留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比

马俊豪 贾旭宏 汤婧 张晓宇 代尚沛 杨晓光

马俊豪, 贾旭宏, 汤婧, 等. 碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比[J]. 复合材料学报, 2023, 40(2): 794-803. doi: 10.13801/j.cnki.fhclxb.20220325.002
引用本文: 马俊豪, 贾旭宏, 汤婧, 等. 碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比[J]. 复合材料学报, 2023, 40(2): 794-803. doi: 10.13801/j.cnki.fhclxb.20220325.002
MA Junhao, JIA Xuhong, TANG Jing, et al. Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 794-803. doi: 10.13801/j.cnki.fhclxb.20220325.002
Citation: MA Junhao, JIA Xuhong, TANG Jing, et al. Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 794-803. doi: 10.13801/j.cnki.fhclxb.20220325.002

碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比

doi: 10.13801/j.cnki.fhclxb.20220325.002
基金项目: 民航局安全能力建设项目(0242023);中国民用航空飞行学院重点项目(ZJ2021-01)Civil Aviation Authority Security Capacity Building Project (0242023); Key Program of Civil Aviation Flight Academy of China (ZJ2021-01)
详细信息
    通讯作者:

    贾旭宏,博士,教授,硕士生导师,研究方向为民用飞机非金属材料燃烧特性与灭火剂合成研究  E-mail: jiaxuhong02@163.com

  • 中图分类号: TB332

Comparison of pyrolysis and combustion characteristics of carbon fiber, glass fiber/epoxy resin

  • 摘要: 民用飞机内饰壁板材料主要是纤维/树脂复合材料,该类复合材料具有一定的火灾危险性,因此研究其热稳定性和燃烧特性对于飞机防火具有重要意义。采用热重分析仪研究了不同升温速率对碳纤维/环氧树脂和玻璃纤维/环氧树脂两种典型飞机壁板材料热解的影响,并使用Kissinger法得到了分解阶段的表观活化能和指前因子;采用锥形量热仪研究了两种预浸料在不同火灾环境下的燃烧特性,并选取火势蔓延指数($ {\delta _{{\rm{FGI}}}} $)、火险潜在指数($ {\delta _{{\rm{FPI}}}} $)、放热指数($ {\delta _{{\rm{THRI}}}} $)、发烟指数($ {\delta _{{\rm{TSPI}}}} $) 4种评价指标评估其火灾危险性;进而分析两种纤维在树脂复合材料热解、燃烧过程中的影响。结果表明:在空气气氛下,升温速率对两种预浸料的热解影响都较大,碳纤维在556℃以上发生分解,玻璃纤维未发生分解。在热解时玻璃纤维预浸料前两阶段的活化能明显高于碳纤维预浸料,表明玻璃纤维预浸料具有更高的热稳定性。碳纤维预浸料的热释放速率、产烟速率、总产热量、总产烟量均大于玻璃纤维预浸料,随着热辐射强度的增加,两种预浸料这些参数之间的差值都不断变大,碳纤维预浸料的$ {\delta _{{\rm{FGI}}}} $$ {\delta _{{\rm{THRI}}}} $$ {\delta _{{\rm{TSPI}}}} $均大于玻璃纤维预浸料,$ {\delta _{{\rm{FPI}}}} $值则相反。分析发现,两种纤维都对复合材料的热解有一定的抑制作用,但玻璃纤维抑制作用更明显,碳纤维/环氧复合材料火灾危险性更大。

     

  • 图  1  环氧树脂基体在空气气氛下升温速率10℃/min的TG和DTG曲线

    Figure  1.  TG and DTG curves of epoxy resin matrix in air atmosphere at 10℃/min heating rate

    图  2  碳纤维预浸料在不同升温速率下的TG (a) 和DTG (b) 曲线

    Figure  2.  TG (a) and DTG (b) curves of carbon fiber prepreg at different heating rates

    图  3  不同升温速率下玻璃纤维预浸料的TG (a) 和DTG (b) 曲线

    Figure  3.  TG (a) and DTG (b) curves of glass fiber prepreg at different heating rates

    图  4  ${\text{ln(}}{\beta _i}/T_{{\rm{p}}i}^2)$$ 1/{T_{{\rm{p}}i}} $之间的关系:(a)碳纤维预浸料;(b)玻璃纤维预浸料

    Figure  4.  Relationship between ${\text{ln(}}{\beta _i}/T_{{\rm{p}}i}^2)$and $ 1/{T_{{\rm{p}}i}} $: (a) Carbon fiber prepreg; (b) Glass fiber prepreg

    β—Heating rate; Tpi—Temperature corresponding to the maximum mass loss at each stage

    图  5  热释放速率:(a)碳纤维预浸料;(b)玻璃纤维预浸料

    Figure  5.  Heat release rate: (a) Carbon fiber prepreg; (b) Glass fiber prepreg

    图  6  碳纤维预浸料和玻璃纤维预浸料的总放热量

    Figure  6.  Total heat release of carbon fiber prepreg and glass fiber prepreg

    图  7  产烟速率:(a)碳纤维预浸料;(b)玻璃纤维预浸料

    Figure  7.  Smoke production rate: (a) Carbon fiber prepreg; (b) Glass fiber prepreg

    图  8  碳纤维预浸料和玻璃纤维预浸料的总产烟量

    Figure  8.  Total smoke production of carbon fiber prepreg and glass fiber prepreg

    表  1  两种预浸料热解温度参数

    Table  1.   Pyrolysis parameters of two prepregs

    MaterialHeating rate/
    (℃·min−1)
    Temperature scope of thermal decomposition/℃Temperature of maximum mass loss rate/℃
    First stageSecond stageThird stageFirst stageSecond stageThird stage
    Carbon fiber prepreg 2 296-424 424-556 556-728 378 475 692
    5 305-435 435-568 568-796 396 502 768
    10 317-452 452-595 595-836 412 518 797
    15 328-467 467-628 628 427 538 838
    Glass fiber prepreg 2 302-447 447-570 402 505
    5 316-451 451-584 418 524
    10 330-463 463-614 430 537
    15 335-478 478-632 443 556
    下载: 导出CSV

    表  2  Kissinger方法计算了两种预浸料的热解动力学参数

    Table  2.   Pyrolysis kinetic parameters of the two prepregs calculated by Kissinger method

    MaterialHeating rate/(℃·min−1)Slope k=−E/R Ek/(kJ·mol−1)lnAkR2

    Carbon fiber prepreg
    2, 5, 10, 15 −16.613 138.12 16.089 0.9953
    −17.831 148.25 14.197 0.9912
    −12.869 106.99 2.845 0.9909
    Glass fiber
    prepreg
    −23.205 192.93 25.249 0.9936
    −25.801 214.51 23.792 0.9926
    Notes: k—Slope of the curve fitted to Fig.4; E—Activation energy; R—Molar gas constants; Ek—Apparent activation energy; Ak—Apparent pre-exponential factor; R2—Degree of fit.
    下载: 导出CSV

    表  3  两种预浸料的火灾危险性评价指数

    Table  3.   Fire hazard evaluation index of two prepregs

    Risk evaluation index $ {\delta _{{\rm{FGI}}}} $/(kW·(m2·s)−1) $ {\delta _{{\rm{FPI}}}} $/((m2·s)·kW−1) $ {\delta _{{\rm{THRI}}}} $/(MJ·m−2) $ {\delta _{{\rm{TSPI}}}} $/(s·m−2)
    Carbon fiber prepreg 25 kW·m−2 4.74 0.127 −0.31 4.07
    35 kW·m−2 6.23 0.097 −0.29 4.02
    50 kW·m−2 9.10 0.073 −0.27 3.93
    Glass fiber prepreg 25 kW·m−2 4.51 0.137 −0.34 4.03
    35 kW·m−2 6.08 0.106 −0.31 3.98
    50 kW·m−2 7.57 0.082 −0.30 3.82
    Notes: $ {\delta _{{\rm{FGI}}}} $—Fire spread index; $ {\delta _{{\rm{FPI}}}} $—Fire potential index; $ {\delta _{{\rm{THRI}}}} $—Total heat release index; $ {\delta _{{\rm{TSPI}}}} $—Total smoke production index.
    下载: 导出CSV
  • [1] 吴良义. 先进复合材料的应用扩展: 航空、航天和民用航空先进复合材料应用技术和市场预测[J]. 化工新型材料, 2012, 40(1):4-9. doi: 10.3969/j.issn.1006-3536.2012.01.002

    WU Liangyi. The application extend of advanced compo-site materials: Technology markets of and application in aerona-utics, astronaut and civil aviation[J]. New Chemi-cal Materials,2012,40(1):4-9(in Chinese). doi: 10.3969/j.issn.1006-3536.2012.01.002
    [2] LIU L, JIA C Y, HE J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2015,121:56-72. doi: 10.1016/j.compscitech.2015.08.002
    [3] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer mtrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese).
    [4] LIU W, ZHANG T, BAO J, et al. Effects of epoxy resin cross-linked structure characteristics on longitudinal compres-sive performance of carbon fiber reinforced composites[J]. Journal of Aeronautical Materials,2016,36(1):75-80.
    [5] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11):61-64.

    SUN Zhenqi, WU Anru. Application of advanced compo-site in aircraft structures[J]. Materials Reports,2015,29(11):61-64(in Chinese).
    [6] Federal Aviation Administration. Department of transportation, federal aviation administration regulations for compartment interiors: FAR.25.853[S]. Washington: Federal Aviation Administration, 2000.
    [7] SEBASTIAN E. Influence of carbon fibre orientation on reaction-to-fire properties of polymer matrix composites[J]. Fire and Materials,2012,36(4):309-324. doi: 10.1002/fam.1112
    [8] SZOLNOKI B, BOCZ K, SOTI P L, et al. Development of natural fibre reinforced flame retarded epoxy resin composites[J]. Polymer Degradation and Stability,2015,119:68-76. doi: 10.1016/j.polymdegradstab.2015.04.028
    [9] 朱泽宇, 张旭, 王志, 等. 碳纤维/环氧复合材料燃烧及产烟特性研究[J]. 中国胶粘剂, 2020(7): 48-53.

    ZHU Zeyu, ZHANG Xu, WANG Zhi, et al. Study on combustion and smoke production characteristics of carbon fiber/epoxy composites[J]. China Adhesives, 2020(7): 48-53(in Chinese).
    [10] 徐艳英, 张雷, 王志, 等. 基于锥形量热法的典型碳纤维/环氧复合材料燃烧特性[J]. 复合材料学报, 2017, 34(8):1674-1682.

    XU Yanying, ZHANG Lei, WANG Zhi, et al. Combustion characteristics of typical carbon fiber/epoxy composites based on the method of CONE[J]. Acta Materiae Compositae Sinica,2017,34(8):1674-1682(in Chinese).
    [11] 徐艳英, 杨扬, 张颖, 等. 单向碳纤维/环氧树脂预浸料热解特性[J]. 复合材料学报, 2018, 35(9):2442-2448.

    XU Yanying, YANG Yang, ZHANG Ying, et al. Pyrolysis characteristics of unidirectional carbon fiber/epoxy prepreg[J]. Acta Materiae Compositae Sinica,2018,35(9):2442-2448(in Chinese).
    [12] 计智, 徐艳英, 李金都, 等. 碳纤维/环氧复合材料的热解特性及动力学研究[J]. 消防科学与技术, 2020, 39(7):994-997. doi: 10.3969/j.issn.1009-0029.2020.07.029

    JI Zhi, XU Yanying, LI Jindu, et al. Pyrolysis characteristics and kinetics of carbon fiber/epoxy composites[J]. Fire Science and Technology,2020,39(7):994-997(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.07.029
    [13] RÉGNIER N, FONTAINE S. Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG[J]. Journal of Thermal Analysis and Calorimetry,2001,64(2):789-799. doi: 10.1023/A:1011512932219
    [14] 宋金梅, 刘辉, 王雷, 等. 废弃碳纤维/环氧树脂复合材料的热解特性及动力学研究[J]. 玻璃钢/复合材料, 2019(1):47-53.

    SONG Jinmei, LIU Hui, WANG Lei, et al. Pyrolysis characteristics and kinetics of scrap carbon fiber reinforced epoxy resin matrix composites[J]. Fiber Reinforced Plastics/Composites,2019(1):47-53(in Chinese).
    [15] 王一明, 刘杰, 吴广峰, 等. 亚临界水介质回收酸酐固化环氧树脂/碳纤维复合材料[J]. 应用化学, 2013, 30(6):643-647.

    WANG Yiming, LIU Jie, WU Guangfeng, et al. Subcritical water medium recovery acid anhydride cured epoxy resin/carbon fiber composite material[J]. Chinese Journal of Applied Chemistry,2013,30(6):643-647(in Chinese).
    [16] WANG H Y, ZHANG L. Pyrolysis and combustion characteristics and reaction kinetics of carbon fiber/epoxy compo-sites[J]. AIP Advances,2019,9(12):125110. doi: 10.1063/1.5128460
    [17] DAO D Q, LUCHE J, RICHARD F, et al. Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeter[J]. International Journal of Hydrogen Energy,2013,38(19):8167-8178. doi: 10.1016/j.ijhydene.2012.05.116
    [18] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9):1969-1972. doi: 10.3788/HPLPB20102209.1969

    CHEN Minsun, JIANG Houman, LIU Zejin. Determination of thermal decomposition kinetic parameters of glass fiber/epoxy composite[J]. High Power Laser and Particle Beams,2010,22(9):1969-1972(in Chinese). doi: 10.3788/HPLPB20102209.1969
    [19] 郭云竹, 孙远君. 玻璃纤维/环氧树脂复合材料的热性能[J]. 纤维复合材料, 2011(2): 33-35.

    GUO Yunzhu, SUN Yuanjun. Thermal properties of glass fiber/epoxy composites[J]. Fiber Composites, 2011(2): 33-35(in Chinese).
    [20] 张颖, 王志, 徐艳英, 等. 高强玻璃纤维复合材料热解动力学研究[J]. 消防科学与技术, 2017, 36(2):149-152.

    ZHANG Ying, WANG Zhi, XU Yanying, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites[J]. Fire Science and Technology,2017,36(2):149-152(in Chinese).
    [21] RAJAEI M, WANG D Y, BHATTACHARYYA D, et al. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric compo-sites[J]. Composites Part B: Engineering,2017,113:381-390. doi: 10.1016/j.compositesb.2017.01.039
    [22] 张成林, 董抒华, 李丽君, 等. E-玻璃纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9):152-157. doi: 10.11868/j.issn.1001-4381.2019.000865

    ZHANG Chenglin, DONG Shuhua, LI Lijun, et al. Curing kinetics and dynamic thermodynamic properties of E-glass fiber/epoxy resin prepreg[J]. Journal of Materials Engi-neering,2020,48(9):152-157(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000865
    [23] LI Z Z, ZOU Z Y, QIN Y, et al. The effect of fibre content on properties of ceramifiable composites[J]. Plastics, Rubber and Composites,2020,49(5):230-236. doi: 10.1080/14658011.2020.1731258
    [24] DAO D Q, ROGAUME T, LUCHE J, et al. Thermal degradation of epoxy resin/carbon fiber composites: Influence of carbon fiber fraction on the fire reaction properties and on the gaseous species release[J]. Fire and Materials,2016,40(1):27-47.
    [25] 张冰, 杨素洁, 杨亚东, 等. 三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性[J]. 复合材料学报, 2021, 38(8):2505-2516.

    ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2505-2516(in Chinese).
    [26] HUANG G R, LIU H B, YANG L, et al. Pyrolysis behavior of graphene/phenolic resin composites[J]. New Carbon Materials,2015,30(5):412-418.
    [27] YANG T, YUAN G, XIA M, et al. Kinetic analysis of the pyrolysis of wood/inorganic composites under nonisothermal conditions[J]. European Journal of Wood and Wood Products,2021,79(8):1-12.
    [28] KAUR R, GERA P, JHA M K, et al. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis[J]. Bioresource Technology,2018,250:422-428. doi: 10.1016/j.biortech.2017.11.077
    [29] LIU L S, ZHANG X Y, ZHAO R X, et al. Pyrolysis of phragmites hirsuta study on pyrolysis characteristics, kinetic and thermodynamic analyses[J]. International Journal of Energy Research,2021,45(10):15200-15216. doi: 10.1002/er.6795
    [30] 徐翊桄, 靳玉伟, 张海龙, 等. 碳纤维热氧化行为及其机理[J]. 合成纤维工业, 2010, 33(6):5-7. doi: 10.3969/j.issn.1001-0041.2010.06.002

    XU Yiguang, JIN Yuwei, ZHANG Hailong, et al. Thermal oxidation behavior and mechanism of carbon fiber[J]. China Synthetic Fiber Industry,2010,33(6):5-7(in Chinese). doi: 10.3969/j.issn.1001-0041.2010.06.002
    [31] REN N, ZHANG J J. Progress in datum treatment methods of thermal analysis kinetics[J]. Progress in Chemistry,2006,18(4):410-416.
    [32] MIRANDA M, PINTO F, GULYURTLU I, et al. Pyrolysis of rubber tyre wastes: A kinetic study[J]. Fuel,2013,103(1):542-552.
    [33] 许镇, 唐方勤, 任爱珠. 烟气毒性多气体的改进评价模型[J]. 清华大学学报(自然科学版), 2011, 51(2):194-197.

    XU Zhen, TANG Fangqin, REN Aizhu. Improved evaluation model of smoke toxicity and multi-gas[J]. Journal of Tsinghua University (Science and Technology),2011,51(2):194-197(in Chinese).
    [34] YANG Z, YI A H, LIU J Y, et al. Study of fire hazard of flooring materials on data of cone calorimeter[J]. Procedia Engineering,2016,135:584-587. doi: 10.1016/j.proeng.2016.01.113
    [35] 李禄超, 王志, 徐艳英, 等. 碳纤维环氧复合材料火灾危险综合评价[J]. 安全与环境学报, 2016, 16(5):62-66.

    LI Luchao, WANG Zhi, XU Yanying, et al. Comprehensive evaluation of the fire risks faced by the typical epoxy resin/carbon fiber composites[J]. Journal of Safety and Environment,2016,16(5):62-66(in Chinese).
    [36] TIAN X A, RWA B, ZHI W A, et al. Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry[J]. Process Safety and Environmental Protection,2020,134(C):121-130.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  731
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-03-06
  • 录用日期:  2022-03-19
  • 网络出版日期:  2022-03-28
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回