留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能

李金岭 赖石清 刘婵娟 吴伟莲 倪靖 黄孝华 周立

李金岭, 赖石清, 刘婵娟, 等. ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2023, 40(2): 950-958. doi: 10.13801/j.cnki.fhclxb.20220406.001
引用本文: 李金岭, 赖石清, 刘婵娟, 等. ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能[J]. 复合材料学报, 2023, 40(2): 950-958. doi: 10.13801/j.cnki.fhclxb.20220406.001
LI Jinling, LAI Shiqing, LIU Chanjuan, et al. Preparation of ZIF-67@PDA/fluorine-containing polyimide mixed matrix membrane and gas separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 950-958. doi: 10.13801/j.cnki.fhclxb.20220406.001
Citation: LI Jinling, LAI Shiqing, LIU Chanjuan, et al. Preparation of ZIF-67@PDA/fluorine-containing polyimide mixed matrix membrane and gas separation performance[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 950-958. doi: 10.13801/j.cnki.fhclxb.20220406.001

ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能

doi: 10.13801/j.cnki.fhclxb.20220406.001
基金项目: 国家自然科学基金(51963007;52003064);广西自然科学基金(2020 GXNSFAA159006;2021 GXNSFAA075016);桂林市科学研究与技术开发计划(2020010906)
详细信息
    通讯作者:

    黄孝华,博士,教授,研究方向为聚合物基复合材料 E-mail:huangxiaohua@glut.edu.cn

  • 中图分类号: TB332

Preparation of ZIF-67@PDA/fluorine-containing polyimide mixed matrix membrane and gas separation performance

Funds: Natural Science Foundation of China (51963007; 52003064); Natural Science Foundation of Guangxi (2020 GXNSFAA159006; 2021 GXNSFAA075016); Project of Department of Science and Technology of Guilin (2020010906)
  • 摘要: 金属有机框架材料(MOF)/聚合物混合基质膜(MMMs)通过结合MOF的分子筛效应和聚合物基质成本较低、加工性能好、机械强度高的特征,使其在气体分离领域展现出巨大的应用前景。然而由于MOF在聚合物基体中存在分散性差问题,极大地限制了其应用。采用溶剂热法合成金属框架材料ZIF-67,并通过溶液氧化法在ZIF-67表面修饰聚多巴胺(PDA)层制备ZIF-67@PDA纳米多孔材料。以4, 4'-二氨基二苯醚-2, 2'-双(3, 4-二羧酸)六氟丙烷二酐(ODA-6 FDA)型含氟聚酰亚胺(FPI)为基体、ZIF-67和ZIF-67@PDA为填料,制备不同质量分数的ZIF-67/FPI和ZIF-67@PDA/FPI。通过FTIR、WAXD、TGA、SEM、比表面和孔径分布分析仪、气体渗透仪等测试对MMMs的结构和性能进行表征并测试了N2、O2、CO2、He 4种气体的渗透性。结果表明:经聚多巴胺修饰后的纳米微孔材料ZIF-67在聚合物基体中能均匀分散并为气体分子的通过提供快速通道,且表现出良好的热稳定性。ZIF-67@PDA对CO2具有良好的亲和性,这有利于提高CO2/N2选择性。当ZIF-67@PDA负载量为10wt%时,MMMs的CO2渗透性和CO2/N2选择性协同增加,和纯FPI膜相比分别增加了131%、50%,MMMs表现出良好的气体分离性能。

     

  • 图  1  ZIF-67 (a)和ZIF-67@聚多巴胺(PDA) (b)的SEM图像

    Figure  1.  SEM images of ZIF-67 (a) and ZIF-67@polydopamine (PDA) (b)

    图  2  ZIF-67和ZIF-67@PDA N2吸脱附等温曲线

    Figure  2.  N2 adsorption-desorption isotherms of ZIF-67 and ZIF-67@PDA

    图  3  ZIF-67和ZIF-67@PDA的WAXD图谱

    Figure  3.  WAXD patterns of ZIF-67 and ZIF-67@PDA

    图  4  PDA、ZIF-67和ZIF-67@PDA的FTIR图谱

    Figure  4.  FTIR spectra of PDA, ZIF-67 and ZIF-67@PDA

    图  5  ZIF-67和ZIF-67@PDA的热重曲线

    Figure  5.  TGA curves of ZIF-67 and ZIF-67@PDA

    图  6  含氟聚酰亚胺(FPI)、ZIF-67/FPI和ZIF-67@PDA/FPI混合基质膜的WAXD图谱

    Figure  6.  WAXD patterns of fluorinated polyimide (FPI), ZIF-67/FPI and ZIF-67@PDA/FPI composite film

    图  7  FPI、ZIF-67(10)/FPI和ZIF-67@PDA(10)/FPI的热重及微商热重曲线

    Figure  7.  TGA and DTG curves of FPI, ZIF-67(10)/FPI and ZIF-67@PDA(10)/FPI

    图  8  FPI及其混合基质膜的DSC曲线

    Figure  8.  DSC curves of FPI and composite film

    图  9  ZIF-67/FPI ((a)~(c))和ZIF-67@PDA/FPI ((d)~(f))的SEM图像

    Figure  9.  SEM images of ZIF-67/FPI ((a)-(c)) andZIF-67@PDA/FPI ((d)-(f))

    图  10  FPI及其混合基质膜在35℃和0.4 MPa下的气体渗透性和选择性:((a), (c)) ZIF-67/FPI 混合基质膜;((b), (d)) ZIF-67@PDA/FPI

    P—Gas permeability coefficient

    Figure  10.  Gas permeability and selectivity for FPI and its composite film at 35℃ and 0.4 MPa: ((a), (c)) ZIF-67/FPI composite film; ((b), (d)) ZIF-67@PDA/FPI composite film

    表  1  样品名称缩写

    Table  1.   Sample name abbreviation

    Sample ZIF-67/
    wt%
    ZIF-67@
    PDA/wt%
    FPI/
    wt%
    FPI 100
    ZIF-67(5)/FPI 5 95
    ZIF-67(10)/FPI 10 90
    ZIF-67(15)/FPI 15 85
    ZIF-67@PDA(5)/FPI 5 95
    ZIF-67@PDA(10)/FPI 10 90
    ZIF-67@PDA(15)/FPI 15 85
    Notes: FPI—Fluorinated polyimide; PDA—Polydopamine.
    下载: 导出CSV

    表  2  FPI、ZIF-67/FPI和ZIF-67@PDA/FPI的热性能

    Table  2.   Thermal performance of FPI, ZIF-67/FPI and ZIF-67@PDA/FPI

    SampleT10%/℃Vmax/(%·℃−1)Residual mass/wt%
    FPI514.20.3446.53
    ZIF-67(10)/FPI440.40.3441.04
    ZIF-67@PDA(10)/FPI378.30.3137.35
    Notes: T10%—Onset decomposition temperature at 10wt% mass loss recorded by TGA at a heating rate of 10℃/min in N2; Vmax—Maximum decomposition rate.
    下载: 导出CSV

    表  3  FPI、ZIF-67/FPI和ZIF-67@PDA/FPI复合膜的气体分离数据

    Table  3.   Gas separation data of FPI, ZIF-67/FPI和ZIF-67@PDA/FPI composite membranes

    SamplePermeability/BarrersIdeal selectivity
    N2O2CO2HeCO2/N2He/N2
    FPI0.843.6012.1038.014.5045.2
    ZIF-67(5)/FPI1.315.5024.6065.218.9049.7
    ZIF-67(10)/FPI1.806.5029.1869.717.1641.0
    ZIF-67(15)/FPI3.208.8640.0088.012.5027.5
    ZIF-67@PDA(5)/FPI1.034.0023.8054.623.1053.0
    ZIF-67@PDA(10)/FPI1.295.8028.0065.021.7054.0
    ZIF-67@PDA(15)/FPI1.796.6034.6069.020.6038.5
    Note: 1 Barrer=1×10−10 cm3·cm·cm−2·s−1·cm Hg−1.
    下载: 导出CSV

    表  4  本工作所得到的气体分离性能与文献报道的混合基质膜(MMMs)的比较

    Table  4.   Comparisons of gas separation performance achieved in this work with those of reported mixed matrix membranes (MMMs)

    Membrane typesPCO2α(CO2/N2)Testing conditionsRef.
    SO3H-MCM-41/SPEEK21.022.925℃, 1.0 MPa[31]
    ZIF-8/PI27.913.625℃, 0.4 MPa[32]
    LDH/MPI24.212.125℃, 0.1 MPa[33]
    Cu3(BTC)2/MPI27.219.025℃, 0.1 MPa[33]
    ZIF-67(10)/FPI29.217.235℃, 0.4 MPaThis work
    ZIF-67@PDA(10)/FPI28.021.735℃, 0.4 MPaThis work
    Notes: PCO2—Gas permeability coefficient of carbon dioxide; α(CO2/N2)—Gas selectivity of CO2/N2; MCM-41—Molecular sieve; SPEEK—Sulfonated polyether ether ketone; LDH—Layered double hydroxide; MPI—Odified polyimide.
    下载: 导出CSV
  • [1] 崔晓萍, 朱光明, 刘文元. 纳米Al2O3/聚酰亚胺复合薄膜的介电与力学性能[J]. 复合材料学报, 2016, 33(11):2419-2425.

    CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite film[J]. Acta Materiae Compositae Sinica,2016,33(11):2419-2425(in Chinese).
    [2] ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science,2008,320(1-2):390-400. doi: 10.1016/j.memsci.2008.04.030
    [3] 牛红超. 新型含氟聚酰亚胺的合成及其气体分离性能研究[D]. 桂林: 桂林理工大学, 2020.

    NIU Hongchao. Synthesis of novel fluoropolyimide and its gas separation performance[D]. Guilin: Guilin University of Technology, 2020(in Chinese).
    [4] 薛佳佳. 原位制备MOFs/PI混合基质膜及其气体分离性能研究[D]. 大连: 大连理工大学, 2020.

    XUE Jiajia. Study on in situ preparation of MOFs/PI hybrid matrix membranes and their gas separation performance[D]. Dalian: Dalian University of Technology, 2020(in Chinese).
    [5] 王天琦, 肖国勇, 鲁云华, 等. 镧系金属有机骨架/聚酰亚胺复合材料的制备及其性能[J]. 复合材料学报, 2018, 35(11):2927-2934.

    WANG Tianqi, XIAO Guoyong, LU Yunhua, et al. Preparation and properties of lanthanide metal organic skeleton/polyimide composites[J]. Acta Materiae Compositae Sinica,2018,35(11):2927-2934(in Chinese).
    [6] YANG Q P, LI L J, TAN W Q, et al. Exceptional high selectivity of hydrogen/methane separation on a phosphonate-based MOF membrane with exclusion of methane molecules[J]. Chemical Communications,2017,53(70):9797-9800. doi: 10.1039/C7CC05486F
    [7] KRAUSE S, BON V, SENKOVSKA I, et al. A pressure-amplifying framework material with negative gas adsorption transitions[J]. Nature,2016,532(7599):348-352. doi: 10.1038/nature17430
    [8] 文桂林, 李莹, 张红星, 等. 离子液体/金属-有机骨架复合材料制备方法、理论计算及应用研究进展[J]. 复合材料学报, 2021, 38(2):298-314.

    WEN Guilin, LI Ying, ZHANG Hongxing, et al. Research progress on preparation method, theoretical calculation and application of ionic liquid/metal-organic skeleton composites[J]. Acta Materiae Compositae Sinica,2021,38(2):298-314(in Chinese).
    [9] PENG Y, LI Y, BAN Y, et al. Two-dimensional metal-organic framework nano sheets for membrane-based gas separation[J]. Angewandte Chemie-International Edition,2017,56(33):9757-9761. doi: 10.1002/anie.201703959
    [10] IU Z, CUI X, PHAM T, et al. A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation[J]. Angewandte Chemie-International Edition,2021,133(10):5343-5348. doi: 10.1002/ange.202016225
    [11] WANG Z B, KNEBEL A, GROSJEAN S, et al. Tunable molecular separation by nanoporous membranes[J]. Nature Communications,2016,7:13872. doi: 10.1038/ncomms13872
    [12] LI L, LIN R B, KRISHNA R, et al. Flexible-robust metal-organic framework for efficient removal of propyne from propylene[J]. Journal of the American Chemical Society,2017,139(23):7733-7736. doi: 10.1021/jacs.7b04268
    [13] TAN L L, ZHU Y, LONG H, et al. Pillar [n] arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity[J]. Chemical Communications,2017,53(48):6409-6412. doi: 10.1039/C7CC03638H
    [14] LIN R J, GE L, HOU L, et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J]. ACS Applied Materials & Interfaces,2014,6(8):5609-5618.
    [15] RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nano sheets in polymer composite materials for gas separation[J]. Nature Materials,2015,14(1):48-55. doi: 10.1038/nmat4113
    [16] 王钰淇. 多孔材料改性聚二甲基硅氧烷/聚醚酰亚胺复合膜用于气体分离的研究[D]. 北京: 北京化工大学, 2015.

    WANG Yuqi. Study on the use of polydimethylsiloxane/polyetherimide composite membrane for gas separation with porous materials[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
    [17] BARANKOVA E, TAN X, VILLALOBOS L F, et al. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane[J]. Angewandte Chemie-International Edition,2017,56(11):2965-2968. doi: 10.1002/anie.201611927
    [18] 廉玉姣, 王永洪, 张新儒, 等. N2优先渗透ZIF-8复合膜的制备及其CO2捕集[J]. 化工学报, 2019, 70(9):3573-3581.

    LIAN Yujiao, WANG Yonghong, ZHANG Xinru, et al. Preparation of N2-priority permeation ZIF-8 composite membrane and its CO2 capture[J]. CIESC Journal,2019,70(9):3573-3581(in Chinese).
    [19] BACHMAN J E, SMITH Z P, LI T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nature Materials,2016,15(8):845-849. doi: 10.1038/nmat4621
    [20] FENG X, CARREON M A. Kinetics of transformation on ZIF-67 crystals[J]. Journal of Crystal Growth,2015,418:158-162. doi: 10.1016/j.jcrysgro.2015.02.064
    [21] MRIDUSMITA B, BISHNUPADA M. Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane[J]. Journal of Membrane Science,2019,572:198-209. doi: 10.1016/j.memsci.2018.11.001
    [22] MESHKAT S, KALIAGUINE S, RODRIGUE D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology,2020,235:116150. doi: 10.1016/j.seppur.2019.116150
    [23] YANG Y W, DENG F, ZAN J, et al. Core-shell-structured ZIF-8@PDA-HA with controllable zinc ion release and superior bioactivity for improving a poly-L-lactic acid scaffold[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(4): 1814-1825.
    [24] YING C T, HUA C Z. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures[J]. Chemical Communications,2016,52(77):11591-11594. doi: 10.1039/C6CC05699G
    [25] SALIBA D, AMMAR M, RAMMAL M, et al. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives[J]. Jour-nal of the American Chemical Society,2018,140(5):1812-1823. doi: 10.1021/jacs.7b11589
    [26] CHEN M, DONG L, WU X, et al. Multi-functional polydopamine coating: Simultaneous enhancement of interfacial adhesion and CO2 separation performance of mixed matrix membranes[J]. New Journal of Chemistry,2016,40(11):9148-9159. doi: 10.1039/C6NJ02013E
    [27] ANJUM M W, VERTRLE F, KHAN A L, et al. Modulated UiO-66-based mixed-matrix membranes for CO2 separation[J]. ACS Applied Materials & Interfaces,2015,7(45):25193-25201.
    [28] SHIN J E, LEE S K, CHO Y H, et al. Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science,2019,572:300-308. doi: 10.1016/j.memsci.2018.11.025
    [29] XING Y W, WEI L, HONG W, et al. Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance[J]. Journal of Membrane Science,2018,548:309-318. doi: 10.1016/j.memsci.2017.11.038
    [30] WANG Z, WANG D, ZHANG S, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials,2016,28(17):3399-3405. doi: 10.1002/adma.201504982
    [31] KHAN A L, KLAYSAM C, GAHLAUT A, et al. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations[J]. Journal of Materials Che-mistry,2012,22:20057-20064. doi: 10.1039/c2jm34885c
    [32] 朱娜娜, 李越, 高会元. PI/ZIF-8杂化膜的制备及CO2/N2分离性能研究[J]. 功能材料, 2016, 47(4):4099-4104. doi: 10.3969/j.issn.1001-9731.2016.04.020

    ZHU Nana, LI Yue, GAO Huiyuan. Preparation of PI/ZIF-8 hybrid membrane and separation performance of CO2/N2[J]. Functional Materials,2016,47(4):4099-4104(in Chinese). doi: 10.3969/j.issn.1001-9731.2016.04.020
    [33] 龚金华, 王臣辉, 卞子君, 等. 多孔材料表面修饰聚酰亚胺非对称混合基质膜对CO2/N2和CO2/CH4的气体分离[J]. 物理化学学报, 2015, 31(10):1963-1970. doi: 10.3866/PKU.WHXB201508282

    GONG Jinhua, WANG Chenhui, BIAN Zijun, et al. Gas separation of CO2/N2 and CO2/CH4 by polyimide asymmetric mixed matrix membrane modified on porous material surface[J]. Journal of Physical Chemistry,2015,31(10):1963-1970(in Chinese). doi: 10.3866/PKU.WHXB201508282
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1721
  • HTML全文浏览量:  860
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-03-14
  • 录用日期:  2022-03-26
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回