅铝酸盐(N-A-S-H)凝胶。465 cm−1处的波峰与Si—O—Si键的弯曲振动有关,与其相邻且在较高波数位置(近600 cm−1)波峰的出现则意味着体系内存在有水化硅酸钙(C-S-H)或C-A-S-H凝胶[31]。进一步注意到,RM的掺入导致1035 cm−1及600 cm−1处的波峰峰强均有所减弱,这意味着对应胶凝产物的减少,与XRD分析结果相一致。

    图  8  AAFRC的FTIR图谱
    Figure  8.  FTIR spectra of AAFRC

    (1) 聚乙烯纤维增强赤泥-碱矿渣复合材料(PE/RM-GGBS-SF)的抗拉强度可以达到2.4 MPa,同时具有与高延性水泥基复合材料相当的高拉伸应变性能,为3.5%;抗压强度可以高达近50 MPa。

    (2) 三点抗弯和单裂缝拉伸等细观试验结果可以很好地解释本研究中碱激发纤维增强复合材料(AAFRC)的高延性行为。两种体系均满足实现拉伸应变硬化的两个核心(强度及能量)准则;且PE/RM-GGBS-SF试件的强度指数(PSHS)和能量指数(PSHE)均大于参照试件,很好地对应了其表现出的较大拉伸应变。

    (3) XRD和FTIR分析结果显示:赤泥(RM)的引入导致碱激发体系内出现明显的针铁矿及赤铁矿衍射峰;除水化硅酸钙(C-S-H)或水化硅铝酸钙(C-A-S-H)凝胶外,PE/RM-GGBS-SF水化产物中也存在有与地聚合反应产物相似的物相,即碱性硅铝酸盐(N-A-S-H)凝胶。

  • 图  1   (a) 试样支撑框;(b) 热压修复工艺

    Figure  1.   (a) Support frame of samples; (b) Hot press repair process

    图  2   聚甲基丙烯酸甲酯(PMMA)树脂基体 (a) 和PMMA基复合材料 (b) 的玻璃化转变温度Tg

    Figure  2.   Glass transition temperature Tg of polymethyl methacrylate (PMMA) resin (a) and PMMA composite (b)

    图  3   PMMA树脂基体流变测试结果

    Figure  3.   Rheological test results of PMMA resins

    图  4   处理压力为0.75 MPa时PMMA基复合材料弯曲强度 (a) 和短梁剪切强度 (b) 与处理温度关系

    Figure  4.   Relationship between the bending strenght (a) and short-beam shear strength (b) of PMMA composites and the treatment temperature under 0.75 MPa

    图  5   处理温度为200℃时PMMA基复合材料弯曲强度 (a) 和短梁剪切强度 (b) 与处理压力关系

    Figure  5.   Relationship between the bending strenght (a) and short-beam shear strength (b) of PMMA composites and the treatment pressure under 200℃

    图  6   碳纤维增强PMMA基复合材料修复前(左)和修复后(右)

    Figure  6.   Carbon fiber reinforced PMMA composites before repair (left) and after repair (right)

    图  7   碳纤维增强PMMA基复合材料修复前(左)和修复后(右)的损伤状态

    Figure  7.   Damage conditions of carbon fiber reinforced PMMA composites before repair (left) and after repair (right)

    图  8   冲击损伤PMMA基复合材料试样修复前(左)后(右)横截面CT扫描结果对比

    Figure  8.   Comparison of cross section CT scan results before (left) and after (right) repair of impact damaged PMMA composites samples

    图  9   冲击损伤试样修复前(左)后(右)PMMA基复合材料厚度方向截面CT扫描结果对比

    Figure  9.   Comparison of CT scan results of thickness direction section of PMMA composites before and after impact damage repair

    图  10   修复前后PMMA基复合材料内部缺陷分布区域

    Figure  10.   Defect area of PMMA composites before and after repair

    L1—Tip diameter; L2—Base diameter

    图  11   碳纤维增强PMMA基复合材料试样不同损伤部位修复后取样图

    Figure  11.   Diagrams of different damaged parts of carbon fiber reinforced PMMA composite samples after repair

    图  12   碳纤维增强PMMA基复合材料不同损伤部位缺陷取样图

    Figure  12.   Defect sampling diagram of carbon fiber reinforced PMMA composites at different injury sites

    图  13   碳纤维增强PMMA基复合材料冲击后分层缺陷

    Figure  13.   Post-impact delamination defects of carbon fiber reinforced PMMA composites

    图  14   碳纤维增强PMMA基复合材料纵向开裂与分层缺陷的伴随出现形貌

    Figure  14.   Concomitant morphology of longitudinal cracking and delamination defects of carbon fiber reinforced PMMA composites

    图  15   未冲击试样、冲击损伤试样与修复后PMMA基复合材料试样压缩强度对比

    Figure  15.   Comparison of compressive strength of unimpacted, damaged and repaired PMMA composite samples

    图  16   损伤后修复PMMA基复合材料试样冲击后压缩破坏形貌:(a) 正视;(b) 侧视; (c) 后视

    Figure  16.   Compression failure morphology of PMMA composites after impact damage repaired: (a) Front view; (b) End view; (c) Back view

    图  17   损伤和修复PMMA基复合材料冲击后压缩强度曲线

    Figure  17.   Compressive strength curves of damaged and repaired PMMA composites after impact

    表  1   整体成型与粘接PMMA基复合材料试样修复结果对比

    Table  1   Comparison of repair results between one-piece and bonded PMMA composite samples

    Specimen
    number
    Treatment processBending strength/MPaBending modulus/GPaShort-beam shear strength/MPa
    One-pieceBondedOne-pieceBondedOne-pieceBonded
    10.1 MPa/180℃/10 min56550347.341.937.140.9
    20.1 MPa/200℃/10 min22413634.925.920.419.7
    30.4 MPa/200℃/10 min70850139.544.152.647.5
    40.75 MPa/160℃/10 min70061954.546.154.119.0
    50.75 MPa/180℃/10 min72269650.944.452.242.9
    60.75 MPa/200℃/10 min69363950.244.250.146.1
    70.75 MPa/220℃/10 min19429838.236.614.523.8
    81.0 MPa/180℃/10 min68462843.838.453.353.5
    91.0 MPa/200℃/10 min64252544.137.849.950.2
    101.0 MPa/200℃/30 minBulgingBulgingBulgingBulgingBulgingBulging
    下载: 导出CSV

    表  2   PMMA基复合材料修复前后试样厚度

    Table  2   Thicknesses of PMMA composite samples before and after repair

    Before/mmAfter/mm
    13.994.02
    23.974.00
    33.984.00
    44.024.03
    Average3.994.01
    下载: 导出CSV
  • [1]

    ANDREW J J, ARUMUGAM V, SARAVANAKUMAR K, et al. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading[J]. Composite Structures,2015,133:911-920.

    [2]

    SLATTERY P G, MCCARTHY C T, O'HIGGINS R M. Assessment of residual strength of repaired solid laminate composite materials through mechanical testing[J]. Compo-site Structures,2016,147:122-130.

    [3]

    CHIU W K, ZHOU Z, WANG J, et al. Battle damage repair of a helicopter composite main rotor blade[J]. Composites Part B: Engineering,2012,43(2):739-753. DOI: 10.1016/j.compositesb.2011.07.014

    [4]

    REYES G, SHARMA U. Modeling and damage repair of woven thermoplastic composites subjected to low velocity impact[J]. Composite Structures,2010,92(2):523-531. DOI: 10.1016/j.compstruct.2009.08.038

    [5]

    GANESH V V, CHAWLA N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix compo-sites: Experiments and microstructure-based simulation[J]. Materials Science & Engineering A,2005,391(1-2):342-353.

    [6]

    NAEBE M, ABOLHASANI M M, KHAYYAM H, et al. Crack damage in polymers and composites: A review[J]. Polymer Reviews,2016,56(1):31-69. DOI: 10.1080/15583724.2015.1078352

    [7]

    KANG T J, KIM C. Impact energy absorption mechanism of largely deformable composites with different reinforcing structures[J]. Fibers & Polymers,2000,1(1):45-54.

    [8]

    BALLERE L, VIOT P, LATAILLADE J L, et al. Damage tolerance of impacted curved panels[J]. International Journal of Impact Engineering,2009,36(2):243-253. DOI: 10.1016/j.ijimpeng.2008.03.004

    [9]

    TAMIN M N. Micromechanical analysis of mode I crack growth in carbon fibre reinforced polymers[M]//Damage and Fracture of Composite Materials and Structures. Berlin: Springer, 2012.

    [10]

    RKOLOOR S, ABDUL-LATIFJ A, GONG X, et al. Evolution characteristics of delamination damage in CFRP compo-sites under transverse loading[M]. Berlin: Springer, 2012.

    [11]

    TAMIN M N. Damage and fracture of composite materials and structures[J]. Advanced Structured Materials,2012,18(2):265-273.

    [12]

    GUILLAUMAT L, BATSALE J C, MOURAND D. Real time infrared image processing for the detection of delamination in composite plates[J]. Composites Part A: Applied Science & Manufacturing,2004,35(7-8):939-944. DOI: 10.1016/j.compositesa.2004.01.021

    [13]

    USAMENTIAGA R, VENEGAS P, GUEREDIAGA J, et al. Automatic detection of impact damage in carbon fiber composites using active thermography[J]. Infrared Phy-sics & Technology,2013,58:36-46.

    [14]

    MAIER A, SCHMIDT R, OSWALD-TRANTA B, et al. Non-destructive thermography analysis of impact damage on large-scale CFRP automotive parts[J]. Materials,2014,7(1):413-429. DOI: 10.3390/ma7010413

    [15]

    IBRAHIM M E, SMITH R A, WANG C H. Ultrasonic detection and sizing of compressed cracks in glass- and carbon-fibre reinforced plastic composites[J]. NDT & E International,2017,92:111-121.

    [16]

    CASTAINGS M, SINGH D, VIOT P. Sizing of impact damages in composite materials using ultrasonic guided waves[J]. NDT & E International,2012,46:22-31.

    [17]

    POLIMENO U, MEO M, ALMOND D P, et al. Detecting low velocity impact damage in composite plate using nonlinear acoustic/ultrasound methods[J]. Applied Compo-site Materials,2010,17(5):481-488. DOI: 10.1007/s10443-010-9168-5

    [18]

    CLOETENS P, PATEYRON-SALOME M, BUFFIERE J Y, et al. Observation of microstructure and damage in materials by phase sensitive radiography and tomography[J]. Journal of Applied Physics,1997,81(9):5878-5886. DOI: 10.1063/1.364374

    [19]

    DAVIS G R, ELLIOTT J C, LEE W K, et al. Fatigue cracks in aluminum samples studied with X-ray phase contrast imaging and with absorption microtomography[J]. Advances in X-Ray Analysis, 2002, 45: 123-126.

    [20]

    WRIGHT P, FU X, SINCLAIR I, et al. Ultra high resolution computed tomography of damage in notched carbon fiber—Epoxy composites[J]. Journal of Composite Materials,2008,42(19):1993-2002. DOI: 10.1177/0021998308092211

    [21]

    KING A, JOHNSON G, ENGELBERG D, et al. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal[J]. Science,2008,321(5887):382-385. DOI: 10.1126/science.1156211

    [22]

    POULSEN H F, NIELSEN S F, LAURIDSEN E M, et al. Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders[J]. Jour-nal of Applied Crystallography,2001,34(6):751-756. DOI: 10.1107/S0021889801014273

    [23]

    LARSON B C, YANG W, ICE G E, et al. Three-dimensional X-ray structural microscopy with submicrometre resolution[J]. Nature,2002,415(6874):887-890. DOI: 10.1038/415887a

    [24]

    ROLLAND H, SAINTIER N, WILSON P, et al. In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: Effects of fibre orientation and relative humidity[J]. Composites Part B: Engi-neering,2017,109:170-186. DOI: 10.1016/j.compositesb.2016.10.043

    [25]

    COSMI F, BERNASCONI A. Micro-CT investigation on fatigue damage evolution in short fibre reinforced polymers[J]. Composites Science & Technology,2013,79:70-76.

    [26]

    ASTM. Standard test method for glass transition tempera-ture (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028-07[S]. West Conshohocken: ASTM International, 2007.

    [27]

    ASTM. Standard test method for deflection temperature of plastics under flexural load in the edgewise position: ASTM D648-18[S]. West Conshohocken: ASTM International, 2018.

    [28]

    ASTM. Standard test method for measuring the damage re-sistance of a fiber-reinforced polymer matrix composite to a drop-weight Impact event: ASTM D7136/D7136 M-20[S]. West Conshohocken: ASTM International, 2020.

    [29]

    ASTM. Standard test method for compressive residual strength properties of damaged polymer matrix composite laminates: ASTM D7137/D7137 M-17[S]. West Conshohocken: ASTM International, 2017.

    [30]

    WYPYCH G. Handbook of polymers: Second edition[M]. Toronto: ChemTec Publishing, 2016.

    [31]

    BOUVET C, RIVALLANT S. Damage tolerance of compo-site structures under low-velocity impact[J]. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures,2016,19:7-33.

  • 期刊类型引用(3)

    1. 程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 . 本站查看
    2. 郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 . 百度学术
    3. 柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 . 百度学术

    其他类型引用(1)

图(17)  /  表(2)
计量
  • 文章访问数:  1015
  • HTML全文浏览量:  569
  • PDF下载量:  83
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-04-18
  • 录用日期:  2022-05-02
  • 网络出版日期:  2022-05-15
  • 刊出日期:  2023-03-14

目录

/

返回文章
返回