留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑纤维缠绕形态的复合材料结构拉伸承载行为

肖磊 胡海晓 曹东风 雷伟华 冀涛 李书欣

肖磊, 胡海晓, 曹东风, 等. 考虑纤维缠绕形态的复合材料结构拉伸承载行为[J]. 复合材料学报, 2023, 40(2): 1167-1178. doi: 10.13801/j.cnki.fhclxb.20220419.010
引用本文: 肖磊, 胡海晓, 曹东风, 等. 考虑纤维缠绕形态的复合材料结构拉伸承载行为[J]. 复合材料学报, 2023, 40(2): 1167-1178. doi: 10.13801/j.cnki.fhclxb.20220419.010
XIAO Lei, HU Haixiao, CAO Dongfeng, et al. Tensile bearing behavior of composite structures considering filament wound morphology[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1167-1178. doi: 10.13801/j.cnki.fhclxb.20220419.010
Citation: XIAO Lei, HU Haixiao, CAO Dongfeng, et al. Tensile bearing behavior of composite structures considering filament wound morphology[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1167-1178. doi: 10.13801/j.cnki.fhclxb.20220419.010

考虑纤维缠绕形态的复合材料结构拉伸承载行为

doi: 10.13801/j.cnki.fhclxb.20220419.010
基金项目: 先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金 (XHT2020-002);中央高校基本科研业务费专项(2020Ⅲ028GX;2021III015JC;WUT2021IVA068)
详细信息
    通讯作者:

    胡海晓,博士,副教授,硕士生导师,研究方向为复合材料工艺与仿真方法  E-mail: yiming9008@126.com;

    曹东风,博士,副教授,硕士生导师,研究方向为先进复合材料计算力学  E-mail: cao_dongf@whut.edu.cn

  • 中图分类号: TB330.1

Tensile bearing behavior of composite structures considering filament wound morphology

Funds: Foundation of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHT2020-002); Fundamental Research Funds for the Central Universities (2020III028GX; 2021III015JC; WUT2021IVA068)
  • 摘要: 纤维缠绕复合材料的纤维束具有交叉起伏形态特征,该形态对复合材料结构的力学行为有显著的影响。本文采用数值仿真和实验手段研究了纤维缠绕复合材料平板结构的拉伸力学行为。实验方面,开展纤维缠绕复合材料平板的准静态拉伸实验,通过数字图像相关技术(DIC)监测其表面应变场的演化过程,研究交叉起伏特征对载荷-位移曲线和应变分布特征的影响;数值分析方面,构建包含纤维缠绕形态的介观有限元模型,基于3D Hashin失效准则开展渐进损伤过程模拟,并引入了复合材料的剪切非线性行为。选取层合板结构为参照组,同时开展实验和数值分析。实验结果表明:对于层合结构,缠绕结构的整体刚度更低,失效位移更大,失效载荷基本相同,且缠绕结构菱形特征单元中部纤维交叉起伏区域存在明显的应变集中现象。所构建的有限元模型和实验结果吻合较好,呈现出纤维起伏区域的应变集中、失效起始和扩展行为。

     

  • 图  1  纤维缠绕结构平板示意图

    Figure  1.  Schematic diagram of fiber wound plate specimen

    图  2  T300碳纤维/环氧树脂复合材料预浸料固化温度和压力时程曲线

    Figure  2.  Curing temperature and pressure curves of T300 carbon fiber/epoxy resin composite prepreg

    图  3  两种结构试样示意图

    Figure  3.  Schematic diagram of two structure samples

    图  4  实验方法示意图

    DIC—Digital imaging correlation

    Figure  4.  Schematic diagram of experimental method

    图  5  缠绕结构复合材料纤维束起伏示意图

    Figure  5.  Fiber crossover and undulation diagram of filament wound structure composite

    图  6  缠绕结构复合材料有限元模型组成图

    Figure  6.  Composition diagram of filament wound structure composite finite element model

    图  7  T300碳纤维/环氧树脂复合材料拉伸载荷-位移曲线

    FEM—Finite element model

    Figure  7.  Tensile load-displacement curves of T300 carbon fiber/epoxy resin composites

    图  8  T300碳纤维/环氧树脂复合材料试样破坏形态

    Figure  8.  Failure pattern of T300 carbon fiber/epoxy resin composite specimens

    图  9  T300碳纤维/环氧树脂复合材料层合结构拉伸实验过程应变场变化

    εxx—Horizontal strain; εyyVertical strain

    Figure  9.  Variation of strain field during tensile test of T300 carbon fiber/epoxy resin composite laminated structure

    图  10  T300碳纤维/环氧树脂复合材料缠绕结构实验过程应变场变化

    Figure  10.  Variation of strain field during tensile test of T300 carbon fiber/epoxy resin composite wound structure

    图  11  T300碳纤维/环氧树脂复合材料层合结构有限元仿真应变场变化

    Figure  11.  Variation of strain field in finite element simulation of T300 carbon fiber/epoxy resin composite laminated structure

    图  12  T300碳纤维/环氧树脂复合材料缠绕结构有限元仿真应变场变化

    Figure  12.  Variation of strain field in finite element simulation of T300 carbon fiber/epoxy resin composite wound structure

    图  13  实验与仿真所得T300碳纤维/环氧树脂复合材料缠绕结构竖直方向应变(εyy)的曲面图

    Δy—Loading displacement

    Figure  13.  Surface diagrams of the vertical strain (εyy) of T300 carbon fiber/epoxy resin composite wound structure obtained from experiment and simulation

    图  14  缠绕结构中显微镜下纤维束交叉起伏截面图

    Figure  14.  Cross undulating section image of fiber bundle captured by microscope in wound structure

    图  15  缠绕结构中的纤维伸展(a)和偏转(b)示意图

    Figure  15.  Schematic diagram of fiber stretching (a) and rotation (b) in wound structure

    图  16  T300碳纤维/环氧树脂复合材料缠绕结构应力云图

    Figure  16.  Stress contour of T300 carbon fiber/epoxy resin composite wound structure

    图  17  T300碳纤维/环氧树脂复合材料层合结构应力云图

    Figure  17.  Stress contour of T300 carbon fiber/epoxy resin composite laminated structure

    图  18  T300碳纤维/环氧树脂复合材料缠绕结构基体拉伸损伤过程

    Figure  18.  Matrix tensile damage process of T300 carbon fiber/epoxy resin composite wound structure

    图  19  T300碳纤维/环氧树脂复合材料缠绕结构纤维交叉起伏区域纤维方向应力(σ11) 云图

    Figure  19.  Fiber directional stress (σ11) nephogram of fiber cross fluctuation area of T300 carbon fiber/epoxy resin composite wound structure

    图  20  T300碳纤维/环氧树脂复合材料层合结构纤维方向应力(σ11)云图

    Figure  20.  Fiber directional stress (σ11) nephogram of T300 carbon fiber/epoxy resin composite laminated structure

    表  1  试样编号和数量

    Table  1.   Lable and number of samples

    LableNumber of sample
    FWC3
    SLC3
    Notes: FWC—Filament wound composites; SLC—Standard laminate composites.
    下载: 导出CSV

    表  2  T300碳纤维/环氧树脂复合材料预浸料材料参数

    Table  2.   Material properties of T300 carbon fiber/epoxy resin composite prepreg

    ParameterValue
    E11/GPa127.0
    E22/GPa7.9
    E33/GPa7.9
    μ120.35
    μ130.35
    μ230.45
    G12/GPa2.1
    G13/GPa2.1
    G23/GPa4.8
    XT/GPa2.0
    XC/GPa1.2
    YT/MPa38.5
    YC/MPa180.7
    S/MPa135.0
    Gft/(N·mm-1)133
    Gfc/(N·mm-1)60
    Gmt/(N·mm-1)0.352
    Gmc/(N·mm-1)1.450
    Notes: E—Elastic modulus; μ—Poisson's ratio; G—Shear modulus; 1—Direction of fiber; 2—Direction of matrix; 3—Thickness direction of layer; XT—Longitudinal tensile strength; XC—Longitudinal compressive strength; YT—Transverse tensile strength; YC—Transverse compressive strength; S—In-plane shear strength; Gft, Gfc, Gmt, Gmc—Critical value of strain energy release rate.
    下载: 导出CSV

    表  3  环氧树脂弹性参数

    Table  3.   Elastic parameters of epoxy resin

    ParameterValue
    E/GPa3.0
    μ0.37
    下载: 导出CSV

    表  4  内聚力单元界面性能参数

    Table  4.   Interface performance parameters of cohesive element

    ParameterValue
    TI/MPa48.0
    TII/MPa79.0
    K/(N·mm–2)106
    GIC/(N·mm–1)0.128
    GIIC/(N·mm–1)0.653
    Notes: TI, TII—Mode I/II strength; K—Interface stiffness; GIC, GIIC—Critical strain energy release rates.
    下载: 导出CSV

    表  5  T300碳纤维/环氧树脂复合材料实验结果比较

    Table  5.   Comparison of experimental results of T300 carbon fiber/epoxy resin composites

    StructureUltra load/kNFailure displacement/mm
    FWC5.22.7
    SLC5.21.8
    下载: 导出CSV
  • [1] ELLYIN F, MARTENS M. Biaxial fatigue behaviour of a multidirectional filament-wound glass-fiber/epoxy pipe[J]. Composites Science and Technology,2001,61(4):491-502. doi: 10.1016/S0266-3538(00)00215-3
    [2] ZHENG J Y, LIU P F. Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates[J]. Computational Materials Science,2008,42(3):453-461. doi: 10.1016/j.commatsci.2007.09.011
    [3] DATTA M, HATUA P. Influence of winding angle on the physical properties of filament wound composite pipe[C]//Proceedings of the 3rd National Conference on Emerging Trends in Textile, Fibre and Apparel Engineering. Berhampore, 2016: 1-9.
    [4] GUO Z, LI Z, CUI J, et al. The effect of winding patterns on the mechanical behavior of filament-wound cylinder shells[J]. Multidiscipline Modeling in Materials and Structures,2019,16(3):508-518. doi: 10.1108/MMMS-03-2019-0059
    [5] 穆建桥. 复合材料压力容器的非测地线缠绕成型及强度分析研究[D]. 武汉: 武汉理工大学, 2017.

    MU Jianqiao. Research on non-geodesic winding and strength analysis of composite pressure vessels[D]. Wuhan: Wuhan University of Technology, 2017(in Chinese).
    [6] 张靖. 纤维缠绕复合材料的等效刚度性能研究[D]. 大连: 大连理工大学, 2016.

    ZHANG Jing. Study on the equivalent stiffness of filament wound composite materials[D]. Dalian: Dalian University of Technology, 2016(in Chinese).
    [7] LIU P F, ZHENG J Y. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics[J]. Materials Science and Engineering: A,2008,485(1-2):711-717. doi: 10.1016/j.msea.2008.02.023
    [8] LIN S, YANG L, XU H, et al. Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion[J]. Composite Structures,2021,255:113046. doi: 10.1016/j.compstruct.2020.113046
    [9] LIAO B B, DU Y, ZHENG J, et al. Prediction of residual burst strength for composite pressure vessels after low velocity impact[J]. International Journal of Hydrogen Energy,2020,45(18):10962-10976. doi: 10.1016/j.ijhydene.2020.02.021
    [10] ALAM S, YANDEK G, LEE R C, et al. A study of residual burst strength of composite over wrapped pressure vessel due to low velocity impact[J]. International Journal of Pressure Vessels and Piping,2021,194:104511. doi: 10.1016/j.ijpvp.2021.104511
    [11] ZU L, XU H, WANG H, et al. Design and analysis of filament-wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures,2019,207:41-52. doi: 10.1016/j.compstruct.2018.09.007
    [12] ROUSSEAU J, PERREUX D, VERDIERE N. The influence of winding patterns on the damage behavior of filament-wound pipes[J]. Composites Science & Technology,1999,59(9):1439-1449.
    [13] ARELLANO M T, CROUZEIX L, DOUCHIN B, et al. Strain field measurement of filament-wound composites at ±55° using digital image correlation: An approach for unit cells employing flat specimens[J]. Composite Structures,2010,92(10):2457-2464. doi: 10.1016/j.compstruct.2010.02.014
    [14] 沈创石, 韩小平, 何欣辉. 计及纤维交叉起伏影响的缠绕复合材料刚度分析[J]. 复合材料学报, 2016, 33(1): 174-182.

    SHEN Chuangshi, HAN Xiaoping, HE Xinhui. Stiffness analysis of filament wound composites considering filament crossover and undulation[J]. Acta Materiae Composiae Sinica, 2016, 33(1): 174-182(in Chinese).
    [15] 姜云鹏, 岳珠峰, 卢文书, 等. 计入纤维交叉影响的缠绕复合材料等效模量计算方法[J]. 燃气涡轮试验与研究, 2005, 18(3):33-37. doi: 10.3969/j.issn.1672-2620.2005.03.008

    JIANG Yunpeng, YUE Zhufeng, LU Wenshu, et al. Effect of fiber undulating zoneon the macro elastic modulus of fiber winding composites[J]. Gas Turbine Experimentand Research,2005,18(3):33-37(in Chinese). doi: 10.3969/j.issn.1672-2620.2005.03.008
    [16] HENRY T C, BAKIS C E. Compressive strength and stiffness of filament-wound cylinders[J]. Journal of Reinforced Plastics and Composites,2016,35(21):1543-1553. doi: 10.1177/0731684416659545
    [17] RICHARD R M, BLACKLOCK J R. Finite element analysis of inelastic structures[J]. AIAA Journal,1969,7(3):432-438. doi: 10.2514/3.5125
    [18] ASTM. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of ±45° laminate: D3518/D3518 M-18[S]. West Conshohocken: ASTM, 2018.
    [19] HASHIN Z. Failure criteria for unidirectional fiber compo-sites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [20] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [21] DS. SIMULIA. ABAQUS user manual[EB/OL]. Version 6.10, ABAQUS Inc., Providence, 2010. https://help.3ds.com/HelpProductsDS.aspx.
    [22] CAO D, HU H, DUAN Q, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates[J]. Composite Structures,2019,225:111154. doi: 10.1016/j.compstruct.2019.111154
    [23] FULLER J, MITCHELL S, POZEGIC T, et al. Experimental evaluation of hygrothermal effects on pseudo-ductile thin ply angle-ply carbon/epoxy laminates[J]. Composites Part B: Engineering,2021,227:109388. doi: 10.1016/j.compositesb.2021.109388
    [24] CZEL G. Development of bi-directional pseudo-ductile glass/carbon-epoxy hybrid composites for improved safety in structural applications[J]. Composites Part B: Engineering,2022,231:109546. doi: 10.1016/j.compositesb.2021.109546
    [25] WU X, FULLER J D, WISNOM M R. An investigation into fatigue behaviour and damage progression in pseudo-ductile thin-ply angle-ply laminates[J]. Composites Part A: Applied Science and Manufacturing,2021 , 149:106518.
    [26] DIZMAN E A, ÖZDDEMIR İ. Crystal plasticity based modelling of shear response of carbon fibre reinforced compo-sites[J]. Procedia Structural Integrity,2022,35:91-97. doi: 10.1016/j.prostr.2021.12.052
    [27] KWON J, CHOI J, HUH H, et al. Evaluation of the effect of the strain rate on the tensile properties of carbon-epoxy composite laminates[J]. Journal of Composite Materials,2017,51(22):3197-3210. doi: 10.1177/0021998316683439
    [28] WAN L, ISMAIL Y, SHENG Y, et al. Progressive failure analysis of CFRP composite laminates under uniaxial tension using a discrete element method[J]. Journal of Composite Materials,2021,55(8):1091-1108. doi: 10.1177/0021998320961460
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  1219
  • HTML全文浏览量:  710
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-04-02
  • 录用日期:  2022-04-09
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回