留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法

王博 王媛媛 王征鹏 张军雷 王天松

王博, 王媛媛, 王征鹏, 等. CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法[J]. 复合材料学报, 2023, 40(2): 990-1003. doi: 10.13801/j.cnki.fhclxb.20220419.004
引用本文: 王博, 王媛媛, 王征鹏, 等. CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法[J]. 复合材料学报, 2023, 40(2): 990-1003. doi: 10.13801/j.cnki.fhclxb.20220419.004
WANG Bo, WANG Yuanyuan, WANG Zhengpeng, et al. Study on calculation method of RC beam's shear bearing capacity of CFRP grid-polymer cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 990-1003. doi: 10.13801/j.cnki.fhclxb.20220419.004
Citation: WANG Bo, WANG Yuanyuan, WANG Zhengpeng, et al. Study on calculation method of RC beam's shear bearing capacity of CFRP grid-polymer cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 990-1003. doi: 10.13801/j.cnki.fhclxb.20220419.004

CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法

doi: 10.13801/j.cnki.fhclxb.20220419.004
基金项目: 陕西省青年科技新星项目(2021KJXX-17)
详细信息
    通讯作者:

    王博,博士,教授,博士生导师,研究方向为工程抗震与韧性提升 E-mail: chnwangbo@chd.edu.cn

  • 中图分类号: TU

Study on calculation method of RC beam's shear bearing capacity of CFRP grid-polymer cement mortar

Funds: Shaanxi Province Youth Science and Technology Nova Project (2021KJXX-17)
  • 摘要: 为揭示碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)网格-聚合物水泥砂浆(Polymer cement mortar,PCM)抗剪加固钢筋混凝土(RC)梁的受剪机制并建立其承载力计算方法,对RC梁进行了四点弯曲试验和有限元模拟,重点分析了CFRP网格对RC加固梁的抗剪贡献,建立了基于改进的桁架拱模型的抗剪承载力计算方法。结果表明:RC梁侧粘贴CFRP网格-PCM加固层不仅可以抑制斜裂缝的发展,而且还提高了抗剪承载力;CFRP网格与钢筋之间具有良好的协同工作性能,其中,横向CFRP网格筋分担了约16%的箍筋应变;回归分析指出纵向CFRP网格筋的应变约为横向CFRP网格筋应变的0.29倍;综合考虑纵向CFRP网格的销栓作用和横向CFRP网格分担的箍筋应变,提出了基于改进桁架-拱模型的承载力计算方法,具有更好的适用性和准确性,能够满足设计要求。

     

  • 图  1  试件尺寸及配筋图

    Figure  1.  Drawing of specimen size and reinforcement

    P—Load

    图  2  试验加载示意图

    Figure  2.  Schematic diagram of experimental loading

    图  3  位移计和应变片布置位置

    C-1-C-6—Surface strain gauge of specimen; D1-D8—Displacement sensor; S-1-S-7—Reinforcement strain gauge of BS and BGS

    Figure  3.  Position of displacement gauge and strain gauge

    图  4  CFRP网格-PCM加固钢筋混凝土(RC)梁有限元模型

    RP—Reinforced polymer

    Figure  4.  CFRP grid-PCM reinforced concrete (RC) beam finite element model

    图  5  试验梁BGS剪切破坏裂缝分布

    Figure  5.  Distribution of shear failure cracks in BGS specimen

    图  6  CFRP网格-PCM加固RC梁试验与有限元模拟破坏形态对比

    Figure  6.  Comparison of failure modes between the test of CFRP grid-PCM shear-reinforced RC beams and finite element simulation

    图  7  CFRP网格-PCM加固RC梁荷载-位移曲线对比

    Figure  7.  Comparison of load-displacement curves of CFRP grid-PCM shear-reinforced RC beams

    图  8  试件BS和BGS的荷载-钢筋应变曲线

    Figure  8.  Load-steel strain curves of BS and BGS specimens

    图  9  荷载-CFRP网格应变曲线

    G1, G2, G11, G13, G18, G20, G21, G24, G28, G29, G36, G40—Strain gauges

    Figure  9.  Load-CFRP grids strain curves

    图  10  纵向和横向CFRP网格与箍筋之间的相互作用

    Figure  10.  Interactions between the vertical and horizontal CFRP grids and the stirrups

    图  11  纵向和横向CFRP网格筋应变的关系曲线

    λ—Shear span ratio; fc—Compressive strength of the concrete; ρg—CFRP grid reinforcement rate; Eg—Elastic modulus of the CFRP grid; εu—Effective strain of the FRP grid bars

    Figure  11.  Strain curves of CFRP grid in horizontal and vertical directions

    图  12  改进的桁架拱模型

    Figure  12.  Improved truss arch model

    图  13  基于不同FRP网格抗剪加固RC梁承载力计算方法的计算结果比较

    Figure  13.  Comparison of calculation results of calculation methods for the bearing capacity of RC beams strengthened with different FRP grids

    表  1  试件设计

    Table  1.   Specimen design

    SpecimenExisting steel barsFRP gridShear
    span λ
    PCM thickness/
    mm
    Existing vertical reinforcement ratio/%Anti-shear reinforcement ratio/%
    Tensile reinforcementHandling reinforcementStirrup
    BSD32-SD345D10-SD345D10-SD345@2002.635.80.36
    BGD32-SD345CR8-100×100205.60.22
    BGSD32-SD345D10-SD345D6-SD345@200CR8-100×100205.80.35
    Notes: B—Reinforced concrete beam; S—Beam is equipped with stirrup; G—Stick carbon fiber reinforced polymer (CFRP) grid-polymer cement mortar (PCM) reinforcement layer on both sides; BS—Reinforced concrete beams provided with stirrups; BG—Reinforced concrete beam with only CFRP-PCM reinforced layer without stirrup; BGS—Reinforced concrete beams with stirrups and CFRP-PCM reinforcement layer; D—Diameter; SD—Reinforcement strength grade; CR8—CFRP grid of 8 mm in diameter; FRP—Fiber reinforced polymer.
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Concrete mix proportion

    Maximum
    grain size/mm
    Colony/
    mm
    Water cement
    ratio/%
    Air ratio/%Measurement unit/(kg·m–3)
    WaterCementFine aggregateCoarse aggregateAdmixture
    2012055.64.515828479211261.3
    下载: 导出CSV

    表  3  混凝土和聚合物水泥砂浆(PCM)材料性能

    Table  3.   Properties of concrete and polymer cement mortar (PCM) materials

    MaterialCompression strength/MPaTensile strength/MPaModulus of elasticity/GPa
    Concrete34.12.9231.9
    PCM36.72.8730.1
    下载: 导出CSV

    表  4  钢筋与碳纤维增强树脂复合材料(CFRP)网格的力学性能

    Table  4.   Mechanical properties of steel and carbon fiber reinforced polymer (CFRP) grids

    MaterialTypeCross-sectional area/mm2Yield strength
    /MPa
    Modulus of elasticity/GPaTensile strength
    /MPa
    Concrete ironD32794.2389200 587
    D10 71.3413200 561
    D6 31.7417200 570
    CFRP gridCR8 26.41001400
    下载: 导出CSV

    表  5  混凝土塑性损伤模型参数取值

    Table  5.   Parameters of plastic damage model for concrete

    TypeExpansion angle ψOffset ε$ {\sigma _{{\text{b0}}}}/{\sigma _{{\text{c0}}}} $KcCoefficient of viscosity μ
    Value380.11.160.66670.0005
    Notes: $ {\sigma _{{\text{b0}}}}/{\sigma _{{\text{c0}}}} $—Ratio of biaxial and uniaxial compression limit strength; Kc—Ratio of stretching and the second stress invariant on the compression meridian.
    下载: 导出CSV

    表  6  CFRP网格-PCM加固RC梁试验结果汇总

    Table  6.   Summary of test results for CFRP grid-PCM shear-reinforced RC beams

    Specimen Peak load P/kN
    $ {P_{\text{t}}}/{P_{\text{c}}} $
    Cross-mid deflection D/mm
    $ {D_{\text{t}}}/{D_{\text{c}}} $
    Shear cracking load Ps/kN
    $ {P_{{\text{st}}}}/{P_{{\text{sc}}}} $
    Test value
    Pt/kN
    Simulation value
    Pc/kN
    Test value
    Dt/mm
    Simulation value
    Dc/mm
    Test value
    Pst/kN
    Simulation value
    Psc/kN
    BS6906141.128.358.071.032101721.22
    BG6176011.037.096.771.052251881.19
    BGS7577221.057.407.391.003202561.25
    下载: 导出CSV

    表  7  RGS试件参数信息

    Table  7.   Parameter information of RGS specimens

    SpecimenStirrupStirrup ratio
    /%
    Grid type-spacing: Vertical and horizontal
    /(mm×mm)
    Reinforcement ratio
    /%
    Ultimate load
    /kN
    RGS-S200D6-SD345@2000.16CR8-100×1000.22722.2
    RGS-S150D6-SD345@1500.21737.7
    RGS-S100D6-SD345@1000.32746.4
    RGS-H100 V150D6-SD345@2000.16CR8-100×1500.15711.9
    RGS-H100 V100CR8-100×1000.22722.2
    RGS-H100 V50CR8-100×500.44774.2
    Notes: RGS—Reinforced concrete (RC) beam with stirrup and CFRP-PCM reinforcement layer; S200—Stirrup spacing is 200 mm; H—Horizontal grid spacing; V—Vertical grid spacing.
    下载: 导出CSV

    表  8  CFRP网格-PCM加固RC梁试件与未加固试件参数信息

    Table  8.   Parameter information of CFRP grid-PCM shear-reinforced RC beam specimens and unreinforced specimens

    Type of specimenSpecimen numberVertical reinforcementStirrupCFRP gridPCM thickness
    /mm
    Horizontal grid ratio/%
    Tensile reinforcementCompressive reinforcement
    First groupNRS-506-D32-SD3452-D10-SD345D6-SD345@200
    RGS-50CR8@50200.44
    Second groupNRS-100
    RGS-100CR8@100200.22
    Third groupNRS-150
    RGS-150CR8@150200.15
    Notes: NRS-50—Reinforced concrete (RC) beam with no CFRP-PCM reinforcement layer but with stirrup in 50 mm spacing (NRS-100 and NRS-150 are in the same manner); RGS-50—Reinforced concrete (RC) beam with CFRP-PCM reinforcement layer and stirrup in 50 mm spacing (RGS-100 and RGS-150 are in the same manner).
    下载: 导出CSV

    表  9  纵向和横向CFRP网格应变信息汇总

    Table  9.   Summary of grid strain information for horizontal and vertical CFRP

    Specimen Shear
    span λ
    Concrete strength/MPaCFRP grid
    type
    Ratio $ {\rho _{\text{g}}} $/%PCM thickness/ mmVertical grid strain
    $ {\varepsilon _{{\text{ver}}}} $/$ {10^{ - 6}} $
    Horizontal grid strain
    $ {\varepsilon _{{\text{hor}}}} $/$ {10^{ - 6}} $
    Tensile
    strength $ {f_{\text{t}}} $
    Compression strength
    $ {f_{\text{c}}} $
    RGS1 2.6 2.92 34.1 CR8@50 0.44 20 2853.17 367.52
    2993.50 511.91
    2919.94 548.94
    RGS2 2.6 2.92 34.1 CR8@100 0.22 2581.23 551.82
    2837.57 1003.05
    2599.29 920.19
    RGS3 2.6 2.92 34.1 CR8@150 0.15 2029.87 825.87
    3905.37 1088.63
    3461.74 988.99
    RGS4 1.8 2.92 34.1 CR8@100 0.22 3735.11 913.96
    3564.48 1299.26
    3570.80 1245.58
    RGS5 2.2 2.92 34.1 CR8@100 0.22 3625.54 1150.78
    3141.04 1094.90
    3260.70 1078.79
    RGS6 2.6 2.20 26.6 CR8@100 0.22 2337.90 571.62
    2200.77 770.38
    2289.55 794.90
    RGS7 2.6 2.64 38.0 CR8@100 0.22 2494.30 704.24
    3012.34 1069.08
    2389.03 834.12
    下载: 导出CSV

    表  10  不同FRP网格抗剪加固RC梁抗剪承载力计算值与试验值比较

    Table  10.   Comparison of calculated and experimental values of shear capacity of RCbeams strengthened with different FRP grids

    Data
    sources
    Specimen
    $ {P_{{\text{exp}}}} /{\rm{kN}}$$ {P_{{\text{cal}}}} $[5]/kN$ {P_{{\text{cal}}}}/{\rm{kN}} $$ {P_{{\text{exp}}}}/{P_{{\text{cal}}}} $[5]$ {P_{{\text{exp}}}}/{P_{{\text{cal}}}} $$ {P_{{\text{exp}}}}/{P_{{\text{cal}}}} $ analysis$ {P_{{\text{exp}}}}/{P_{{\text{cal}}}} $[5] analysis
    Mean
    value
    Variable
    coefficient
    Mean
    value
    Variable
    coefficient
    TextBG6173304661.871.321.220.161.850.32
    BGS7574145621.831.35

    [5]
    RCF48817686251.151.41
    RCF69498877041.071.35
    RCF89439397691.001.23
    RCF4’9508107211.171.32
    RCF648608237041.041.22

    [6]
    PGB3521052903.351.21

    [11]
    S150-CGM6774494581.511.48
    S250-CGM5712484282.301.33

    [12]
    L33731863852.000.97
    L45112533852.011.33

    [21]
    NO.25883204081.841.44
    NO.46313324981.901.27

    [22]
    SB13762453041.531.24
    SB24492304461.951.01
    SB34711906012.480.78

    [23]
    SB2-34492294411.961.02

    [24]
    D1951222551.600.76

    [25]
    C35 S3-M2-G26742614722.581.43
    C40 S0-M2-G2 bc4841813952.671.22
    Notes: $ {P_{{\text{cal}}}} $—Shear bearing capacity of the FRP grid reinforced RC beam which is calculated based on the proposed method; $ {P_{{\text{exp}}}} $—Shear bearing capacity of the FRP grid reinforced RC beam which is calculated based on the corresponding test; RCF4, RCF6 and RCF8—Reinforced by CR4 CFRP, CR6 CFRP and CR8 CFRP grid whose vertical reinforcement interval was 50 mm compared with 150 mm of other specimens (CR4, CR6 and CR8 are the type of the CFRP grid in ABAQUS); RCF4'—Reinforced by CR4 CFRP grid whose vertical reinforcement interval was 50 mm compared with 50 mm of other specimens; RCF64—Reinforced by CR6&4 CFRP grid whose horizontal grid was CR4 and vertical grid was CR6; PGB—Beam was strengthened with high strength PCM and high strength carbon fiber-reinforced plastics (CFRP) gride bars; S150-CGM and S250-CGM—Beam with CFRP grid embedded in mortar (CGM), and the beam with 6 mm stirrups @150 mm c/c and @250 mm c/c; L3—Fiber grid and polymer mortar reinforced concrete beams (FRP GRID&NC-RC); L4—Fiber grid and engineered cementitous composite (ECC) reinforced concrete beams (FRP GRID&ECC-RC); NO.2 and NO.4—Beam with 2 row and 4 row of CFRP grid; SB1, SB2, SB3—FRP grid used in the ultra high toughness cementitious composite (UHTCC) layer (Measured thickness: 1 mm, 3 mm and 5 mm respectively); SB2-3—A 3 mm BFRP grid reinforced ECC composite SB2 reinforced concrete beam; D—RC beam strengthened with FRP grid; C35 S3-M2-G2—Beam C35 S3 with stirrup was strengthed by the use of mortar 2 and grid M; C40 S0-M2-G2 bc—Beam C40 S0 without stirrup but was strengthed by the use of mortar 2 and grid M; c/c—Center/Center; BFRP—Boron fiber reinforced plastic.
    下载: 导出CSV
  • [1] 袁廷朋, 陆洲导, 张鑫. 钢筋混凝土结构受氯离子严重腐蚀后的加固处理[J]. 四川建筑科学研究, 2007, 33(1):98-99. doi: 10.3969/j.issn.1008-1933.2007.01.028

    YUAN Tingpeng, LU Zhoudao, ZHANG Xin. Reinforcement of reinforced concrete structure after severe corrosion by chloride ion[J]. Architectural Science Research in Sichuan,2007,33(1):98-99(in Chinese). doi: 10.3969/j.issn.1008-1933.2007.01.028
    [2] WANG B U, JI K, WU T, et al. Experimental investigation of stress transfer and failure mechanism between existing concrete and CFRP grid-sprayed PCM[J]. Construction and Building Materials,2019,215:43-58. doi: 10.1016/j.conbuildmat.2019.04.168
    [3] WANG B, WANG Z, UJI K. Experimental verification of a novel anchorage method of CFRP grid in mortar[J]. Structures,2020,28:1646-1660. doi: 10.1016/j.istruc.2020.09.044
    [4] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese).
    [5] GUO R, PAN Y, CAI L H, et al. Study on design formula of shear capacity of RC beams reinforced by CFRP grid with PCM shotcrete method[J]. Engineering Structures,2018,166:427-440. doi: 10.1016/j.engstruct.2018.03.095
    [6] AMIRUDDIN A A. Shear behavior of concrete beams strengthened with CFRP grid and PCM shotcrete[J]. EPI International Journal of Engineering,2019,2(1):5-8. doi: 10.25042/epi-ije.022019.02
    [7] KHALIFA A. Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites[J]. Construction and Building Materials,2002,16(2):135-146.
    [8] 曹亮, 张海燕, 吴波. 纤维编织网增强低聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1):207-215. doi: 10.6052/j.issn.1000-4750.2017.11.0881

    CAO Liang, ZHANG Haiyan, WU Bo. Shear performance research on reinforced concrete beams strengthened with the fiber woven mesh and oligomic mortar[J]. Engineering Mechanics,2019,36(1):207-215(in Chinese). doi: 10.6052/j.issn.1000-4750.2017.11.0881
    [9] 中国工程建设标准化协会. 碳纤维片材加固混凝土结构技术规程: CECS 146—2003[S]. 北京: 中国计划出版社, 2007.

    China Engineering Construction Standardization Association. Standardization of engineering construction: CECS 146—2003[S]. Beijing: China Planning Press, 2007(in Chinese).
    [10] 郑宇宙. FRP格栅增强ECC复合加固混凝土梁试验与计算方法研究[D]. 南京: 东南大学, 2018.

    ZHENG Yuzhou. Experiment and calculation method research on reinforced concrete (RC) beams strengthened with the composite of FRP grid and ECC[D]. Nanjing: Southeast China University, 2018(in Chinese).
    [11] AZAM R, SOUDKI K, WEST J S, et al. Strengthening of shear-critical RC beams: Alternatives to externally bonded CFRP sheets[J]. Construction and Building Materials,2017,151:494-503. doi: 10.1016/j.conbuildmat.2017.06.106
    [12] 陈文永, 陈小兵, 丁一, 等. 纤维网格及ECC材料抗剪加固性能研究[J]. 工业建筑, 2009, 39(12):118-122.

    CHEN Wenyong, CHEN Xiaobing, DING Yi, et al. The shear behavior of concrete beam reinforced with ECC and FRP grid[J]. Industrial Architecture,2009,39(12):118-122(in Chinese).
    [13] GUO R, CAI L H, HINO S, et al. Experimental study on shear strengthening of RC beams with FRP grid-PCM reinforcement layer[J]. Applied Sciences,2019,9(15):1-21. doi: 10.3390/app9152984
    [14] Concrete Committee of Civil Engineering Society. Civil engineering society concrete standard square document[S]. Japan: Japan Civil Engineering Society, 2007(in Chinese).
    [15] NAKAMURA S, YAMAGUCHI K, ARWINM A. Bending reinforcing effect of RC beams using a two-layer contact placed CFRP grid by PCM spraying method[J]. Proceeding of the Japan Concrete Institute,2009,131(2):1429-1434.
    [16] MIYANO N, YAMAGUCHI K, TANIGUCHI K. Shear capacity for RC beam retrofitted by CFRP covering PCM shotcrete[J]. Proceedings of the Japan Concrete Institute,2013,35(2):1423-1428.
    [17] 刘巍, 徐明, 陈忠范. ABAQUS混凝土损伤塑性模型参数标定及验证[J]. 工业建筑, 2014, 44(S1):167-171, 213.

    LIU Wei, XU Ming, CHEN Zhongfan. Parameters calibration and verification of concrete damage plasticity model of ABAQUS[J]. Industrial Architecture,2014,44(S1):167-171, 213(in Chinese).
    [18] Japan Road Association. Specifications for highway bridges, Part V seismic design[S]. Tokyo: Japan Road Association, 2002.
    [19] 国家标准抗震规范管理组. 建筑抗震设计规范: GB/T 50011—2010[S]. 北京: 中国建筑工业出版社, 2016.

    National Standard Seismic Code Management Group. Code for the seismic design of buildings: GB/T 50011—2010[S]. Beijing: China State Construction Industry Press, 2016(in Chinese).
    [20] American Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2 R-08[S]. Farmington Hills: American Concrete Institute, 2008.
    [21] LIANG J, UJI K, MATSUMURA S, et al. Shear strengthening of RC beam with CFRP grid and sprayed mortar[J]. Proceeding of the Japan Concrete Institute,2008,30(2):607-612.
    [22] 郑宇宙, 王文炜, 戴建国, 等. FRP-UHTCC复合层抗剪增强钢筋混凝土梁受力性能试验研究[J]. 建筑结构学报, 2019(8): 118-126.

    ZHENG Yuzhou, WANG Wenwei, DAI Jianguo, et al. Experimental study on mechanical performance of reinforced concrete beams shear-strengthened with FRP-UHTCC composite[J]. Journal of Architectural Structures, 2019(8): 118-126(in Chinese).
    [23] 王文炜, 郑宇宙. BFRP格栅增强ECC加固钢筋混凝土梁抗剪承载力试验研究[C]//第九届全国建设工程FRP应用学术交流会. 重庆: 中国土木工程学会FRP及工程应用专业委员会, 2015: 326-331.

    WANG Wenwei, ZHENG Yuzhou. Experimental research on shear capacity of concrete beams strengthened with BFRP grid reinforced ECC[C]//The 9th National Construction Engineering FRP Application Academic Exchange Conference. Chongqing: FRP and Engineering Application Professional Committee of the Chinese Society of Civil Engineering, 2015: 326-331(in Chinese).
    [24] LU Z D, YANG X, DAI J G . Shear behavior of RC beams strengthened with FRP grid reinforced engineered cementitious composites[C]//The Sixth Asia-Pacific Conference on FRP in Structures (APFIS2017). Singapore: International Institute for FRP in Construction (IIFC), 2017: 1-5.
    [25] BLANKSVARD T, TALJSTEN B, CAROLIN A. Shear strengthening of concrete structures with the use of mineral-based composites[J]. Journal of Composites for Construction,2009,13(1):25-34. doi: 10.1061/(ASCE)1090-0268(2009)13:1(25)
  • 加载中
图(13) / 表(10)
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  637
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-04-11
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回