Water-soluble zirconium hybrid silicone resin sizing for improvement heat resistance of basalt fibre
-
摘要: 现有玄武岩纤维制成的高温烟气滤袋工作温度为280℃,难以在300℃甚至更高的温度下长期工作。为了提高玄武岩纤维的耐热性能,本文合成了一种水溶性锆杂化硅树脂浸润剂,并用于玄武岩纤维表面改性。用FTIR、TG-DSC、SEM、AFM、DCA及拉伸实验对锆杂化硅树脂及改性纤维进行了微观结构和性能表征。结果表明:锆杂化硅树脂的初始热分解温度为323~360℃;浸润后的玄武岩纤维表面包裹着一层致密、均匀的硅树脂膜,这层膜增大了纤维表面的粗糙度和表面积,提高了纤维的表面能,改变了纤维的表面结构,修复了纤维的表面微缺陷;力学测试表明:浸润后的纤维在300℃热处理2 h后,最优断裂强力值为376.0 N,断裂伸长率为2.647%,优于未被浸润纤维(287.8 N、1.932%)的相关性能。因此,锆杂化硅树脂浸润剂可显著提高玄武岩纤维的耐热性能。Abstract: The working temperature of the existing high-temperature basalt fibre filter bag is 280℃, they are difficult to work for a long time when the temperature is above 300℃. In order to improve the heat resistance of basalt fibres, in this paper, a kind of water-soluble zirconium hybrid silicone resin sizing agent was synthesized and used for basalt fibre surface modification. Microstructure and properties of zirconium hybrid silicone resin and modified fibers were characterized by FTIR, TG-DSC, SEM, AFM, DCA and tensile test. The results show the decompose temperature of zirconium hybrid silicone resin is 323-360℃. The surfaces of the sized fibres are coated by dense and uniform silicone resin films. These films increase the surface roughness and surface areas of the fibre surfaces, improve the surface energies, change the surface morphologies, repair the surface micro defects. Themechanical tests show that after heat treatment of 2 h at 300℃, the breaking force of optimum sample is 376.0 N, and the breaking elongation is 2.647%, which are better than the related performance of uncoated fibre (287.8 N, 1.932%). Therefore, the zirconium hybrid silicone sizing agent could significantly improve the heat resistance of basalt fibre.
-
Key words:
- basalt fibre /
- zirconium hybrid silicone resin /
- sizing /
- mechanical properties /
- heat resistance
-
表 1 水溶性锆杂化硅树脂(Zr-SR)配方及浸润后玄武岩纤维(BF)的对应样品编号
Table 1. Formulas of the water-soluble zirconium hybrid silicone resin (Zr-SR) and the corresponding sample numbers of sized basalt fibres (BF)
Code MTES/mol KH602/mol ZrOCl2·8H2O/mol H2O/mL CH3COOH/g HDMS/mol Solid content/wt% Sample numbers of sized BF Zr-SR-1 0.020 0.030 0.0005 2.00 0.6 0.0025 59.67 Zr-SR/BF-1 Zr-SR-2 0.020 0.030 0.0010 2.00 0.6 0.0025 60.97 Zr-SR/BF-2 Zr-SR-3 0.020 0.030 0.0015 1.75 0.9 0.0025 61.79 Zr-SR/BF-3 Zr-SR-4 0.020 0.030 0.0020 0.50 1.0 0.0026 67.36 Zr-SR/BF-4 Zr-SR-5 0.020 0.030 0.0025 0.70 1.2 0.0026 69.79 Zr-SR/BF-5 Notes: MTES—Methyltriethoxysilane; KH602—N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane; HDMS—Hexamethyldisiloxane. 表 2 25℃时BF及Zr-SR/BF样品测试液体的性能参数
Table 2. Properties of the testing liquids at 25℃ of BF andZr-SR/BF samples
Parameters $ {\gamma _{\rm{l}}} $/(mN·m−1) $ {\gamma _{\rm{l}}^{\rm{p}}} $/(mN·m−1) $ {\gamma _{\rm{l}}^{\rm{d}}} $/(mN·m−1) H2O 72.8 51.0 21.8 CH2I2 50.8 2.3 48.5 Notes: $ {\gamma _{\rm{l}}} $—Surface energy of solution; $ {\gamma _{\rm{l}}^{\rm{p}}} $—Polar component of solution; $ {\gamma _{\rm{l}}^{\rm{d}}} $—Dispersion component of solution. 表 3 BF和Zr-SR/BF样品的接触角θ及表面能
Table 3. Contact angles θ and surface energies of BF and Zr-SR/BF samples
Sampleθ/(°) $\gamma _{\rm{s}}^{\rm{p}} $/(mN·m−1) $\gamma _{\rm{s}}^{\rm{d}} $/(mN·m−1) γs/(mN·m−1) H2O CH2I2 BF 119.0 35.9 9.54 22.85 32.39 Zr-SR/BF-1 106.7 29.0 0.95 43.94 44.90 Zr-SR/BF-2 107.8 53.1 0.10 33.80 33.91 Zr-SR/BF-3 110.2 45.5 0.83 36.25 36.25 Zr-SR/BF-4 111.7 32.7 1.88 41.17 43.06 Zr-SR/BF-5 117.9 45.7 2.43 34.27 36.71 Notes: γs—Surface energy of solid; $\gamma _{\rm{s}}^{\rm{p}} $—Polar component of solid; $\gamma _{\rm{s}}^{\rm{d}} $—Dispersion component of solid. -
[1] SAKATA K, KURISU M, TANIMOTO H, et al. Custom-made PTFE filters for ultra-clean size-fractionated aerosol sampling for trace metals[J]. Marine Chemistry,2016,206:100-108. [2] PARK S, JOE Y H, SHIM J, et al. Non-uniform filtration velocity of process gas passing through a long bag filter[J]. Journal of Hazardous Materials,2019,365:440-447. doi: 10.1016/j.jhazmat.2018.10.098 [3] NIE X L, WANG Y H. Investigation of the pyrolysis behaviour of hybrid filter media for needle-punched nonwoven bag filters[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics,2017,113:705-713. [4] VIKAS G, SUDHEER M. A review on properties of basalt fibre reinforced polymer composites[J]. American Journal of Materials Science,2017,7(5):156-165. [5] DEAK T, CZIGANY T. Chemical composition and mecha-nical properties of basalt and glass fibres: A comparison[J]. Textile Research Journal,2009,79(7):645-651. doi: 10.1177/0040517508095597 [6] 赵奕, 靳向煜. 我国高温烟气非织造过滤材料的现状与发展前景[J]. 东华大学学报, 2020, 46(6):874-880.ZHAO Yi, JIN Xiangyu. Current situation and development prospect of high temperature flue gas nonwoven filter materials in China[J]. Journal of Donghua University,2020,46(6):874-880(in Chinese). [7] 廖强, 付乾. 工业高温含尘烟气余热回收技术[J]. 工程热物理学报, 2017, 38(4):906-907.LIAO Qiang, FU Qian. Waste heat recovery technology of industrial high temperature dusty flue gas[J]. Journal of Engineering Thermophysics,2017,38(4):906-907(in Chinese). [8] WEI B, CAO H, SONG S. Surface modification and characterization of basalt fibers with hybrid sizings[J]. Compo-sites Part A: Applied Science and Manufacturing,2011,42(1):22-29. doi: 10.1016/j.compositesa.2010.09.010 [9] 杜作栋, 陈剑华, 北小来, 等. 有机硅化学[M]. 北京: 高等教育出版社, 1990.DU Zuodong, CHEN Jianhua, BEI Xiaolai, et al. Organosilicon chemistry[M]. Beijing: Higher Education Press, 1990(in Chinese). [10] WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics,2021(8):125024. [11] YONG H K, BAE J Y, JIN J, et al. Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refrac-tive index LED encapsulant[J]. ACS Applied Materials & Interfaces,2014,6(5):3115-3121. doi: 10.1021/am500315y [12] 步真霞. 锆、铝杂化硅树脂的制备及性能研究[D]. 济南: 山东大学, 2019.BU Zhenxia. Synthesis and properties of Zr/Al-containing hybrid silicone resins[D]. Jinan: Shandong Univercity, 2019(in Chinese). [13] BABONNEAU F, MAQUET J. Nuclear magnetic resonance techniques for the structural characterization of siloxane-oxide hybrid materials[J]. Polyhedron,2000,19(3):315-322. doi: 10.1016/S0277-5387(99)00361-7 [14] RODIC P, MERTELJ A, BOROVASK M, et al. Composition, structure and morphology of hybrid acrylate-based sol-gel coatings containing Si and Zr composed for protective applications[J]. Surface & Coatings Technology,2016,286:388-396. [15] 董敏瑶, 安秋凤, 罗云, 等. 锆杂化苯基硅树脂的合成及其耐热性能研究[J]. 电镀与涂饰, 2018, 37(22):1045-1049.DONG Minyao, AN Qiufeng, LUO Yun, et al. Synthesis of zirconium-phenyl silicone hybrid resin and study on its heat resistance[J]. Electroplating & Finishing,2018,37(22):1045-1049(in Chinese). [16] 朱淮武. 有机分子结构波谱分析[M]. 北京: 化学化工出版社, 2005: 29-45.ZHU Huaiwu. Spectral analysis of organic molecular structure[M]. Beijing: Chemical Industry Press, 2005: 29-45(in Chinese). [17] GUO G Y, CHEN Y L. A nearly pure monoclinic nanocrystalline zirconia[J]. Journal of Solid State Chemistry,2005,175(5):1675-1682. [18] YAN P, QIU L Y. Preparation and characterization of polysiloxane-acrylate latexes with MPS-PDMS oligomer as macromonomer[J]. Journal of Applied Polymer Science,2009,114(2):760-768. doi: 10.1002/app.30273 [19] MA S, LIU W Q, YU D, et al. Modification of epoxy resin with polyether-grafted-polysiloxane and epoxy-miscible polysiloxane particles[J]. Macromolecular Research,2010,18(1):22-28. doi: 10.1007/s13233-009-0053-8 [20] CHEN S G, YIN Y S, WANG D P, et al. Structures, growth modes and spectroscopic properties of small zirconia clusters[J]. Journal of Crystal Growth,2005,282(3-4):498-505. doi: 10.1016/j.jcrysgro.2005.05.017 [21] BARCZAK M, BOROWSKI P. Silica xerogels modified with amine groups: Influence of synthesis parameters on porous structure and sorption properties[J]. Microporous and Mesoporous Materials,2019,281:32-43. doi: 10.1016/j.micromeso.2019.02.032 [22] JUN J, KAN G, WEI Y, et al. Synthesis and ionic conducti-vity of a polysiloxane containing quaternary ammonium groups[J]. Polymers for Advanced Technologies,2004,15(12):61-64. doi: 10.1002/pat.434 [23] XIANG H, GE J, CHENG S, et al. Synthesis and characterization of titania/MQ silicone resin hybrid nanocomposite via sol-gel process[J]. Journal of Sol-Gel Science and Technology,2011,59(3):635-639. doi: 10.1007/s10971-011-2538-0 [24] NEFEDOV V I, GATI D, DZHURINSKII B F, et al. Simple and coordination compounds[J]. Russian Journal of Inorganic Chemistry,1975,20:2307-2314. [25] MORANT C, SANZ J M, GALAN L. Ar-ion bombardment effects on ZrO2 surfaces[J]. Physical Review B,1992,45(3):1391-1394. doi: 10.1103/PhysRevB.45.1391 [26] CALAS G, HENDERSON G S, STEBBINS J F. Glasses and melts: Linking geochemistry and materials science[J]. Elements,2006,2(5):265-268. doi: 10.2113/gselements.2.5.265 [27] 王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.WANG Xiaodong, YUN Sining, ZHANG Taihong, et al. Advances in basalt fibre-reinforced composites modified by silane coupling agents[J]. Materials Review,2017,31(5):77-83(in Chinese). [28] GUITTET M, CROCOMBETTE J, GAUTIER-SOYER M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects[J]. Physical Review B: Condensed Matter, 2001, 63(12):125117. [29] STEPHANIE R, RENE B, DURAND J. 29Si NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition[J]. Separation and Purification Technology,2001,25(1):391-397. [30] JOSEPH R, ZHANG S, FORD W T. Structure and dynamics of a colloidal silica-poly(methyl methacrylate) composite by 13C and 29Si MAS NMR spectroscopy[J]. Macromolecules,1996,29:1305-1312. doi: 10.1021/ma951111z [31] WANG G J, LIU Y W, GUO Y J. Surface modification and characterizations of basalt fibres with non-thermal plasma[J]. Surface and Coatings Technology,2007,201(15):6565-6568. doi: 10.1016/j.surfcoat.2006.09.069 [32] CORRIU R J P, LECLERCQ D, MUTIN P H, et al. Preparation and structure of silicon oxycarbide glasses derived from polysiloxane precursors[J]. Journal of Sol-Gel Science and Technology,1997,8(1-3):327-330. doi: 10.1007/BF02436860 [33] CALVIN R, LEMOINE P, BOYD A, et al. The effect of fibre sizing on the modification of basalt fibre surface in preparation for bonding to polypropylene[J]. Applied Surface Science,2019,475:435-445. doi: 10.1016/j.apsusc.2019.01.001 [34] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science,1969,13(8):1741-1747. doi: 10.1002/app.1969.070130815 [35] KAELBLE D H, MOACANIN J. A surface energy analysis of bioadhesion[J]. Polymer,1977,18(5):475-482. doi: 10.1016/0032-3861(77)90164-1 [36] 陆春芸, 张汉兴. Griffith强度理论在非金属材料断裂中的应用[J]. 武钢大学学报, 1997(1):44-51, 43.LU Chunyun, ZHANG Hanxing. Application of Griffith strength theory in fracture of non-metallic materials[J]. Journal of Wuhan Engineering Institute,1997(1):44-51, 43(in Chinese). [37] 全国玻璃纤维标准化委员会. 玄武岩纤维无捻粗纱: GB/T 25045—2010[S]. 北京: 中国标准出版社, 2010.National Glass Fiber Standardization Committee. Basalt fiber roving: GB/T 25045—2010[S]. Beijing: Standards Press of China, 2010(in Chinese). [38] SCALICI T, VAIENZA A, DI BELLA G, et al. A review on basalt fibre and its composites[J]. Composites Part B: Engineering,2015,74:74-94. doi: 10.1016/j.compositesb.2014.12.034 [39] SABET S M M, AKHLAGHI F, ESLAMI-FARSANI R. The effect of thermal treatment on tensile properties of basalt fibres[J]. Journal of Ceramic Science and Technology,2015,6:245-248. [40] THOMASON J. Glass fibre sizing: A review[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105619. doi: 10.1016/j.compositesa.2019.105619 [41] ZINCK P, MADER E, GERARD J F. Role of silane coupling agent and polymeric film former for tailoring glass fiber sizings from tensile strength measurements[J]. Journal of Materials Science,2001,36(21):5245-5252. doi: 10.1023/A:1012410315601 [42] ALMALKI S J, NADARAJAH S. Modifications of the Weibull distribution: A review[J]. Reliability Engineering & System Safety,2014,124:32-55.