Preparation and mechanical properties of multi-walled carbon nanotubes-bacterial cellulose composite films
-
摘要: 开发和利用绿色生物质材料能够降低石油基聚合物的消耗,但与单根细菌纤维素(BC)相比,BC薄膜表现出较低的力学性能,限制了其应用领域。为协同提高BC复合薄膜的强度和韧性,本文以BC为基体,通过对其碱处理、2, 2, 6, 6-四甲基哌啶-氮-氧化物(TEMPO)氧化处理得到TEMPO氧化的BC(TOBC),并引入羧基化多壁碳纳米管(CNT)作为增强体,采用真空抽滤技术制备出CNT-TOBC复合薄膜,着重探究了CNT的添加对TOBC薄膜力学性能和微观形貌的影响,并探讨其增强增韧机制。研究结果表明:当CNT的添加量为7.5wt%时,CNT-TOBC复合薄膜的力学性能最佳,其断裂应力、伸长率及韧性分别为174 MPa、10.83%和12.01 MJ·m−3,相比纯的TOBC薄膜分别提高了56.76%、144.47%和295.07%,这主要归因于CNT与TOBC间的氢键相互作用、CNT内在高强度及外在增韧机制。研究结果为提高复合材料的界面结合和力学性能提供了一种切实可行的方法,并进一步拓宽了TOBC在柔性电子衬底、智能包装等领域的应用。Abstract: Exploiting and utilizing green biomass materials can reduce the consumption of petroleum-based polymers. However, compared with the single bacterial cellulose (BC), BC film always exhibits the poor mechanical properties, which limits its application. In this study, in order to improve the strength and toughness of BC composite films synergistically, BC was treated by alkaline and 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) oxidation to obtain TEMPO-oxidized BC (TOBC), which was utilized as matrix to prepare the TOBC-based composite films enhanced by carboxylic multi-walled carbon nanotubes (CNT) via vacuum filtrating technique. The effect of CNT amounts on the mechanical properties and microstructure of TOBC-based composite films were investigated emphatically and the strengthening and toughening mechanism was also discussed. The results show that: When CNT content is 7.5wt%, CNT-TOBC composite films exhibit the best mechanical properties. The tensile stress, elongation and toughness of CNT-TOBC-7.5wt% composite films are 174 MPa, 10.83% and 12.01 MJ·m−3, respectively, which are increased by 56.76%, 144.47% and 295.07% compared with the pure TOBC films, respectively. The improvement is attributed to the hydrogen bonding interaction between CNT and TOBC, the high strength of CNT, as well as the external toughening mechanism. This study provides a feasible method to improve the interface bonding and mechanical properties of composites, and further broadens the application of TOBC in flexible electronic substrates, intelligent packaging and other fields.
-
Key words:
- nanofibers /
- carbon nanotubes /
- composite films /
- strength /
- toughness /
- green biomass materials
-
表 1 不同CNT添加量的羧基化多壁碳纳米管-TEMPO氧化的细菌纤维素(CNT-TOBC)复合薄膜的配方
Table 1. Formulations of carboxylic multi-walled carbon nanotubes-TEMPO-oxidized bacterial cellulose (CNT-TOBC) composite films with different CNT contents
Sample TOBC/wt% CNT/wt% TOBC 100.0 0.0 CNT-TOBC-2.5wt% 97.5 2.5 CNT-TOBC-5wt% 95.0 5.0 CNT-TOBC-7.5wt% 92.5 7.5 CNT-TOBC-10wt% 90.0 10.0 Note: TEMPO—2, 2, 6, 6-tetramethyl-1-piperidinyloxy. 表 2 不同CNT添加量的CNT-TOBC复合薄膜的厚度和紧度
Table 2. Thickness and tightness of CNT-TOBC composite films with different CNT contents
Sample Thickness/μm Tightness/(g·cm−3) TOBC 28 1.43 CNT-TOBC-2.5wt% 30 1.33 CNT-TOBC-5wt% 31 1.29 CNT-TOBC-7.5wt% 32 1.25 CNT-TOBC-10wt% 34 1.18 表 3 TOBC薄膜和CNT-TOBC-7.5wt%复合薄膜XPS分峰对应的结合能
Table 3. XPS peak binding energy assignments of TOBC film and CNT-TOBC-7.5wt% composite film
Functional group Binding energy/eV TOBC C—C 284.6 C—OH 286.4 C—O—C 287.8 O—C═O 288.8 CNT-TOBC-7.5wt% C—C 284.6 C═C 285.1 C—OH 286.6 C—O—C 288.0 O—C═O 289.2 表 4 不同CNT添加量下的TOBC基体的结晶指数
Table 4. Crystalline indexes of TOBC matrix with different CNT content
Sample Crystalline index/% TOBC 90.42 CNT-TOBC-2.5wt% 89.74 CNT-TOBC-5wt% 91.71 CNT-TOBC-7.5wt% 93.35 CNT-TOBC-10wt% 94.02 -
[1] ZHANG C L, CHA R T, ZHANG P, et al. Cellulosic substrate materials with multi-scale building blocks: Fabrications, properties and applications in bioelectronic devices[J]. Chemical Engineering Journal,2022,430(2):132562. [2] OPERAMOLLA A, MAZZUCA C, CAPODIECI L, et al. Toward a reversible consolidation of paper materials using cellulose nanocrystals[J]. ACS Applied Materials & Interfaces,2021,13(37):44972-44982. [3] MA Q, WANG K, MOHAWK D, et al. Strong, ductile, transparent, water-resistant cellulose nanofibril composite films via UV-induced inter-cross-linked networks[J]. ACS Sustainable Chemistry & Engineering,2021,9(32):10749-10760. [4] CHEN C T, QIAN J S, CHEN H W, et al. Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites[J]. Nano Letters,2021,21(24):10292-10300. doi: 10.1021/acs.nanolett.1c03411 [5] 贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3):843-853.HE Wei, LIU Xiaotong, ZHENG Yudong, et al. Preparation and properties of modified soy protein-bacterial cellulose composites for air filtration[J]. Acta Materiae Compositae Sinica,2021,38(3):843-853(in Chinese). [6] CHEN K, SHI B, YUE Y H, et al. Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide-sodium alginate composite paper[J]. ACS Nano,2015,9(8):8165-8175. doi: 10.1021/acsnano.5b02333 [7] HUANG H D, LIU C Y, ZHANG L Q, et al. Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding[J]. ACS Sustainable Chemistry & Engineering,2015,3(2):317-324. [8] 陈科, 岳永海, 郭林. 二元协同增强、增韧仿珍珠母层状氧化石墨烯/海藻酸钠(GO/SA)复合薄膜材料的构建[J]. 中国科技论文, 2016, 11(10):1151-1155. doi: 10.3969/j.issn.2095-2783.2016.10.016CHEN Ke, YUE Yonghai, GUO Lin. Construction of binary synergy strengthening and toughening bio-inspired nacre-like graphene oxide/sodium alginate composite paper[J]. China Science Paper,2016,11(10):1151-1155(in Chinese). doi: 10.3969/j.issn.2095-2783.2016.10.016 [9] LIANG B L, ZHAO H W, ZHANG Q, et al. Ca2+ enhanced nacre-inspired montmorillonite-alginate film with superior mechanical, transparent, fire retardancy, and shape memory properties[J]. ACS Applied Materials & Interfaces,2016,8(42):28816-28823. doi: 10.1021/acsami.6b08203 [10] GONG S S, CHENG Q F. Bioinspired graphene-based nanocomposites via ionic interfacial interactions[J]. Composites Communications,2018,7:16-22. doi: 10.1016/j.coco.2017.12.002 [11] AN Z, COMPTON O C, PUTZ K W, et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films[J]. Advanced Materials,2011,23(33):3842-3846. [12] DUAN J L, GONG S S, GAO Y, et al. Bioinspired ternary artificial nacre nanocomposites based on reduced graphene oxide and nanofibrillar cellulose[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10545-10550. [13] WANG Y, MENG F B, HUANG F, et al. Ultrastrong carbon nanotubes/graphene papers via multiple pi-pi cross-linking[J]. ACS Applied Materials & Interfaces,2020,12(42):47811-47819. doi: 10.1021/acsami.0c12501 [14] HACOPIAN E F, YANG Y C, NI B, et al. Toughening graphene by integrating carbon nanotubes[J]. ACS Nano,2018,12(8):7901-7910. doi: 10.1021/acsnano.8b02311 [15] E S F, NING D D, WANG Y F, et al. Ternary synergistic strengthening and toughening of bio-inspired TEMPO-oxidized cellulose nanofibers/borax/polyvinyl alcohol composite film with high transparency[J]. ACS Sustainable Chemistry & Engineering,2020,8(41):15661-15669. [16] WANG J F, CHENG Q F, LIN L, et al. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre[J]. ACS Nano,2014,8(3):2739-2745. doi: 10.1021/nn406428n [17] ZHANG L, ZHANG G, LIU C H, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letters,2012,12(9):4848-4852. doi: 10.1021/nl3023274 [18] HAN Y, ZHANG X H, YU X P, et al. Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites[J]. Scientific Reports,2015,5:11533. doi: 10.1038/srep11533 [19] LIU K, SUN Y H, LIN X Y, et al. Scratch-resistant, highly conductive, and high-strength carbon nanotubebased composite yarns[J]. ACS Nano,2010,4(10):5827-5834. doi: 10.1021/nn1017318 [20] ZHU J Q, CAO W X, YUE M L, et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites[J]. ACS Nano,2015,9(3):2489-2501. doi: 10.1021/nn504927e [21] YAO J J, CHEN S Y, CHEN Y, et al. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers[J]. ACS Applied Materials & Interfaces,2017,9(24):20330-20339. [22] YANG B, ZHANG M Y, LU Z Q, et al. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF)[J]. Carbohydrate Polymers,2019,208:372-381. doi: 10.1016/j.carbpol.2018.12.086 [23] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal,1959,29(10):786-794. doi: 10.1177/004051755902901003 [24] 周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7):1657-1666.ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica,2020,37(7):1657-1666(in Chinese). [25] ZHANG Q, WAN S J, JIANG L, et al. Bioinspired robust nanocomposites of cooper ions and hydroxypropyl cellulose synergistic toughening graphene oxide[J]. Science China Technological Sciences,2017,60(5):758-764. doi: 10.1007/s11431-016-0529-3 [26] LIN F C, WANG Z, CHEN J S, et al. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels[J]. Journal of Materials Chemistry B,2020,8(18):4002-4015. doi: 10.1039/D0TB00424C [27] LI C H, GUO J W, JIANG T, et al. Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite[J]. Carbon,2018,129:720-729. doi: 10.1016/j.carbon.2017.12.063