留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能

李玄 赵科 刘金铃

李玄, 赵科, 刘金铃. 20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能[J]. 复合材料学报, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001
引用本文: 李玄, 赵科, 刘金铃. 20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能[J]. 复合材料学报, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001
LI Xuan, ZHAO Ke, LIU Jinling. High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001
Citation: LI Xuan, ZHAO Ke, LIU Jinling. High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001

20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能

doi: 10.13801/j.cnki.fhclxb.20220401.001
基金项目: 四川省重点研发项目(2020YFG0140)
详细信息
    通讯作者:

    赵科,博士,助理研究员,研究方向为轻质金属基复合材料的制备与力学性能 E-mail: zhaooke@163.com

  • 中图分类号: TB331

High-temperature compressive properties of 20vol% volume fraction nano-Al2O3 particles reinforced aluminum matrix composite

Funds: Key Research and Development Project in Sichuan Province (2020YFG0140)
  • 摘要: 为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。

     

  • 图  1  20vol%纳米Al2O3/Al复合材料的烧结工艺

    Figure  1.  Sintering process of 20vol% nano-Al2O3/Al composite

    图  2  20vol%纳米Al2O3/Al复合材料的XRD图谱

    Figure  2.  XRD pattern of 20vol% nano-Al2O3/Al composite

    图  3  20vol%纳米Al2O3/Al复合材料不同倍数的SEM图像((a)、(b))和Al2O3颗粒粒径统计(c)

    Figure  3.  SEM images ((a), (b)) of 20vol% nano-Al2O3/Al composites and Al2O3 particle size statistics (c)

    图  4  20vol%纳米Al2O3/Al复合材料不同倍数的TEM图像和Al基体晶粒尺寸统计:(a)低倍TEM图像;(b) 铝基体晶粒尺寸统计;(c) 高倍TEM图像;(d) Al2O3颗粒/铝基体界面HRTEM图像

    Figure  4.  TEM images and Al grain size statistics of 20vol% nano-Al2O3/Al composites: (a) Low magnification TEM image; (b) Grain size statistics of the Al matrix; (c) High magnification TEM image; (d) High resolution TEM (HRTEM) image of Al2O3 particle/Al interface

    图  5  20vol%纳米Al2O3/Al复合材料不同温度和应变速率下高温压缩性能:(a)应变速率为0.1/s;(b)应变速率为0.01/s;(c)应变速率为0.001/s;(d)峰值应力对比

    Figure  5.  High temperature compressive properties of 20vol% nano-Al2O3/Al composites under different temperatures and strain rates conditions: (a) Strain rate of 0.1/s; (b) Strain rate of 0.01/s; (c) Strain rate of 0.001/s; (d) Comparison of peak stress

    图  6  20vol%纳米Al2O3/Al复合材料与传统铝基材料高温压缩性能对比

    NG—Nano grained; NT—Nanotwinned

    Figure  6.  Comparison of high temperature compressive properties between 20vol% nano-Al2O3/Al composites and traditional aluminum-based materials

    图  7  20vol%纳米Al2O3/Al复合材料流变应力方程拟合关系图

    Figure  7.  Fitting diagram of flow stress equations of 20vol% nano-Al2O3/Al composite

    $ \dot{\varepsilon } $—Strain rate; α—Material constant; σ—Stress; T—Temperature

    图  8  20vol%纳米Al2O3/Al复合材料lnZ-ln[sinh(ασ)]拟合图

    Figure  8.  Fitted curve between lnZ and ln[sinh(ασ)] of 20vol% nano-Al2O3/Al composite

    Z—Zener-Holloomon parameter

    图  9  20vol%纳米Al2O3/Al复合材料Lagneborg-Bergman图:(a) $ n{{'}} $=3;(b) $ n{{'}} $=5;(c) $ n{{'}} $=8

    Figure  9.  Lagneborg-Bergman diagram of 20vol% nano-Al2O3/Al composites: (a) $ n{{'}} $=3; (b) $ n{{'}} $=5; (c) $ n{{'}} $=8

    $ n{{'}} $—True stress exponent; G—Shear modulus

    图  10  20vol%纳米Al2O3/Al复合材料在673 K、0.001/s变形后的TEM图像(a)和铝基体晶粒尺寸统计图(b)

    Figure  10.  TEM images (a) and Al grain size statistics (b) of 20vol% nano-Al2O3/Al composites after deformation at 673 K and strain rate of 0.001/s

    图  11  20vol%纳米Al2O3/Al复合材料在673 K、0.001/s变形后的TEM图像和电子衍射分析结果:(a) TEM图像;(b)对应于图11(a)圆形区域的电子衍射图谱;((c)、(e)、(g))分别为对应于图11(a)圆形区域的Al2O3颗粒/铝基体界面、铝晶界和铝晶粒内部的高分辨TEM图像;((d)、(f)、(h))分别对应于图11(c)图11(e)图11(g)正方形区域的反傅里叶变换图

    Figure  11.  TEM images and analysis results based on electron diffraction of 20vol% nano-Al2O3/Al composites after deformation at 673 K and strain rate of 0.001/s: (a) TEM image; (b) Electron diffraction pattern corresponding to circular area in Fig.11(a); ((c), (e), (g)) HRTEM images of Al2O3/Al interface, Al grain boundary and Al grain interior, respectively, corresponding to square areas in Fig.11(a); ((d), (f), (h)) Inverse fourier transform images corresponding to square area in Fig.11(c), Fig.11(e) and Fig.11(g), respectively

  • [1] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展: 微观组织设计与析出策略[J]. 金属学报, 2021, 57(2):129-149. doi: 10.11900/0412.1961.2020.00347

    GAO Yihan, LIU Gang, SUN Jun. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy[J]. Acta Metallurgica Sinica,2021,57(2):129-149(in Chinese). doi: 10.11900/0412.1961.2020.00347
    [2] GENG R, QIU F, JIANG Q C. Reinforcement in Al matrix composites: A review of strengthening behavior of nano-sized particles[J]. Advanced Engineering Materials,2018,20(9):1701089. doi: 10.1002/adem.201701089
    [3] SHEN B, DENG L, WANG X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation[J]. Materials Science & Engineering A,2015,625:288-295.
    [4] ASGHARZADEH H, SIMCHI A, KIM H S. High-tempera-ture deformation and structural restoration of a nanostructured Al alloy[J]. Scripta Materialia,2012,66(11):911-914. doi: 10.1016/j.scriptamat.2012.02.026
    [5] SERAJZADEH S, MOTLAGHS S, MIRBAGHERI S M H, et al. Deformation behavior of AA2017-SiCp in warm and hot deformation regions[J]. Materials and Design,2015,67:318-323. doi: 10.1016/j.matdes.2014.11.042
    [6] HAN B Q, LAVERNIA E J. High-temperature behavior of a cryomilled ultrafine-grained Al-7.5%Mg alloy[J]. Materials Science and Engineering A,2005,410:417-421.
    [7] OÑORO J. High-temperature mechanical properties of aluminum alloys reinforced with titanium diboride (TiB2) particles[J]. Rare Metals,2011,30(2):200-205. doi: 10.1007/s12598-011-0224-6
    [8] ASGHARZADEH H, SIMCHI A, KIM H S. Hot deformation of ultrafine-grained Al6063/Al2O3 nanocomposites[J]. Journal of Materials Science,2011,46(14):4994-5001. doi: 10.1007/s10853-011-5418-7
    [9] SAKAMOTO T, KUKEYA S, OHFUJI H. Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5wt%Y2O3 and Al-5wt%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing[J]. Materials Science & Engineering A,2019,748:428-433.
    [10] RAZAVI-HESABI Z, SANJARI M, SIMCHI A, et al. Effect of alumina nanoparticles on hot strength and deformation behavior of Al-5vol%Al2O3 nanocomposite: Experimental study and modelling[J]. Journal of Nanoscience and Nanotechnology,2010,10(4):2641-2645. doi: 10.1166/jnn.2010.1408
    [11] WANG L, QIU F, ZHAO Q L, et al. Simultaneously increasing the elevated-temperature tensile strength and plasticity of in situ nano-sized TiCx/Al-Cu-Mg composites[J]. Materials Characterization,2017,125:7-12. doi: 10.1016/j.matchar.2017.01.013
    [12] ZHOU Y T, ZAN Y N, ZHENG S J, et al. Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2[J]. Journal of Materials Science & Technology,2019,35(9):1825-1830.
    [13] ASGHARZADEH H, KIM H S, SIMCHI A. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy[J]. Materials Characterization,2013,75:108-114. doi: 10.1016/j.matchar.2012.10.007
    [14] ZHAO K, TANG D, LIU J L, et al. Structural evolution during mechanical milling of bimodal-sized Al2O3 particles reinforced aluminum matrix composite[J]. Acta Metallurgica Sinica,2018,31(4):423-430. doi: 10.1007/s40195-018-0714-8
    [15] LIU J L, HUANG X Y, ZHAO K, et al. Effect of reinforcement particle size on quasistatic and dynamic mechanical properties of Al-Al2O3 composites[J]. Journal of Alloys & Compounds,2019,797:1367-1371.
    [16] ZHAO K, DUAN Z Y, LIU J L, et al. Strengthening mechanisms of 15vol%Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball milling and vacuum hot pressing[J]. Acta Metallurgica Sinica (English Letters), 2021, 35(6): 915-921.
    [17] FARROKH B, KHAN A S. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling[J]. International Journal of Plasticity,2009,25(5):715-732. doi: 10.1016/j.ijplas.2008.08.001
    [18] JIN N P, ZHANG H, HAN Y, et al. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature[J]. Materials Characterization,2009,60(6):530-536. doi: 10.1016/j.matchar.2008.12.012
    [19] MA X, ZHAO Y F, TIAN W J, et al. A novel Al matrix compo-site reinforced by nano-AlNp network[J]. Scientific Reports,2016,6(1):34919. doi: 10.1038/srep34919
    [20] LI Q, CHO J, XUE S C, et al. High temperature thermal and mechanical stability of high-strength nanotwinned Al alloys[J]. Acta Materialia,2019,165:142-152. doi: 10.1016/j.actamat.2018.11.011
    [21] ZHAO K, ZHU X X, LIU J L, et al. Superb high-temperature strength of aluminum-based nanocomposite with supra-nano stacking faults/twins[J]. Composites Communications,2021,25:100753. doi: 10.1016/j.coco.2021.100753
    [22] SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138. doi: 10.1016/0001-6160(66)90207-0
    [23] SENTHILKUMAR V, BALAJI A, NARAYANASAMY R. Analysis of hot deformation behavior of Al5083-TiC nanocomposite using constitutive and dynamic material models[J]. Materials and Design,2012,37:102-110. doi: 10.1016/j.matdes.2011.12.049
    [24] KAI X Z, ZHAO Y T, WANG A D, et al. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite[J]. Composites Science and Technology,2015,116:1-8. doi: 10.1016/j.compscitech.2015.05.006
    [25] LIN Z, LI Y, MOHAMED F A. Creep and substructure in 5vol%SiC-2124Al composite[J]. Materials Science & Engi-neering A,2002,332(1-2):330-342.
    [26] MA Z Y, TJONG S C. Creep deformation characteristics of discontinuously reinforced aluminium-matrix compo-sites[J]. Composites Science & Technology,2001,61(5):771-786.
    [27] MOHAMED F A, LANGDON T G. Deformation mechanism maps based on grain size[J]. Metallurgical Transactions,1974,5(11):2339-2345.
    [28] MOHAMED F A, LANGDON T G. The transition from dislocation climb to viscous glide in creep of solid solution alloys[J]. Acta Metallurgica,1974,22(6):779-788. doi: 10.1016/0001-6160(74)90088-1
    [29] WEERTMAN J. Steady-state creep through dislocation climb[J]. Journal of Applied Physics,1957,28(3):362-364. doi: 10.1063/1.1722747
    [30] SHERBY O D, KLUNDT R H, MILLER A K. Flow stress, subgrain size, and subgrain stability at elevated tempera-ture[J]. Metallurgical Transactions A,1977,8(6):843-850. doi: 10.1007/BF02661565
    [31] GONG D, JIANG L T, GUAN J T, et al. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite[J]. Materials Science & Engineering A,2020,770:138551.
  • 加载中
图(11)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  259
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-03-20
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-04-02
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回