留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响

侯雪艳 文华 赵海涛 泥立豪 张玉琦 王记江

侯雪艳, 文华, 赵海涛, 等. 表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响[J]. 复合材料学报, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001
引用本文: 侯雪艳, 文华, 赵海涛, 等. 表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响[J]. 复合材料学报, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001
HOU Xueyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001
Citation: HOU Xueyan, WEN Hua, ZHAO Haitao, et al. Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001

表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响

doi: 10.13801/j.cnki.fhclxb.20220414.001
基金项目: 陕西省重点研发计划(2022 GY-412);延安市科技成果转移转化项目(2020 CGZH-06);延安大学大学生创新创业训练计划项目(D2019040;D2020020)Key Research & Development Plan of Shaanxi Province (2022 GY-412); Scientific and Technological Achievements Transfer and Transformation Project of Yan'an (2020 CGZH-06); Innovation and Entrepreneurship Training Program for Students of Yan'an University (D2019040; D2020020)
详细信息
    通讯作者:

    张玉琦,博士,教授,博士生导师,研究方向为功能界面材料 E-mail: yqzhangg@yau.edu.cn

  • 中图分类号: TB34

Modified diatomite with enhanced moisture-regulating by surface hydrophobicity and its effect on water vapor permeability of polyurethane film

  • 摘要: 水性聚氨酯(PU)是一种环保绿色的涂层材料,广泛应用于皮革、纺织、建筑涂层等领域。作为皮革、纺织涂层时,聚氨酯的透湿性决定服装的穿着舒适性,而常规水性聚氨酯的透湿性较差,需要对其进行改性获得透湿性优异的涂层。本文采用CaCl2和十七氟癸基三甲氧基硅烷(FAS-17)对硅藻土进行改性,研究了改性条件对硅藻土结构和性能的影响,将调湿性能较好的改性硅藻土(FAS-17-CaCl2-D)与PU复合,研究复合膜的透湿性。结果表明:采用质量浓度为30wt%CaCl2和0.8wt%FAS-17改性的硅藻土综合性能最好,改性后硅藻土的比表面积、孔隙结构增大,调湿性能提高,FAS-17表面疏水修饰进一步强化了其调湿作用。将性能最好的FAS-17-CaCl2-D与PU复合后,FAS-17-CaCl2-D/PU透湿性随着FAS-17-CaCl2-D用量的增加先增大后减小,复合膜的疏水性提高。1%FAS-17-CaCl2-D与PU复合制备的复合膜透湿率最大,较纯PU膜提高了16.3%,SEM-EDS显示该复合膜表面和截面有Si、Ca和F等FAS-17-CaCl2-D的特征元素,PU与FAS-17-CaCl2-D相界面出现了孔隙,为水蒸气的透过提供通道,从而使透湿性增强。本文制备的透湿聚氨酯材料,有望用于纺织品和皮革涂层,改善湿热舒适性。

     

  • 图  1  改性硅藻土(FAS-17-CaCl2-D)制备原理示意图

    Figure  1.  Fabrication schematic illustration of modifieddiatomite (FAS-17-CaCl2-D)

    图  2  CaCl2浓度对CaCl2-D吸-放湿性能的影响

    RH—Relative humidity

    Figure  2.  Effect of CaCl2 concentration on the moisture adsorption-desorption properties of CaCl2-D

    图  3  FAS-17浓度对FAS-17-CaCl2-D 吸-放湿性能的影响 (a)及其原理示意图 (b)

    Figure  3.  Effect of FAS-17 concentration on the moisture adsorption-desorption properties of FAS-17-CaCl2-D (a) and its schematic diagram (b)

    图  4  FAS-17浓度对FAS-17-CaCl2-D接触角的影响(插图为FAS-17浓度较小时水滴表面吸附硅藻土原理示意图)

    Figure  4.  Effect of FAS-17 concentration on the contact angle of FAS-17-CaCl2-D (Insets were the adsorption schematic diagram of FAS-17-CaCl2-D on water droplets with lower content of FAS-17)

    图  5  吸湿后的FAS-170.8-CaCl2-D 经挤压的照片:((a), (b))吸湿样品;(c)用载玻片挤压样品有渗水印迹;((d), (e))玻璃片上的水滴;(f)挤压后样品仍成粉末状态;(图(b)和图(f)的插图分别为挤压前后样品的表面水接触角)

    Figure  5.  Photo of moisture-adsorption FAS-170.8-CaCl2-D after pressed: ((a), (b)) Moisture-adsorption FAS-170.8-CaCl2-D; (c) Water seepage imprinting of sample with pressing; Water on the glass slide after pressed ((d), (e)) and the pressed sample (f) (Insets of (b) and (f) were the contact angle of original and pressed samples)

    图  6  FAS-17-CaCl2-D的调湿疏水协同作用机制

    Figure  6.  Synergistic mechanism of moisture-regualting and hydrophobicity for FAS-17-CaCl2-D

    图  7  FAS-17-CaCl2-D和D的XRD图谱

    Figure  7.  XRD patterns of FAS-17-CaCl2-D and D

    图  8  D (a) 和FAS-17-CaCl2-D (b) 的SEM图像及FAS-17-CaCl2-D中Si、Ca、F的EDS能谱 (c)

    Figure  8.  SEM images of D (a) and FAS-17-CaCl2-D (b) and the EDS (c) of Si, Ca, F for FAS-17-CaCl2-D

    图  9  FAS-17-CaCl2-D和D的氮气等温吸附-脱附曲线 (a) 和孔径分布 (b)

    STP—Standard temperature and pressure

    Figure  9.  Nitrogen isothermal adsorption-desorption curves (a) and pore size distribution (b) of FAS-17-CaCl2-D and D

    图  10  FAS-17-CaCl2-D用量对FAS-17-CaCl2-D/PU复合膜接触角和透湿率(WVP) (a) 及吸水率 (b) 的影响

    Figure  10.  Effect of FAS-17-CaCl2-D mass fraction on the contact angle, water vapor permeability (WVP) (a) and water uptake (b) ofFAS-17-CaCl2-D/PU composite films

    图  11  PU ((a), (a’)) 和(FAS-17-CaCl2-D)1%/PU复合膜 ((b), (b’)) 的表面 ((a), (b)) 和截面 ((a’), (b’)) SEM图像

    Figure  11.  Surface ((a), (b)) and cross-section ((a’), (b’)) SEM images of PU film ((a), (a’)) and (FAS-17-CaCl2-D)1%/PU composite film ((b), (b’))

    图  12  PU与(FAS-17-CaCl2-D)1%/PU复合膜表面 (a) 和截面 (b) Si、Ca、F元素的EDS

    Figure  12.  EDS of Si, Ca and F elements for the surface (a) and cross-section (b) of PU and (FAS-17-CaCl2-D)1%/PU composite film

    图  13  (FAS-17-CaCl2-D)1%/PU复合膜的成膜过程及其透湿机制示意图

    Figure  13.  Schematic of film formation and water vapor permeability mechanism of (FAS-17-CaCl2-D)1%/PU composite film

    表  1  样品名称缩写

    Table  1.   Sample name abbreviation

    Sample CaCl2/wt% FAS-17/wt% PU/wt%
    D
    10%CaCl2-D 10
    20%CaCl2-D 20
    30%CaCl2-D 30
    40%CaCl2-D 40
    FAS-170-CaCl2-D 30
    FAS-170.2-CaCl2-D 30 0.2
    FAS-170.4-CaCl2-D 30 0.4
    FAS-170.6-CaCl2-D 30 0.6
    FAS-170.8-CaCl2-D 30 0.8
    FAS-171.0-CaCl2-D 30 1.0
    (FAS-17-CaCl2-D)1%/PU 30 0.8 99
    (FAS-17-CaCl2-D)2%/PU 30 0.8 98
    (FAS-17-CaCl2-D)3%/PU 30 0.8 97
    Notes: D—Diatomite; FAS-17−Heptafluorodecyl trimethoxysilane; PU—Polyurethane.
    下载: 导出CSV

    表  2  FAS-17-CaCl2-D和D的孔结构参数

    Table  2.   Pore structure parameters of FAS-17-CaCl2-D and D

    BET surface
    area/(m2·g−1)
    BJH adsorption cumulative
    volume of pores/(cm³·g−1)
    BJH adsorption average pore
    width (4 V/A)/nm
    FAS-17-CaCl2-D2.62350.00610310.7674
    D1.93960.002341 6.3299
    Notes: BET—Brunauer-Emmett-Teller; BJH—Barret-Joyner-Halenda.
    下载: 导出CSV
  • [1] LOSIC D, MITCHELL J G, VOELCKER N H. Diatomaceous lessons in nanotechnology and advanced materials[J]. Advanced Materials,2009,21(29):2947-2958. doi: 10.1002/adma.200803778
    [2] FAN H, REN Q, WANG S, et al. Synthesis of the Ag/Ag3PO4/diatomite composites and their enhanced photocatalytic activity driven by visible light[J]. Journal of Alloys and Compounds,2019,775:845-852. doi: 10.1016/j.jallcom.2018.10.152
    [3] LIU G, ABUKHADRAM R, ELSHERBEENY A M, et al. Insight into the photocatalytic properties of diatomite@Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr(VI) under visible light[J]. Journal of Environmental Management,2020,254:109799-109808. doi: 10.1016/j.jenvman.2019.109799
    [4] MAO Z, ZHANG H, LI Y, et al. Preparation and characterization of composite scallop shell powder-based and diatomite-based hygroscopic coating materials with metal-organic framework for indoor humidity regulation[J]. Jour-nal of Building Engineering,2021,43:103122-103133. doi: 10.1016/j.jobe.2021.103122
    [5] MUJTABA M, FERNÁNDEZ-MARÍN R, ROBLES E, et al. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films[J]. Carbohydrate Polymers,2021,271:118424-118436. doi: 10.1016/j.carbpol.2021.118424
    [6] DOBOR J, PER N, VARGA I, et al. A new carbon-diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous and Mesoporous Materials,2015,217:63-70. doi: 10.1016/j.micromeso.2015.06.004
    [7] XIA P, WANG X, WANG X, et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO-loaded diatomite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,506:220-227. doi: 10.1016/j.colsurfa.2016.05.101
    [8] 孔伟, 杜玉成, 卜仓友, 等. 硅藻土基调湿材料的制备与性能研究[J]. 非金属矿, 2011, 34(1):57-59, 62. doi: 10.3969/j.issn.1000-8098.2011.01.017

    KONG Wei, DU Yucheng, BU Cangyou, et al. Study on preparation and performance of diatomite-based humidity controlling materials[J]. Non-Metallic Mines,2011,34(1):57-59, 62(in Chinese). doi: 10.3969/j.issn.1000-8098.2011.01.017
    [9] LIU X, CHEN Z, YANG G, et al. Bioinspired ant-nest-like hierarchical porous material using CaCl2 as additive for smart indoor humidity control[J]. Industrial & Engineering Chemistry Research, 2019, 58: 7139-7145
    [10] 邓妮, 武双磊, 陈胡星. 氯化钙改性硅藻土的调湿性能[J]. 材料科学与工程学报, 2014, 32(4):493-498.

    DENG Ni, WU Shuanglei, CHEN Huxing. Humidity-control performance of diatomite modified by calcium chloride[J]. Journal of Materials Science and Engineering,2014,32(4):493-498(in Chinese).
    [11] LIU X, CHEN Z, YANG G, et al. Colorful wall-bricks with superhydrophobic surfaces for enhanced smart indoor humidity control[J]. ACS Omega,2019,4(9):13896-13901. doi: 10.1021/acsomega.9b01588
    [12] 冯蕾, 楼岱, 冉泽, 等. 改性硅藻土对水泥基调湿材料性能的影响[J]. 硅酸盐学报, 2021, 40(1):180-186.

    FENG Lei, LOU Dai, RAN Ze, et al. Influence of modified diatomite on cement-based humidity control materials performance[J]. Bulletin of the Chinese Ceramic Society,2021,40(1):180-186(in Chinese).
    [13] 张磊, 张亚楠, 荣辉, 等. 基于溶胶凝胶法改性的硅藻土对水泥基材料性能的影响[J]. 材料导报, 2016, 30(8):120-126.

    ZHANG Lei, ZHANG Yanan, RONG Hui, et al. The impact of diatomite modified by sol-gel method on the performce of cement-based materials[J]. Materials Review,2016,30(8):120-126(in Chinese).
    [14] CUI M, LI J, CHEN X, et al. A halogen-free, flame retardant, waterborne polyurethane coating based on the synergistic effect of phosphorus and silicon[J]. Progress in Organic Coatings,2021,158:106359-106370. doi: 10.1016/j.porgcoat.2021.106359
    [15] SUN Z, WEN J, WANG W, et al. Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with increased surface energy and re-coatability[J]. Progress in Organic Coatings,2020,146:105744-105755. doi: 10.1016/j.porgcoat.2020.105744
    [16] XU W, ZHAO W, HAO L, et al. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex[J]. Applied Surface Science,2018,436:1104-1112. doi: 10.1016/j.apsusc.2017.12.148
    [17] WEN J, SUN Z, XIAN J, et al. Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains[J]. Applied Surface Science,2019,494:610-618. doi: 10.1016/j.apsusc.2019.07.170
    [18] TIAN S, ZHANG P, FAN H, et al. Fabrication of retro-reflec-tive polyurethane via covalently embedding with amino-functionalized glass microspheres[J]. Progress in Organic Coatings,2018,115:115-121. doi: 10.1016/j.porgcoat.2017.10.026
    [19] ZHANG P, XU P, FAN H, et al. Covalently functionalized graphene towards molecular-level dispersed waterborne polyurethane nanocomposite with balanced comprehen-sive performance[J]. Applied Surface Science,2019,471:595-606. doi: 10.1016/j.apsusc.2018.11.235
    [20] CHEN Y, WANG R, ZHOU J, et al. Membrane formation temperature-dependent gas transport through thermo-sensitive polyurethane containing in situ-generated TiO2 nanoparticles[J]. Polymer,2011,52:1856-1867. doi: 10.1016/j.polymer.2011.02.021
    [21] YAN K, LIU C, MA J. Dendritic fibrous nanosilica loaded chitosan for improving water vapor permeability and antibacterial properties of waterborne polyurethane acrylate membranes[J]. Journal of Cleaner Production,2021,291:125922-125929. doi: 10.1016/j.jclepro.2021.125922
    [22] BAO Y, GAO L, FENG C, et al. Hollow flower-like ZnO: Synthesis, growth mechanism and application in polyacrylate[J]. Advanced Powder Technology, 2020, 31: 1975-1984
    [23] BHUIYAN M A R, WANG L, SHAID A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection[J]. Progress in Organic Coatings, 2019, 131: 100-110.
    [24] SI Y, WANG X, YAN C, et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity[J]. Advanced Materials,2016,28:9512-9518. doi: 10.1002/adma.201603143
    [25] WILLIAMS J T. Waterproof and water repellent textiles and clothing[M]. Cambridge: Woodhead Publishing, 2018.
    [26] 全国纺织品标准化技术委员会基础标准分会. 纺织品 织物透湿性试验方法 第1部分: 吸湿法: GB/T 12704.1—2009[S]. 北京: 中国标准出版社, 2009.

    Basic Standard Branch of National Technical Committee of Textile Standardization. Textile-Test method for water-vapor transmission of fabrics—Part 1: Desiccant method: GB/T 12704.1—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [27] 胡志波, 郑水林, 李渝, 等. 煅烧处理硅藻土的孔道结构及分形特征[J]. 硅酸盐学报, 2021, 49(7):1395-1402.

    HU Zhibo, ZHENG Shuilin, LI Yu, et al. Effect of calcination on pore structure and fractal characteristics of diatomite[J]. Journal of the Chinese Ceramic Society,2021,49(7):1395-1402(in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  190
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-03-31
  • 录用日期:  2022-04-04
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回