留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电聚合物腐蚀防护涂层的制备与改性技术研究进展

金义杰 陈智豪 杨文忠 詹胜鹏 贾丹 章武林 马利欣 段海涛

金义杰, 陈智豪, 杨文忠, 等. 导电聚合物腐蚀防护涂层的制备与改性技术研究进展[J]. 复合材料学报, 2023, 40(2): 710-725. doi: 10.13801/j.cnki.fhclxb.20220512.006
引用本文: 金义杰, 陈智豪, 杨文忠, 等. 导电聚合物腐蚀防护涂层的制备与改性技术研究进展[J]. 复合材料学报, 2023, 40(2): 710-725. doi: 10.13801/j.cnki.fhclxb.20220512.006
JIN Yijie, CHEN Zhihao, YANG Wenzhong, et al. Research progress on preparation and modification technology of conductive polymer corrosive protection coatings[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 710-725. doi: 10.13801/j.cnki.fhclxb.20220512.006
Citation: JIN Yijie, CHEN Zhihao, YANG Wenzhong, et al. Research progress on preparation and modification technology of conductive polymer corrosive protection coatings[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 710-725. doi: 10.13801/j.cnki.fhclxb.20220512.006

导电聚合物腐蚀防护涂层的制备与改性技术研究进展

doi: 10.13801/j.cnki.fhclxb.20220512.006
基金项目: 国家自然科学基金(51805377);武汉市企业技术创新项目(2020010602012060)
详细信息
    通讯作者:

    段海涛,博士,研究员,研究方向为聚合物基复合材料及其摩擦学应用技术 E-mail:duanhaitao2007@163.com

  • 中图分类号: TG174.4

Research progress on preparation and modification technology of conductive polymer corrosive protection coatings

Funds: National Natural Science Foundation of China (51805377); Wuhan Enterprise Technology Innovation Project (2020010602012060)
  • 摘要: 我国海洋工程装备制造业正处在生存与发展的关键阶段,防腐涂层是降低基材腐蚀速率、提升其服役寿命最有效的方式之一。导电聚合物涂层由于其绿色环保、制备简单等优点及独特的导电与防腐机制,使其在金属腐蚀防护领域得到了广泛的应用。本文归纳总结了导电聚合物涂层的防腐机制,介绍了采用化学氧化和电化学合成两种方法制备导电聚合物涂层的现状,重点阐述了导电聚合物涂层的掺杂改性、共聚改性、分层设计3种改性技术对涂层耐蚀性能的提升效果,最后提出了导电聚合物涂层在腐蚀防护领域可能存在的研究热点和发展趋势。

     

  • 图  1  导电聚合物共轭电子体系示意图

    Figure  1.  Schematic diagram of a conductive polymer conjugate system

    图  2  聚吡咯/碳-聚多巴胺(PPy/C-PDA)涂层的物理屏蔽作用[35]

    304 SS—304 stainless steel

    Figure  2.  Physical shielding effect of polypyrrole/carbon-polydopamine (PPy/C-PDA) coatings[35]

    图  3  聚苯胺改性氧化石墨烯(GO-PANI)纳米纤维复合材料对碳钢的阳极保护作用[36]

    Figure  3.  Anode protection effect of polyaniline modified graphene oxide (GO-PANI) nanofiber composites on carbon steel[36]

    图  4  不同掺杂剂对PANI涂层防护性能和导电性的影响[45]

    APS—Ammonium persulfate; PANI-HCl—Hydrochloric acid modified polyaniline; PANI-TSA—p-toluenesulfonic acid modified polyaniline; PANI-DBSA—Dodecylbenzenesulfonic acid modified polyaniline; EP—Epoxy; PEC—Polyaniline epoxy coating; CS—Carbon steel; I—Corrosion current density

    Figure  4.  Effect of different dopants on the protective properties and conductivity of PANI coatings[45]

    图  5  导电聚合物电场屏蔽机制示意图

    E—Electric field

    Figure  5.  Schematic diagram of the electric field shielding mechanism of conductive polymers

    图  6  化学氧化法合成不同形态的复合材料:(a) PANI-PA-NFs/BTA[48];(b) SnO2/PPy/MoO4/PDA[31];(c) Tl2O3-SiO2/PANI[49];(d) GO-PANI-CeO2[50]

    BTA—Benzotriazole; SDS—Sodium dodecylbenzene sulfonate; CPS—Counts per second

    Figure  6.  Composites of different forms synthesized by chemical oxidation method: (a) PANI-PA-NFs/BTA[48]; (b) SnO2/PPy/MoO4/PDA[31]; (c) Tl2O3-SiO2/PANI[49]; (d)GO-PANI-CeO2[50]

    图  7  (a) 恒电位法双电解质下合成的聚吡咯涂层[53];(b) 恒电流法合成的双层PANI/PPy涂层[38-39]

    Figure  7.  (a) Polypyrrole coating synthesized under two electrolytes by potentiostatic method[53]; (b) Double-layer PANI/PPy coating synthesized by galvanostatic method[38-39]

    图  8  采用CV法合成的导电聚合物涂层:(a) TiO2和V-TiO2掺杂的PPy涂层[32];(b)水、乙腈和硝基甲烷三种溶液中合成PPy[55];(c) PANI-Ni(OH)2涂层[40]

    CV—Cyclic voltammetric; ACN—Acetonitrile; θ—Contact angle; SS—Stainless steel

    Figure  8.  Conductive polymer coating synthesized by CV method: (a) TiO2 and V-TiO2 doped PPy coating[32]; (b) Synthesis of PPy in three solutions of water, acetonitrile and nitromethane[55]; (c) PANI-Ni(OH)2 coating[40]

    图  9  (a) 角蛋白修饰还原氧化石墨烯(rGO)负载(聚苯胺-共-聚吡咯)复合材料(K-(PPy-co-PANI)-rGO)[81];(b)聚(间苯二胺-共-邻氨基苯酚)共聚物涂层[82]

    Z—Impedance; f—Frequency; MS—Mild steel

    Figure  9.  (a) Keratin modified reduced graphene oxide (rGO) loading (polyaniline-co-polypyrrole)copolymer composite(K-(PPy-co-PANI)-rGO)[81]; (b) Poly(m-phenylenediamine-co-o-aminophenol) copolymer coating[82]

    表  1  双层或多层涂层的制备和防护效率

    Table  1.   Preparation and protection efficiency of double-layer or multi-layer coating

    CoatingsSubstratePreparationCorrosive environmentProtection efficiency/%References
    PPy-SA-/PPy-MoO42−-NO3−316 SSPotentiostatic0.15 mol/L NaCl91.2[86]
    PNMA/PPy-DSMSCyclic voltammetry0.5 mol/L HCl97.4[87]
    PANI/PNMAMSCyclic voltammetry3.5wt%NaCl77.2[88]
    PANI/PTH-DS304 SSCyclic voltammetry0.5 mol/L HCl95.6[89]
    PANI/Ni, PANI/ZnMSCyclic voltammetry3.5wt%NaCl97.1[91]
    PANI/PAA/PEI316 SSChemical oxidation3.5wt%NaCl94.7[92]
    Notes: SA—Salicylic acid; PTH—Polythiophene; PNMA—Poly(N-methylaniline); PAA—Polyacrylic acid; PEI—Polyethyleneimine; 316 SS—316 stainless steel; DS—Dodecylbenzene sulfonate.
    下载: 导出CSV
  • [1] ZHANG F, JU P, PAN M, et al. Self-healing mechanisms in smart protective coatings: A review[J]. Corrosion Science,2018,144:74-88. doi: 10.1016/j.corsci.2018.08.005
    [2] BOOPATHIRAJA R, PARTHIBAVARMAN M. Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application[J]. Electrochimica Acta, 2020, 346: 136270.
    [3] SADEGHINIA M, SHAYEH J S, FATEMI F, et al. Electrochemical study of perlite-barium ferrite/conductive polymer nano composite for super capacitor applications[J]. International Journal of Hydrogen Energy,2019,44(52):28088-28095. doi: 10.1016/j.ijhydene.2019.09.085
    [4] HUSSAIN S K, DUDEM B, YU J S. Enhanced electrochemical performance via PPy encapsulated 3D flower-like bismuth molybdate nanoplates for high-performance supercapacitors[J]. Applied Surface Science,2019,478:846-856. doi: 10.1016/j.apsusc.2019.01.196
    [5] JAMNANI S R, MOGHADDAM H M, LEONARDI S G, et al. PANI/Sm2O3 nanocomposite sensor for fast hydrogen detection at room temperature[J]. Synthetic Metals,2020,268:116493. doi: 10.1016/j.synthmet.2020.116493
    [6] LV D, SHEN W, CHEN W, et al. PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature[J]. Sensors and Actuators B: Chemical,2021,328:129085. doi: 10.1016/j.snb.2020.129085
    [7] YU W, ZHANG G, LIU Y, et al. Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks[J]. Chemical Engineering Journal,2019,373:556-564. doi: 10.1016/j.cej.2019.05.074
    [8] 高利民, 骈岩杰, 杨建光, 等. 掺杂聚苯胺制备及其在水性防腐防静电涂料中的应用[J]. 涂料工业, 2009, 39(5):14-18. doi: 10.3969/j.issn.0253-4312.2009.05.004

    GAO Liming, PIAO Yanjie, YANG Jianguang, et al. Preparation of doped-polyaniline and its application in waterborne anticorrosive and antistatic epoxy coatings[J]. Paint & Coatings Industry,2009,39(5):14-18(in Chinese). doi: 10.3969/j.issn.0253-4312.2009.05.004
    [9] 易波, 王群, 郭红霞. 聚苯胺/环氧树脂防静电涂料的研制[J]. 化工新型材料, 2010(6):112-114. doi: 10.3969/j.issn.1006-3536.2010.06.039

    YI Bo, WANG Qun, GUO Hongxia. Development research of electrostatic conductive coating of polyaniline/epoxy resin[J]. New Chemical Materials,2010(6):112-114(in Chinese). doi: 10.3969/j.issn.1006-3536.2010.06.039
    [10] KAMRAN M, ULLAH H, SHAH A A, et al. Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer[J]. Polymer,2015,72:30-39. doi: 10.1016/j.polymer.2015.07.003
    [11] SAMBYAL P, RUHI G, DHAWAN S K, et al. Enhanced anticorrosive properties of tailored poly(aniline-anisidine)/chitosan/SiO2 composite for protection of mild steel in aggressive marine conditions[J]. Progress in Organic Coatings,2018,119:203-213. doi: 10.1016/j.porgcoat.2018.02.014
    [12] HU C, LI Y, YIN Y, et al. Fabrication of poly(alkyl-aniline)-SiC/zinc bilayer coatings and evaluation of their corrosion resistance properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,551:137-147.
    [13] ZHU A, WANG H, ZHANG C, et al. A facile, solvent-free and scalable method to prepare poly(aniline-co-5-aminosalicylic acid) with enhanced electrochemical activity for corrosion protection[J]. Progress in Organic Coatings,2017,112:109-117. doi: 10.1016/j.porgcoat.2017.07.006
    [14] DENG F, MIN L, LUO X, et al. Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole[J]. Nanoscale,2013,5(18):8703-8710. doi: 10.1039/c3nr02502k
    [15] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene[J]. Journal of the Chemical Society, Chemical Communications,1977(16):578-580. doi: 10.1039/c39770000578
    [16] 狄婧, 刘海霞, 姜永强, 等. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制[J]. 复合材料学报, 2021, 38(1):221-231.

    DI Jing, LIU Haixia, JIANG Yongqiang, et al. Preparation of polypyrrole/chitosan composite membrane and its adsorption mechanism for Cu(II) and Cr(VI)[J]. AMCS,2021,38(1):221-231(in Chinese).
    [17] 王杰, 李莹, 邵亮, 等. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能[J]. 高等学校化学学报, 2021, 42(3):929-936.

    WANG Jie, LI Ying, SHAO Liang, et al. Preparation and properties of polyvinyl alcohol/polypyrrole composite conductive hydrogel strain sensor[J]. Chemical Journal of Chinese Universities,2021,42(3):929-936(in Chinese).
    [18] 冯江涛, 王睎, 赵旭阳, 等. 改性聚吡咯材料去除水中氟离子的性能[J]. 化工进展, 2021, 40(7):4036-4046.

    FENG Jiangtao, WANG Hui, ZHAO Xuyang, et al. Performance of modified polypyrrole materials in removing fluoride ions in water[J]. Chemical Industry and Engineering Progress,2021,40(7):4036-4046(in Chinese).
    [19] 李晓丹, 刘小平, 刘宏宇, 等. 原位聚合法制备聚苯胺改性MoS2及其环氧复合涂层的防腐性能[J]. 材料科学与工艺, 2021, 29(6):18-26. doi: 10.11951/j.issn.1005-0299.20210186

    LI Xiaodan, LIU Xiaoping, LIU Hongyu, et al. Corrosion resistance of polyaniline modified MoS2 and its epoxy composite coating prepared by in situ polymerization[J]. Materials Science and Technology,2021,29(6):18-26(in Chinese). doi: 10.11951/j.issn.1005-0299.20210186
    [20] 甘孟瑜, 李志春, 马利, 等. 聚苯胺的表面修饰及防腐性能[J]. 高等学校化学学报, 2012, 33(3):630-634. doi: 10.3969/j.issn.0251-0790.2012.03.037

    GAN Mengyu, LI Zhichun, MA Li, et al. Surface modification and antiseptic properties of polyaniline[J]. Chemical Journal of Chinese Universities,2012,33(3):630-634(in Chinese). doi: 10.3969/j.issn.0251-0790.2012.03.037
    [21] 魏治洋, 邹飞林, 赖竹林, 等. 植酸掺杂聚苯胺对水中Cr(Ⅵ)的去除研究[J]. 环境科学研究, 2021, 34(2):337-345.

    WEI Zhiyang, ZOU Feilin, LAI Zhulin, et al. Removal of Cr(VI) from water by phytic acid-doped polyaniline[J]. Environmental Science Research,2021,34(2):337-345(in Chinese).
    [22] MARTI M, ARMELIN E, IRIBARREN J I, et al. Soluble polythiophenes as anticorrosive additives for marine epoxy paints[J]. Materials and Corrosion-Werkstoffe Und Korrosion,2015,66(1):23-30. doi: 10.1002/maco.201307132
    [23] 徐守斌, 江龙, 杨海刚, 等. 光诱导聚合制备聚噻吩/二氧化钛复合粒子的结构及光催化性能[J]. 催化学报, 2011, 32(4):536-545.

    XU Shoubin, JIANG Long, YANG Haigang, et al. Structure and photocatalytic performance of polythiophene/titanium dioxide composite particles prepared by photo-induced polymerization[J]. Chinese Journal of Catalysis,2011,32(4):536-545(in Chinese).
    [24] 李宝铭, 吴洪才, 刘效增, 等. 离子注入改性聚对苯乙炔的光学及电学性能[J]. 高分子材料科学与工程, 2005, 21(5):114-117. doi: 10.3321/j.issn:1000-7555.2005.05.029

    LI Baoming, WU Hongcai, LIU Xiaozeng, et al. Optical and electrical properties of ion implantation modified polytextrine[J]. Polymer Materials Science and Engineering,2005,21(5):114-117(in Chinese). doi: 10.3321/j.issn:1000-7555.2005.05.029
    [25] 孙建平, 马琳璞, 黄小珠. 聚对苯乙炔二元共聚物P(DHOPV-co-MOBOPV)的制备与性能[J]. 高分子材料科学与工程, 2011, 27(6):162-165.

    SUN Jianping, MA Linpu, HUANG Xiaozhu. Preparation and properties of poly-p-phenylacetylene binary copolymer P(DHOPV-co-MOBOPV)[J]. Polymer Materials Science and Engineering,2011,27(6):162-165(in Chinese).
    [26] GIL L K, BACA E, MORÁN O, et al. Influence of polyparaphenylene on the magneto transport of manganite/polymer composites[J]. Physica B: Condensed Matter,2008,403(10):1813-1818.
    [27] GOLOVTSOV I, BEREZNEV S, TRAKSMAA R, et al. Thin composite films consisting of polypyrrole and polyparaphenylene[J]. Thin Solid Films,2007,515(19):7712-7715. doi: 10.1016/j.tsf.2006.11.098
    [28] 路亮, 侯文鹏, 关士友, 等. 聚吡咯的绿色制备及其环氧树脂复合涂层对Q235钢的防腐性能[J]. 化工进展, 2013, 32(3):617-623.

    LU Liang, HOU Wenpeng, GUAN Shiyou, et al. Green route to prepare polypyrrole and the anticorrosion property of polypyrrole-epoxy composite coating on Q235 steel[J]. Progress in Chemical Industry,2013,32(3):617-623(in Chinese).
    [29] DINIZ F B, DE ANDRADE G F, MARTINS C R, et al. A comparative study of epoxy and polyurethane based coatings containing polyaniline-DBSA pigments for corrosion protection on mild steel[J]. Progress in Organic Coatings,2013,76(5):912-916. doi: 10.1016/j.porgcoat.2013.02.010
    [30] CHEN Z, JIN Y, YANG W, et al. Fabrication and characterization of polypyrrole coatings by embedding antimony modified SnO2 nanoparticles[J]. Journal of Industrial and Engineering Chemistry,2019,75:178-186. doi: 10.1016/j.jiec.2019.03.021
    [31] CHEN Z, YANG W, CHEN Y, et al. Smart coatings embedded with polydopamine-decorated layer-by-layer assembled SnO2 nanocontainers for the corrosion protection of 304 stainless steels[J]. Journal of Colloid and Interface Science,2020,579:741-753. doi: 10.1016/j.jcis.2020.06.118
    [32] CHEN Z, YANG W, XU B, et al. Corrosion protection of carbon steels by electrochemically synthesized V-TiO2/polypyrrole composite coatings in 0.1 M HCl solution[J]. Journal of Alloys and Compounds,2019,771:857-868. doi: 10.1016/j.jallcom.2018.09.003
    [33] CHEN Z, YANG W, XU B, et al. Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel[J]. Progress in Organic Coatings,2018,122:159-169. doi: 10.1016/j.porgcoat.2018.05.022
    [34] CHEN Z, YANG W, YIN X, et al. Corrosion protection of 304 stainless steel from a smart conducting polypyrrole coating doped with pH-sensitive molybdate-loaded TiO2 nanocontainers[J]. Progress in Organic Coatings,2020,146:105750. doi: 10.1016/j.porgcoat.2020.105750
    [35] CHEN Z, ZHANG G, YANG W, et al. Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells[J]. Chemical Engineering Journal,2020,393:124675. doi: 10.1016/j.cej.2020.124675
    [36] HAYATGHEIB Y, RAMEZANZADEH B, KARDAR P, et al. A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite[J]. Corrosion Science,2018,133:358-373. doi: 10.1016/j.corsci.2018.01.046
    [37] HERMAS A A. XPS analysis of the passive film formed on austenitic stainless steel coated with conductive polymer[J]. Corrosion Science,2008,50(9):2498-2505. doi: 10.1016/j.corsci.2008.06.019
    [38] REN Y J, CHEN J, ZENG C L, et al. Electrochemical corrosion characteristics of conducting polypyrrole/polyaniline coatings in simulated environments of a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy,2016,41(20):8542-8549. doi: 10.1016/j.ijhydene.2016.03.184
    [39] REN Y J, ZENG C L. Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells[J]. Journal of Power Sources,2008,182(2):524-530. doi: 10.1016/j.jpowsour.2008.04.056
    [40] JIANG L, SYED J A, GAO Y, et al. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel[J]. Applied Surface Science,2018,440:1011-1021. doi: 10.1016/j.apsusc.2018.01.145
    [41] JIANG L, SYED J A. In-situ electrodeposition of conductive polypyrrole-graphene oxide composite coating for corrosion protection of 304 SS bipolar plates[J]. Journal of Alloys and Compounds,2019,770:35-47. doi: 10.1016/j.jallcom.2018.07.277
    [42] JIANG L, SYED J A, ZHANG G, et al. Enhanced anticorrosion performance of PPY-graphene oxide/PPY-camphorsulfonic acid composite coating for 304 SS bipolar plates in proton exchange membrane fuel cell[J]. Journal of Industrial and Engineering Chemistry,2019,80:497-507. doi: 10.1016/j.jiec.2019.08.032
    [43] WANG Y, ZHANG S, WANG P, et al. Synthesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells[J]. Progress in Organic Coatings,2019,137:105327. doi: 10.1016/j.porgcoat.2019.105327
    [44] HUNG H M, LINH D K, CHINH N T, et al. Improvement of the corrosion protection of polypyrrole coating for CT3 mild steel with 10-camphor sulfonic acid and molyb-date as inhibitor dopants[J]. Progress in Organic Coatings,2019,131:407-416. doi: 10.1016/j.porgcoat.2019.03.006
    [45] HU C, LI T, YIN H, et al. Preparation and corrosion protection of three different acids doped polyaniline/epoxy resin composite coatings on carbon steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021:612.
    [46] XU J, ZHANG Y, ZHANG D, et al. Electrosynthesis of PANI/PPy coatings doped by phosphotungstate on mild steel and their corrosion resistances[J]. Progress in Orga-nic Coatings,2015,88:84-91. doi: 10.1016/j.porgcoat.2015.06.024
    [47] LIANG B, QIN Z, ZHAO J, et al. Controlled synthesis, core-shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers[J]. Journal of Materials Chemistry A,2014,2(7):2129-2135. doi: 10.1039/C3TA14460G
    [48] HAO Y, ZHAO Y, YANG X, et al. Self-healing epoxy coating loaded with phytic acid doped polyaniline nanofibers impregnated with benzotriazole for Q235 carbon steel[J]. Corrosion Science,2019,151:175-189. doi: 10.1016/j.corsci.2019.02.023
    [49] HANY M, KHALAF M. Novel dispersed Tl2O3-SiO2/polyaniline nanocomposites: In-situ polymerization, characterization and enforcement as a corrosion protective layer for carbon-steel in acidic chloride medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,573:95-111.
    [50] BAHRAM R, BAHLAKEH G, RAMEZANZADEH M. Polyaniline-cerium oxide (PANI-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel[J]. Corrosion Science,2018,137:111-126. doi: 10.1016/j.corsci.2018.03.038
    [51] POUR-ALI S, DEHGHANIAN C, KOSARI A. In situ synthesis of polyaniline-camphorsulfonate particles in an epoxy matrix for corrosion protection of mild steel in NaCl solution[J]. Corrosion Science,2014,85:204-214. doi: 10.1016/j.corsci.2014.04.018
    [52] LEHR I L, SAIDMAN S B. Characterisation and corrosion protection properties of polypyrrole electropolymerised onto aluminium in the presence of molybdate and nitrate[J]. Electrochimica Acta,2006,51(16):3249-3255. doi: 10.1016/j.electacta.2005.09.017
    [53] MERVE M, OZKAZANC H. Electrodeposition of polypyrrole on copper surfaces in OXA-DBSA mix electrolyte and their corrosion behaviour[J]. Progress in Organic Coatings,2019,130:149-157. doi: 10.1016/j.porgcoat.2019.01.058
    [54] KAMARAJ K, KARPAKAM V, SATHIYANARAYANAN S, et al. Synthesis of tungstate doped polyaniline and its usefulness in corrosion protective coatings[J]. Electrochimica Acta,2011,56(25):9262-9268. doi: 10.1016/j.electacta.2011.08.005
    [55] YAN Q, PAN W, ZHONG S, et al. Effect of solvents on the preparation and corrosion protection of polypyrrole[J]. Progress in Organic Coatings,2019,132:298-304. doi: 10.1016/j.porgcoat.2019.04.014
    [56] OZYILMAZ A T, AVSAR B, OZYILMAZ G, et al. Different copolymer films on ZnFeCo particles: Synthesis and anticorrosion properties[J]. Applied Surface Science,2014,318:262-268. doi: 10.1016/j.apsusc.2014.04.177
    [57] 曹祥康, 孙晓光, 肖松, 等. 聚苯并噁嗪基三维超疏水涂层的制备及抗磨损腐蚀性能[J]. 复合材料学报, 2022, 39(2):617-627.

    CAO Xiangkang, SUN Xiaoguang, XIAO Song, et al. Preparation and wear corrosion resistance of polybenzoxazine 3D superhydrophobic coating[J]. Acta Materiae Compositae Sinica,2022,39(2):617-627(in Chinese).
    [58] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.

    WANG Yuwei, Opelli, LU Yi, et al. Preparation and properties of functionalized nano TiO2/epoxy superhydrophobic and anti-corrosion composite coatings[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese).
    [59] LEI Y, SHENG N, HYONO A, et al. Influence of pH on the synthesis and properties of polypyrrole on copper from phytic acid solution for corrosion protection[J]. Progress in Organic Coatings,2014,77(4):774-784. doi: 10.1016/j.porgcoat.2014.01.002
    [60] PLESU N, ILIA G, PASCARIU A, et al. Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of poly aniline-acrylic blends[J]. Synthetic Metals,2006,156(2-4):230-238. doi: 10.1016/j.synthmet.2005.11.006
    [61] 宋航, 李栋, 王金福, 等. 共掺杂态聚苯胺/环氧树脂复合涂层的耐蚀性分析[J]. 全面腐蚀控制, 2020, 34(12):19-27.

    SONG Hang, LI Dong, WANG Jinfu, et al. Corrosion resistance analysis of Co-doped polyaniline/epoxy composite coatings[J]. Total Corrosion Control,2020,34(12):19-27(in Chinese).
    [62] 宋航, 王华, 钱晨. 掺杂态聚苯胺的乳液聚合及其与环氧树脂所制涂层的耐蚀性[J]. 电镀与涂饰, 2018, 37(2):54-60.

    SONG Hang, WANG Hua, QIAN Chen. Emulsion polymerization of doped polyaniline and corrosion resistance of coatings made with epoxy resin[J]. Electroplating and Finishing,2018,37(2):54-60(in Chinese).
    [63] JAFARZADEH S, ADHIKARI A, SUNDALL P E, et al. Study of PANI-MeSA conducting polymer dispersed in UV-curing polyester acrylate on galvanized steel as corrosion protection coating[J]. Progress in Organic Coatings,2011,70(2):108-115.
    [64] ADHIKARI A, CLAESSON P, PAN J, et al. Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel[J]. Electrochimica Acta,2008,53(12):4239-4247. doi: 10.1016/j.electacta.2007.12.069
    [65] SAMUI A B, PHADNIS S M. Polyaniline-dioctyl phosphate salt for corrosion protection of iron[J]. Progress in Orga-nic Coatings,2005,54(3):263-267. doi: 10.1016/j.porgcoat.2005.07.002
    [66] HUANG H Y, HUANG T C, LIN J C, et al. Advanced environmentally friendly coatings prepared from amine-capped aniline trimer-based waterborne electroactive polyurethane[J]. Materials Chemistry and Physics,2013,137(3):772-780. doi: 10.1016/j.matchemphys.2012.09.063
    [67] PENG C, HSU C, LIN K H, et al. Electrochemical corrosion protection studies of aniline-capped aniline trimer-based electroactive polyurethane coatings[J]. Electrochimica Acta,2011,58:614-620. doi: 10.1016/j.electacta.2011.10.002
    [68] 刘玮, 安成强, 郝建军, 等. 钼酸钠对AZ91 D镁合金钒/锆复合转化膜性能的影响[J]. 电镀与精饰, 2019, 41(8):10-13. doi: 10.3969/j.issn.1001-3849.2019.08.003

    LIU Wei, AN Chengqiang, HAO Jianjun, et al. Effect of sodium molybdate on the properties of vanadium/zirconium composite transformation film of AZ91 D magnesium alloy[J]. Electroplating and Finishing,2019,41(8):10-13(in Chinese). doi: 10.3969/j.issn.1001-3849.2019.08.003
    [69] 伍良银, 姜雪婷, 张菊, 等. AZ31镁合金表面钼酸盐-高铁酸盐转化膜的制备及腐蚀行为研究[J]. 材料保护, 2020, 53(9):70-75, 81.

    WU Liangyin, JIANG Xueting, ZHANG Ju, et al. Preparation and corrosion behavior of molybdenate-perferrate conversion film on the surface of AZ31 magnesium alloy[J]. Materials Protection,2020,53(9):70-75, 81(in Chinese).
    [70] 程明月, 林颖菲, 王超, 等. Al2O3溶胶对铝基磷酸盐涂层组织及性能的影响[J]. 涂料工业, 2021, 51(9):1-8. doi: 10.12020/j.issn.0253-4312.2021.9.1

    CHENG Mingyue, LIN Yingfei, WANG Chao, et al. Effect of Al2O3 sol on microstructure and properties of aluminum-based phosphate coating[J]. Coatings Industry,2021,51(9):1-8(in Chinese). doi: 10.12020/j.issn.0253-4312.2021.9.1
    [71] 曾荣昌, 胡艳, 张芬, 等. AZ31镁合金表面铈掺杂锌钙磷酸盐化学转化膜的腐蚀性能[J]. 中国有色金属学报, 2016(2):472-483.

    ZENG Rongchang, HU Yan, ZHANG Fen, et al. Corrosion properties of cerium-doped zinc-calcium phosphate chemical conversion film on the surface of AZ31 magnesium alloy[J]. Chinese Journal of Nonferrous Metals,2016(2):472-483(in Chinese).
    [72] JENSEN M B, PETERSON M J, JADHAV N, et al. SECM investigation of corrosion inhibition by tungstate- and vanadate-doped polypyrrole/aluminum flake composite coatings on AA2024-T3[J]. Progress in Organic Coatings,2014,77(12):2116-2122. doi: 10.1016/j.porgcoat.2014.05.019
    [73] 杨浩, 王成, 肖小波, 等. 添加硼酸和钨酸铵对取向硅钢无铬绝缘涂层的影响[J]. 材料导报, 2021, 35(22):22141-22145. doi: 10.11896/cldb.20080274

    YANG Hao, WANG Cheng, XIAO Xiaobo, et al. Effect of addition of boric acid and ammonium tungstate on chromium-free insulation coating of oriented silicon steel[J]. Materials Reports,2021,35(22):22141-22145(in Chinese). doi: 10.11896/cldb.20080274
    [74] 向可友, 杨晓波, 肖革, 等. 几种元素在金属表面化学转化中的作用研究进展[J]. 电镀与涂饰, 2022, 41(2):96-102.

    XIANG Keyou, YANG Xiaobo, XIAO Ge, et al. Research progress on the role of several elements in the chemical transformation of metal surfaces[J]. Electroplating and Finishing,2022,41(2):96-102(in Chinese).
    [75] KAMARAJ K, SATHIYANARAYANAN S, VENKATACHARI G. Electropolymerised polyaniline films on AA 7075 alloy and its corrosion protection performance[J]. Progress in Organic Coatings,2009,64(1):67-73. doi: 10.1016/j.porgcoat.2008.07.008
    [76] SATHIYANARAYANAN S, DEVI S, VENKATACHARI G. Corrosion protection of stainless steel by electropolymerised PANI coating[J]. Progress in Organic Coatings,2006,56(2-3):114-119. doi: 10.1016/j.porgcoat.2006.01.003
    [77] 刘学佳, 王伟龙, 张云霞, 等. 苯甲酸钠对双相不锈钢在草酸溶液中腐蚀行为的影响[J]. 当代化工, 2021, 50(5):1064-1068. doi: 10.3969/j.issn.1671-0460.2021.05.016

    LIU Xuejia, WANG Weilong, ZHANG Yunxia, et al. Effect of sodium benzoate on corrosion behavior of duplex stainless steel in oxalic acid solution[J]. Contemporary Chemi-cal Industry,2021,50(5):1064-1068(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.05.016
    [78] BONASTRE J, GARCÉS P, GALVÁN J C, et al. Characterisation and corrosion studies of steel electrodes covered by polypyrrole/phosphotungstate using electrochemical impedance spectroscopy[J]. Progress in Organic Coatings,2009,66(3):235-241. doi: 10.1016/j.porgcoat.2009.07.012
    [79] GOPI D, KARTHIKEYAN P, KAVITHA L, et al. Development of poly(3, 4-ethylenedioxythiophene-co-indole-5-carboxylic acid) co-polymer coatings on passivated low-nickel stainless steel for enhanced corrosion resistance in the sulphuric acid medium[J]. Applied Surface Science,2015,357:122-130. doi: 10.1016/j.apsusc.2015.09.001
    [80] SIVA T, KAMARAJ K, SATHIYANARAYANAN S. Electrosynthesis of poly(aniline-co-o-phenylenediamine) film on steel and its corrosion protection performance[J]. Progress in Organic Coatings,2014,77(11):1807-1815. doi: 10.1016/j.porgcoat.2014.06.003
    [81] PATTANAYAK P, PRAMANIK N, PAPIYA F, et al. Metal-free keratin modified poly(pyrrole-co-aniline)-reduced graphene oxide based nanocomposite materials: A pro-mising cathode catalyst in microbial fuel cell application[J]. Journal of Environmental Chemical Engi-neering,2020,8(3):103813. doi: 10.1016/j.jece.2020.103813
    [82] MADHANKUMAR A, RAJENDRAN N. Poly(m-phenylen diamine-co-o-aminophenol) coatings on mild steel: Effect of comonomers feed ratio on surface and corrosion protection aspects[J]. Progress in Organic Coatings,2013,76(10):1445-1453. doi: 10.1016/j.porgcoat.2013.05.033
    [83] WANG H, ZHANG P, FEI G, et al. Design and properties of environmental anticorrosion coating based on m-aminobenzenesulfonic acid/aniline/p-phenylenediamine terpolymer[J]. Progress in Organic Coatings,2019,137:105274. doi: 10.1016/j.porgcoat.2019.105274
    [84] JIN Y, CHEN Z, YANG W, et al. Electrochemical and quantum mechanical investigation of various small molecule organic compounds as corrosion inhibitors in mild steel[J]. Journal of the Taiwan Institute of Chemical Engi-neers, 2020, 117: 171-181
    [85] OWCZAREK E, ADAMCZYK L. Electrochemical and anticorrosion properties of bilayer polyrhodanine/isobutyltriethoxysilane coatings[J]. Journal of Applied Electroche-mistry,2016,46(6):635-643. doi: 10.1007/s10800-016-0946-0
    [86] GONZÁLEZ M B, SAIDMAN S B. Electrodeposition of bilayered polypyrrole on 316 L stainless steel for corrosion prevention[J]. Progress in Organic Coatings,2015,78:21-27. doi: 10.1016/j.porgcoat.2014.10.012
    [87] ZEYBEK B, ÖZÇIÇEK N, KILIÇ E. Electrochemical synthesis of bilayer coatings of poly(N-methylaniline) and polypyrrole on mild steel and their corrosion protection performances[J]. Electrochimica Acta,2011,56(25):9277-9286. doi: 10.1016/j.electacta.2011.08.003
    [88] NARAYANASAMY B, RAJENDRAN S. Electropoly-merized bilayer coatings of polyaniline and poly(N-methylaniline) on mild steel and their corrosion protection performance[J]. Progress in Organic Coatings,2010,67(3):246-254. doi: 10.1016/j.porgcoat.2009.12.001
    [89] PEKMEZ N Ö, ABACI E, CINKILLI K, et al. Polybithiophene and its bilayers with polyaniline coatings on stainless steel by electropolymerization in aqueous medium[J]. Progress in Organic Coatings,2009,65(4):462-468. doi: 10.1016/j.porgcoat.2009.04.012
    [90] HASANOV R, BILGIC S. Monolayer and bilayer conducting polymer coatings for corrosion protection of steel in 1 M H2SO4 solution[J]. Progress in Organic Coatings,2009,64(4):435-445. doi: 10.1016/j.porgcoat.2008.08.004
    [91] KUMAR S A, MEENAKSHI K S, SANKARANARAYANAN T S N, et al. Corrosion resistant behaviour of PANI-metal bilayer coatings[J]. Progress in Organic Coatings,2008,62(3):285-292. doi: 10.1016/j.porgcoat.2008.01.005
    [92] SYED J A, TANG S, MENG X. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability[J]. Applied Surface Science,2016,383:177-190. doi: 10.1016/j.apsusc.2016.04.178
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  511
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-08
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回