留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能

程岩 王诏田 罗洪杰 吴林丽 陈曦平 姜昊

程岩, 王诏田, 罗洪杰, 等. 水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能[J]. 复合材料学报, 2023, 40(2): 814-824. doi: 10.13801/j.cnki.fhclxb.20220426.001
引用本文: 程岩, 王诏田, 罗洪杰, 等. 水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能[J]. 复合材料学报, 2023, 40(2): 814-824. doi: 10.13801/j.cnki.fhclxb.20220426.001
CHENG Yan, WANG Zhaotian, LUO Hongjie, et al. Water-soluble zirconium hybrid silicone resin sizing for improvement heat resistance of basalt fibre[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 814-824. doi: 10.13801/j.cnki.fhclxb.20220426.001
Citation: CHENG Yan, WANG Zhaotian, LUO Hongjie, et al. Water-soluble zirconium hybrid silicone resin sizing for improvement heat resistance of basalt fibre[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 814-824. doi: 10.13801/j.cnki.fhclxb.20220426.001

水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能

doi: 10.13801/j.cnki.fhclxb.20220426.001
基金项目: 国家自然科学基金(51874093)
详细信息
    通讯作者:

    罗洪杰,博士,教授,博士生导师,研究方向为多孔材料制备与固废回收 E-mail:neuhjluo@sina.com

  • 中图分类号: TQ343

Water-soluble zirconium hybrid silicone resin sizing for improvement heat resistance of basalt fibre

Funds: National Natural Science Foundation of China (51874093)
  • 摘要: 现有玄武岩纤维制成的高温烟气滤袋工作温度为280℃,难以在300℃甚至更高的温度下长期工作。为了提高玄武岩纤维的耐热性能,本文合成了一种水溶性锆杂化硅树脂浸润剂,并用于玄武岩纤维表面改性。用FTIR、TG-DSC、SEM、AFM、DCA及拉伸实验对锆杂化硅树脂及改性纤维进行了微观结构和性能表征。结果表明:锆杂化硅树脂的初始热分解温度为323~360℃;浸润后的玄武岩纤维表面包裹着一层致密、均匀的硅树脂膜,这层膜增大了纤维表面的粗糙度和表面积,提高了纤维的表面能,改变了纤维的表面结构,修复了纤维的表面微缺陷;力学测试表明:浸润后的纤维在300℃热处理2 h后,最优断裂强力值为376.0 N,断裂伸长率为2.647%,优于未被浸润纤维(287.8 N、1.932%)的相关性能。因此,锆杂化硅树脂浸润剂可显著提高玄武岩纤维的耐热性能。

     

  • 图  1  Zr-SR的合成图

    Figure  1.  Synthesis scheme of Zr-SR

    图  2  Zr-SR的FTIR图谱

    Figure  2.  FTIR spectra of Zr-SR

    图  3  Zr-SR的TG曲线(a)和DSC曲线(b)

    Figure  3.  TG curves (a) and DSC curves (b) of Zr-SR

    图  4  25℃、300℃、400℃时BF和Zr-SR/BF的SEM图像

    (a) BF; ((b)-(f)) Zr-SR/BF-1, Zr-SR/BF-2, Zr-SR/BF-3, Zr-SR/BF-4, Zr-SR/BF-5; (g) 300℃ Zr-SR/BF-5; (h) 400℃ Zr-SR/BF-5

    Figure  4.  SEM images of BF and Zr-SR/BF at 25℃, 300℃, 400℃

    图  5  BF和Zr-SR/BF的AFM图像

    Figure  5.  AFM morphologies of BF and Zr-SR/BF

    (a) BF; (b) Zr-SR/BF-1; (c) Zr-SR/BF-2; (d) Zr-SR/BF-3; (e) Zr-SR/BF-4; (f) Zr-SR/BF-5

    图  6  BF和Zr-SR/BF的表面积值及表面粗糙度值

    Ra—Arithmetic average roughness; Rq—Root mean square roughness

    Figure  6.  Surface roughness and surface area values of BF and Zr-SR/BF

    图  7  (a) BF和Zr-SR/BF-4的XPS全谱图;Zr-SR/BF-4的Zr3d (b)、O1s (d) 和Si2p (f);BF的O1s (c)、Si2p (e) XPS分谱图谱

    Figure  7.  (a) XPS spectra of BF and Zr-SR/BF-4; XPS patterns of Zr3d (b), O1s (d), Si2p (f) of Zr-SR/BF-4 and O1s (c), Si2p (e) of BF

    图  8  玄武岩纤维热处理力学性能图:(a)温度-断裂强力;(b)温度-断裂伸长率;(c)时间-断裂强力

    Figure  8.  Mechanical properties of basalt fibre after heat treatment: (a) Temperature-breaking force; (b) Temperature-breaking elongations; (c) Time-breaking force

    图  9  BF和Zr-SR/BF断裂机制

    Figure  9.  Fracture mechanism of BF and Zr-SR/BF

    表  1  水溶性锆杂化硅树脂(Zr-SR)配方及浸润后玄武岩纤维(BF)的对应样品编号

    Table  1.   Formulas of the water-soluble zirconium hybrid silicone resin (Zr-SR) and the corresponding sample numbers of sized basalt fibres (BF)

    CodeMTES/molKH602/molZrOCl2·8H2O/molH2O/mLCH3COOH/gHDMS/molSolid content/wt%Sample numbers of sized BF
    Zr-SR-1 0.020 0.030 0.0005 2.00 0.6 0.0025 59.67 Zr-SR/BF-1
    Zr-SR-2 0.020 0.030 0.0010 2.00 0.6 0.0025 60.97 Zr-SR/BF-2
    Zr-SR-3 0.020 0.030 0.0015 1.75 0.9 0.0025 61.79 Zr-SR/BF-3
    Zr-SR-4 0.020 0.030 0.0020 0.50 1.0 0.0026 67.36 Zr-SR/BF-4
    Zr-SR-5 0.020 0.030 0.0025 0.70 1.2 0.0026 69.79 Zr-SR/BF-5
    Notes: MTES—Methyltriethoxysilane; KH602—N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane; HDMS—Hexamethyldisiloxane.
    下载: 导出CSV

    表  2  25℃时BF及Zr-SR/BF样品测试液体的性能参数

    Table  2.   Properties of the testing liquids at 25℃ of BF andZr-SR/BF samples

    Parameters$ {\gamma _{\rm{l}}} $/(mN·m−1)$ {\gamma _{\rm{l}}^{\rm{p}}} $/(mN·m−1)$ {\gamma _{\rm{l}}^{\rm{d}}} $/(mN·m−1)
    H2O 72.8 51.0 21.8
    CH2I2 50.8 2.3 48.5
    Notes: $ {\gamma _{\rm{l}}} $—Surface energy of solution; $ {\gamma _{\rm{l}}^{\rm{p}}} $—Polar component of solution; $ {\gamma _{\rm{l}}^{\rm{d}}} $—Dispersion component of solution.
    下载: 导出CSV

    表  3  BF和Zr-SR/BF样品的接触角θ及表面能

    Table  3.   Contact angles θ and surface energies of BF and Zr-SR/BF samples


    Sample
    θ/(°)$\gamma _{\rm{s}}^{\rm{p}} $/(mN·m−1)$\gamma _{\rm{s}}^{\rm{d}} $/(mN·m−1)γs/(mN·m−1)
    H2OCH2I2
    BF 119.0 35.9 9.54 22.85 32.39
    Zr-SR/BF-1 106.7 29.0 0.95 43.94 44.90
    Zr-SR/BF-2 107.8 53.1 0.10 33.80 33.91
    Zr-SR/BF-3 110.2 45.5 0.83 36.25 36.25
    Zr-SR/BF-4 111.7 32.7 1.88 41.17 43.06
    Zr-SR/BF-5 117.9 45.7 2.43 34.27 36.71
    Notes: γs—Surface energy of solid; $\gamma _{\rm{s}}^{\rm{p}} $—Polar component of solid; $\gamma _{\rm{s}}^{\rm{d}} $—Dispersion component of solid.
    下载: 导出CSV
  • [1] SAKATA K, KURISU M, TANIMOTO H, et al. Custom-made PTFE filters for ultra-clean size-fractionated aerosol sampling for trace metals[J]. Marine Chemistry,2016,206:100-108.
    [2] PARK S, JOE Y H, SHIM J, et al. Non-uniform filtration velocity of process gas passing through a long bag filter[J]. Journal of Hazardous Materials,2019,365:440-447. doi: 10.1016/j.jhazmat.2018.10.098
    [3] NIE X L, WANG Y H. Investigation of the pyrolysis behaviour of hybrid filter media for needle-punched nonwoven bag filters[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics,2017,113:705-713.
    [4] VIKAS G, SUDHEER M. A review on properties of basalt fibre reinforced polymer composites[J]. American Journal of Materials Science,2017,7(5):156-165.
    [5] DEAK T, CZIGANY T. Chemical composition and mecha-nical properties of basalt and glass fibres: A comparison[J]. Textile Research Journal,2009,79(7):645-651. doi: 10.1177/0040517508095597
    [6] 赵奕, 靳向煜. 我国高温烟气非织造过滤材料的现状与发展前景[J]. 东华大学学报, 2020, 46(6):874-880.

    ZHAO Yi, JIN Xiangyu. Current situation and development prospect of high temperature flue gas nonwoven filter materials in China[J]. Journal of Donghua University,2020,46(6):874-880(in Chinese).
    [7] 廖强, 付乾. 工业高温含尘烟气余热回收技术[J]. 工程热物理学报, 2017, 38(4):906-907.

    LIAO Qiang, FU Qian. Waste heat recovery technology of industrial high temperature dusty flue gas[J]. Journal of Engineering Thermophysics,2017,38(4):906-907(in Chinese).
    [8] WEI B, CAO H, SONG S. Surface modification and characterization of basalt fibers with hybrid sizings[J]. Compo-sites Part A: Applied Science and Manufacturing,2011,42(1):22-29. doi: 10.1016/j.compositesa.2010.09.010
    [9] 杜作栋, 陈剑华, 北小来, 等. 有机硅化学[M]. 北京: 高等教育出版社, 1990.

    DU Zuodong, CHEN Jianhua, BEI Xiaolai, et al. Organosilicon chemistry[M]. Beijing: Higher Education Press, 1990(in Chinese).
    [10] WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics,2021(8):125024.
    [11] YONG H K, BAE J Y, JIN J, et al. Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refrac-tive index LED encapsulant[J]. ACS Applied Materials & Interfaces,2014,6(5):3115-3121. doi: 10.1021/am500315y
    [12] 步真霞. 锆、铝杂化硅树脂的制备及性能研究[D]. 济南: 山东大学, 2019.

    BU Zhenxia. Synthesis and properties of Zr/Al-containing hybrid silicone resins[D]. Jinan: Shandong Univercity, 2019(in Chinese).
    [13] BABONNEAU F, MAQUET J. Nuclear magnetic resonance techniques for the structural characterization of siloxane-oxide hybrid materials[J]. Polyhedron,2000,19(3):315-322. doi: 10.1016/S0277-5387(99)00361-7
    [14] RODIC P, MERTELJ A, BOROVASK M, et al. Composition, structure and morphology of hybrid acrylate-based sol-gel coatings containing Si and Zr composed for protective applications[J]. Surface & Coatings Technology,2016,286:388-396.
    [15] 董敏瑶, 安秋凤, 罗云, 等. 锆杂化苯基硅树脂的合成及其耐热性能研究[J]. 电镀与涂饰, 2018, 37(22):1045-1049.

    DONG Minyao, AN Qiufeng, LUO Yun, et al. Synthesis of zirconium-phenyl silicone hybrid resin and study on its heat resistance[J]. Electroplating & Finishing,2018,37(22):1045-1049(in Chinese).
    [16] 朱淮武. 有机分子结构波谱分析[M]. 北京: 化学化工出版社, 2005: 29-45.

    ZHU Huaiwu. Spectral analysis of organic molecular structure[M]. Beijing: Chemical Industry Press, 2005: 29-45(in Chinese).
    [17] GUO G Y, CHEN Y L. A nearly pure monoclinic nanocrystalline zirconia[J]. Journal of Solid State Chemistry,2005,175(5):1675-1682.
    [18] YAN P, QIU L Y. Preparation and characterization of polysiloxane-acrylate latexes with MPS-PDMS oligomer as macromonomer[J]. Journal of Applied Polymer Science,2009,114(2):760-768. doi: 10.1002/app.30273
    [19] MA S, LIU W Q, YU D, et al. Modification of epoxy resin with polyether-grafted-polysiloxane and epoxy-miscible polysiloxane particles[J]. Macromolecular Research,2010,18(1):22-28. doi: 10.1007/s13233-009-0053-8
    [20] CHEN S G, YIN Y S, WANG D P, et al. Structures, growth modes and spectroscopic properties of small zirconia clusters[J]. Journal of Crystal Growth,2005,282(3-4):498-505. doi: 10.1016/j.jcrysgro.2005.05.017
    [21] BARCZAK M, BOROWSKI P. Silica xerogels modified with amine groups: Influence of synthesis parameters on porous structure and sorption properties[J]. Microporous and Mesoporous Materials,2019,281:32-43. doi: 10.1016/j.micromeso.2019.02.032
    [22] JUN J, KAN G, WEI Y, et al. Synthesis and ionic conducti-vity of a polysiloxane containing quaternary ammonium groups[J]. Polymers for Advanced Technologies,2004,15(12):61-64. doi: 10.1002/pat.434
    [23] XIANG H, GE J, CHENG S, et al. Synthesis and characterization of titania/MQ silicone resin hybrid nanocomposite via sol-gel process[J]. Journal of Sol-Gel Science and Technology,2011,59(3):635-639. doi: 10.1007/s10971-011-2538-0
    [24] NEFEDOV V I, GATI D, DZHURINSKII B F, et al. Simple and coordination compounds[J]. Russian Journal of Inorganic Chemistry,1975,20:2307-2314.
    [25] MORANT C, SANZ J M, GALAN L. Ar-ion bombardment effects on ZrO2 surfaces[J]. Physical Review B,1992,45(3):1391-1394. doi: 10.1103/PhysRevB.45.1391
    [26] CALAS G, HENDERSON G S, STEBBINS J F. Glasses and melts: Linking geochemistry and materials science[J]. Elements,2006,2(5):265-268. doi: 10.2113/gselements.2.5.265
    [27] 王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.

    WANG Xiaodong, YUN Sining, ZHANG Taihong, et al. Advances in basalt fibre-reinforced composites modified by silane coupling agents[J]. Materials Review,2017,31(5):77-83(in Chinese).
    [28] GUITTET M, CROCOMBETTE J, GAUTIER-SOYER M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects[J]. Physical Review B: Condensed Matter, 2001, 63(12):125117.
    [29] STEPHANIE R, RENE B, DURAND J. 29Si NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition[J]. Separation and Purification Technology,2001,25(1):391-397.
    [30] JOSEPH R, ZHANG S, FORD W T. Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy[J]. Macromolecules,1996,29:1305-1312. doi: 10.1021/ma951111z
    [31] WANG G J, LIU Y W, GUO Y J. Surface modification and characterizations of basalt fibres with non-thermal plasma[J]. Surface and Coatings Technology,2007,201(15):6565-6568. doi: 10.1016/j.surfcoat.2006.09.069
    [32] CORRIU R J P, LECLERCQ D, MUTIN P H, et al. Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors[J]. Journal of Sol-Gel Science and Technology,1997,8(1-3):327-330. doi: 10.1007/BF02436860
    [33] CALVIN R, LEMOINE P, BOYD A, et al. The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene[J]. Applied Surface Science,2019,475:435-445. doi: 10.1016/j.apsusc.2019.01.001
    [34] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747. doi: 10.1002/app.1969.070130815
    [35] KAELBLE D H, MOACANIN J. A surface energy analysis of bioadhesion[J]. Polymer,1977,18(5):475-482. doi: 10.1016/0032-3861(77)90164-1
    [36] 陆春芸, 张汉兴. Griffith强度理论在非金属材料断裂中的应用[J]. 武钢大学学报, 1997(1):44-51, 43.

    LU Chunyun, ZHANG Hanxing. Application of Griffith strength theory in fracture of non-metallic materials[J]. Journal of Wuhan Engineering Institute,1997(1):44-51, 43(in Chinese).
    [37] 全国玻璃纤维标准化委员会. 玄武岩纤维无捻粗纱: GB/T 25045—2010[S]. 北京: 中国标准出版社, 2010.

    National Glass Fiber Standardization Committee. Basalt fiber roving: GB/T 25045—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [38] SCALICI T, VAIENZA A, DI BELLA G, et al. A review on basalt fibre and its composites[J]. Composites Part B: Engineering,2015,74:74-94. doi: 10.1016/j.compositesb.2014.12.034
    [39] SABET S M M, AKHLAGHI F, ESLAMI-FARSANI R. The effect of thermal treatment on tensile properties of basalt fibres[J]. Journal of Ceramic Science and Technology,2015,6:245-248.
    [40] THOMASON J. Glass fibre sizing: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105619. doi: 10.1016/j.compositesa.2019.105619
    [41] ZINCK P, MADER E, GERARD J F. Role of silane coupling agent and polymeric film former for tailoring glass fiber sizings from tensile strength measurements[J]. Journal of Materials Science,2001,36(21):5245-5252. doi: 10.1023/A:1012410315601
    [42] ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: A review[J]. Reliability Engineering & System Safety,2014,124:32-55.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1021
  • HTML全文浏览量:  452
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-04-09
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-26
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回