Loading [MathJax]/jax/output/SVG/jax.js

g-C3N4/POPs异质结制备及其可见光催化性能

郭佳允, 傅炀杰, 张柯杰, 姬云, 杨娟, 王齐

郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910. DOI: 10.13801/j.cnki.fhclxb.20220325.001
引用本文: 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910. DOI: 10.13801/j.cnki.fhclxb.20220325.001
GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. DOI: 10.13801/j.cnki.fhclxb.20220325.001
Citation: GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. DOI: 10.13801/j.cnki.fhclxb.20220325.001

g-C3N4/POPs异质结制备及其可见光催化性能

基金项目: 国家自然科学基金(21876154;52074103);浙江师范大学“先进催化材料”教育部重点实验室和浙江省“固体表面反应化学”重点实验室开放课题(KLMEACM202104)National Natural Science Foundation of China (21876154; 52074103); Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University (KLMEACM202104)
详细信息
    通讯作者:

    王齐,博士,教授,博士生导师,研究方向为环境光催化  E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O643.36

Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction

  • 摘要: 光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常数分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料5次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。
    Abstract: As a promising environmental remediation technology, the development of efficient and stable photocatalysts with visible light response is one of the important studies in photocatalysis technology. In this work, g-C3N4/porous organic polymers (POPs) composite photocatalysts were prepared via atmospheric solvothermal method. Different ratios of g-C3N4 were in-situ loaded on conjugated porous organic polymers TAPB-DMTP POP synthesized with 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) and 2, 5-dimethoxybenzene-1, 4-diformaldehyde (DMTP) as monomers. The chemical structure and optical properties of g-C3N4/POPs materials were characterized by XRD, FTIR, BET, TGA, UV-Vis DRS, current-time (i-t) and EIS methods. Cr(VI) was selected as the model pollutant, the photocatalytic reduction activities of g-C3N4/POPs photocatalysts with different g-C3N4 loading ratios were explored under visible light conditions, and the effects of pH value, catalyst dosage and substrate concentration were further investigated. The results shows that g-C3N4/POP-2 exhibits the best photocatalytic reduction performance at pH=2 with the reduction efficiency of 99.1% after 30 min of visible illumination. The reduction efficiency of Cr(VI) is significantly improved over g-C3N4/POP-2 compared with pure g-C3N4 and TAPB-DMTP POP, and the fitted first-order kinetics rate are 22.0 times and 2.2 times that of g-C3N4 and TAPB-DMTP POP, respectively. This composite also exhibits excellent photocatalytic stability as the Cr(VI) reduction rate reaches more than 90% after five cycles.
  • 可再生能源的间隙性和波动性为能量的安全、高效利用带来较大挑战,已经成为经济可持续发展面临的重要议题[1]。钒液流电池(Vanadium liquid flow battery,VRB)可将电能高效储存,具有本征安全、响应速度快和运行寿命长等特点,相对于其他类型储能技术,钒电池技术在大规模、长时储能领域显示出优越的发展前景[1-3]

    作为钒电池的关键部件,质子交换膜(Proton exchange membrane,PEM)需具有如下特性[4-5]:(1)高离子选择性,即高质子传导率和低钒离子渗透率;(2)高拉伸强度和穿刺强度;(3)良好的理化稳定性;(4)较好的经济性。目前,基于全氟磺酸树脂的PEM在VRB中的应用最为广泛,如杜邦公司Nafion系列膜,但其溶胀性和离子选择性等与VRB的严格要求仍存在差距,优化膜的离子渗透性是本领域的研究热点[6-8]。实验表明,向膜中引入具有适宜孔道结构和表面性质的功能材料是改善其离子选择性的有效手段[5],如金属-有机框架(Metal-organic frameworks,MOFs)材料[9-11]

    在MOFs材料中,UIO-66 (Zr-MOF)由六核氧化锆簇作为二级构建单元和1, 4-苯二甲酸接头构建[12],具有刚性结构和较强的耐酸性,同时拥有介于水和离子(<0.3 nm)和钒离子(>0.6 nm)的孔道尺寸[13]。UIO-66主要通过水热合成法制备,但在合成过程中,烘箱加热较难提供均匀的受热环境,存在合成时间长、材料结构均一性差等问题[14]。微波加热可促进反应物中分子或离子直接耦合,实现能量的快速传导,具有反应速率快和产率高等优点,已被广泛用于多种纳米材料的合成[14-16]。Zhai等[6]通过在磺化聚醚醚酮(SPEEK)中掺入15wt% 的传统水热法UIO-66-NH2来改善复合膜的质子传导率,在120 mA·cm−2电流密度下,电池的能量效率(Energy efficiency,EE)为77.3%。Lu等[17]制备高质子选择性的聚多巴胺(PDA)@MOF-808,并将其掺入SPEEK中以优化复合膜的性能,在120 mA·cm−2电流密度下,该膜的EE为83.9%。贾儒等[13]和Wan等[14]也分别对UIO-66的合成和应用展开研究,均采用耗时较长的传统水热法。

    鉴于此,本文采用不同加热方式制备氨基官能化的UIO-66 (UIO-66-NH2),验证微波加热在UIO-66-NH2材料的合成效率、结构优化方面的优势,并将其与Nafion 掺杂,通过溶液浇筑法制备复合膜,对膜的理化性质和电池性能进行表征,探讨新型膜材料对钒电池性能的影响。

    氯化锆(ZrCl4,98%)、2-氨基对苯二甲酸(BDC-NH2,99%),上海麦克林生化科技有限公司;Nafion溶液(固含量5%),美国杜邦公司;无水乙醇,沈阳试剂二厂;N, N-二甲基甲酰胺(DMF)、MgSO4、硫酸氧钒(VOSO4·5H2O)、浓硫酸(98%)、乙酸(99%),国药集团化学试剂有限公司。

    UIO-66-NH2合成原料摩尔比:ZrCl4∶BDC-NH2 = 1∶1。首先,将二者分别溶于20 mL DMF,再在配体溶液中加入2.3 mL乙酸,超声波辅助下混合20 min后得均匀的合成液。随后,将适量上述合成液倒入微波合成罐中,在不同温度下合成15 min,离心后获得棕黄色粉末。将上述粉末分散在无水乙醇中,多次更新乙醇下保持48 h,完成产物清洗。最后,在60℃下干燥12 h,获得产物UIO-66-NH2,记为M-U66-NH2。作为对比,采用同样的合成液,利用传统烘箱加热,在120℃条件下反应24 h制备UIO-66-NH2,经过相同的清洗、干燥处理,获得产物UIO-66-NH2,记为T-U66-NH2。具体操作流程和样品编号见图1表1

    以溶液浇筑法制备复合膜[18]:称取一定质量的M-U66-NH2,在超声辅助下分散在Nafion树脂溶液(固含量5%)中,在450 r/min下搅拌10 h后获得铸膜液。将适量铸膜液倒入带有凹槽的玻璃板上,在140℃真空烘箱中处理4 h,除去溶剂后得到复合膜,在恒温、恒湿条件下保存、备用。将掺杂M-U66-NH2的复合膜记作M/N-XX=1、2、3、6和9,X表示Nafion树脂中M-U66-NH2的质量分数。将掺杂T-U66-NH2的复合膜记作T/N-XX=3。同时,采用相似工艺制备无M-U66-NH2掺杂的纯树脂膜,记作P-N。具体操作流程和样品编号见图1表1

    图  1  微波合成氨基官能化的UIO-66 (UIO-66-NH2)及Nafion复合膜的制备过程示意图
    Figure  1.  Schematic diagram of the preparation process of UIO-66-NH2 and Nafion composite membrane
    M-U66-NH2—UIO-66-NH2 prepared by microwave assisted method; UIO-66-NH2—Zr-MOF when the preparation method does not need to be distinguished; BDC-NH2—2-aminoterephthalic Acid; DMF—N, N-dimethylformamide; HAc—Acetic acid
    表  1  复合质子交换膜的命名
    Table  1.  Naming of composite proton exchange membranes
    Sample name Instruction
    M-U66-NH2 "M" represents microwave heating; "U66" refers to the metal-organic framework material UIO-66; Overall, it indicates the UIO-66-NH2 sample prepared by microwave heating.
    T-U66-NH2 "T" represents traditional oven heating; Overall, it indicates the UIO-66-NH2 sample prepared by oven heating.
    M/N-X "M/N" represents the composite membrane with M-U66-NH2 and Nafion resin; "X" represents the percentage content of M-U66-NH2 in the membrane.
    T/N-X "T/N" represents the composite membrane with T-U66-NH2 and Nafion resin; "X" represents the percentage content of T-U66-NH2 added to the membrane.
    P-N A pure, unmodified Nafion membrane
    N212 Commercial Nafion 212 membrane from DuPont (USA)
    下载: 导出CSV 
    | 显示表格

    采用X射线衍射仪(XRD,Bruker D8)和傅里叶红外光谱(FTIR,Nicolet 380,扫描范围:4000~750 cm−1)评价粉末结构;扫描电子显微镜(SEM,SU8010,Hitachi)和扫描电子能谱(EDS)表征样品的微观形貌和元素分布;万能拉伸试验机(Instron 1186,加载速度为10 mm/min)检测膜的力学性能。

    膜面积溶胀率的计算公式如下:

    SR = (SwetSdry)Sdry×100% (1)

    式中:Swet为湿膜面积(cm2);Sdry为干膜面积(cm2)。

    吸水率的计算公式如下:

    WU = (WwetWdry)Wdry×100% (2)

    式中:Wwet为湿膜质量(g);Wdry为干膜质量(g)。

    应用紫外分光光度计(TU-1810,Beijing Purcell General Instrument Co., Ltd.)测试膜的VO2+渗透性[7],取样间隔12 h,钒离子渗透率计算公式如下:

    VBd(CB(t))dt=APL(CACB(t)) (3)

    式中:CA为VOSO4溶液侧VO2+浓度;CB(t)t时刻MgSO4溶液侧VO2+浓度;VB为MgSO4溶液体积;P为钒离子渗透率;L为膜厚度;A为膜的有效面积(1.77 cm2)。

    应用电化学工作站(CHI660E,上海辰华)测试膜的离子电导率(σ),计算公式如下:

    σ=DRb (4)

    式中:Rb为膜的面电阻;D为膜厚度。

    采用新威电池测试系统表征VRB的电池性能,电流密度范围为100~200 mA·cm−2。循环测试的电流密度为150 mA·cm−2,循环200次。测试膜的放电容量衰减率,计算公式如下:

    =Qdis200Qdis1×100% (5)

    式中:Qdis200为循环200次后的放电容量;Qdis1为第一次循环前放电容量。

    = (6)

    为了优化UIO-66-NH2的合成参数,考察微波合成温度对材料结构的影响。如图2(a)所示,合成时间为15 min,当温度较低时(60℃),晶体结构较规则,颗粒尺寸约为1 μm,但产率仅为60%。随着合成温度的升高,晶体结构特征逐渐增强。如图2(c)所示,100℃下所合成样品具有明显的近八面体的晶体形貌[18]。当温度升至120℃时,晶体结构更加完整,此时粒径约为200 nm (图2(d)),分散性较好,且产率接近90%。由图2(e)可见,通过普通水热法也可以制备出形貌规则的UIO-66-NH2材料,只是所需的合成时间更长[19]

    图  2  不同温度下微波加热15 min ((a)~(d))、烘箱加热24 h (e)制备UIO-66-NH2的SEM图像及微波加热15 min样品的XRD图谱(f)
    Figure  2.  SEM images of UIO-66-NH2 by microwave heating for 15 min ((a)-(d)), oven heating for 24 h (e) and XRD patterns of UIO-66-NH2 by microwave heating for 15 min (f)

    XRD图谱反映样品的结晶度,如图2(f)所示,样品在2θ=7.40°和8.66°处出现了较明显的衍射峰,对应UIO-66-NH2的(111)和(002)晶面,在2θ=26.22°和31.86°等处出现强度略低的衍射峰,以上峰位置和强度与文献报道结果基本一致[20],证明本实验成功合成出UIO-66-NH2晶体。而且,随着合成温度的升高,晶体的衍射峰强度逐渐增加,即使在60℃下仍能合成出晶体。主要原因在于微波作用下反应釜内晶体前驱体溶液能够快速、均匀受热,微波的折射和反射诱导晶体快速成核、生长[21],合成效率得到显著提高。

    为了更清晰地观察复合膜的微观形貌以及膜厚度,本实验对膜样品进行SEM表征。如图3(a)~3(c)所示,不同膜样品均呈现出较均匀、致密的形貌特征,M-U66-NH2的掺杂量对膜形貌的影响较小。图3(d)~3(f)中,不同膜的厚度相近,约为40 μm。P-N膜的截面更加平滑,随着M-U66-NH2掺杂量的增加,复合膜截面的粗糙度逐渐增加,但晶体的掺入未明显改变复合膜的结构。图3(g)~3(j)清晰地展现出M-U66-NH2在M/N-3膜表面的元素分布情况,与M-U66-NH2相关的Zr、N元素及与Nafion树脂相关的F、S元素在膜表面均匀分布,说明复合膜中M-U66-NH2的分散性良好,未发生明显的团聚现象,这为功能材料充分发挥其表面性质和孔道尺寸等优势提供了条件。

    图  3  P-N (a)、M/N-1 (b)、M/N-3 (c) 膜的表面SEM图像;P-N (d)、M/N-1 (e)、M/N-3 (f)膜的截面SEM图像;M/N-3膜的表面EDS元素分布图((g) N;(h) Zr;(i) F;(j) S)
    Figure  3.  Surface SEM images of P-N (a), M/N-1 (b) and M/N-3 (c); Cross-section SEM images of P-N (d), M/N-1 (e) and M/N-3 (f); EDS element images of M/N-3 ((g) N; (h) Zr; (i) F; (j) S)

    为了探究高M-U66-NH2含量对复合膜结构的影响,本实验制备了M/N-6和M/N-9膜。如图4(a)所示,当掺杂量为6wt%时,复合膜截面出现较多尺寸约为2~3 μm的孔洞,这是由于较高掺杂量下,强相互作用促使M-U66-NH2粒子团聚,导致膜内出现缺陷。当掺杂量增至9wt%时,复合膜截面呈现出非对称结构,膜层中可以观察到大尺寸的M-U66-NH2团聚体。产生该现象的原因在于成膜过程中随着溶剂的缓慢挥发,较大尺寸的团聚体会逐渐下沉,并在玻璃板侧富集,形成高M-U66-NH2含量的多孔、疏松区域,此结构不利于UIO-66-NH2功能的充分发挥。同时,产生的缺陷会加速钒离子的跨膜渗透,降低质子交换膜的离子选择性和力学性能[14]

    图  4  M/N-6 ((a), (c))和M/N-9 ((b), (d))膜的截面SEM图像
    Figure  4.  Cross-sectional SEM images of M/N-6 ((a), (c)) and M/N-9 ((b), (d))

    通过FTIR分析M-U66-NH2、P-N、M/N-3膜样品的结构特征,如图5所示。M-U66-NH2345833561436 cm−1处具有明显的特征峰,分别对应N—H的对称和非对称伸缩振动及N—H的剪切伸缩振动,与文献报道一致[22]。P-N膜在12071151 cm−1处为C—F伸缩振动峰,1053 cm−1处为O=S=O振动峰及980 cm−1处为C—F特征峰,此结果与文献中Nafion树脂的特征峰一致[18]。M/N-3膜的FTIR图谱可以近似为M-U66-NH2和P-N图谱的叠加,表明UIO-66-NH2材料在膜中稳定存在,制膜过程并未破坏其微观结构。

    图  5  M-U66-NH2、P-N膜和M/N-3膜的红外图谱
    Figure  5.  FTIR spectra of M-U66-NH2, P-N and M/N-3 membranes

    吸水率和溶胀率是质子交换膜的重要性能指标。如图6(a)所示,基于M-U66-NH2的亲水性和丰富孔道,复合膜的吸水率和溶胀率均随掺入量的提高而增大[23]。同时,M-U66-NH2的刚性结构赋予膜较低的溶胀率(<4%)[24]。膜的吸水率和溶胀率直接影响其离子传导性能,由图6(b)可见,随着UIO-66-NH2掺杂量的提高,膜的质子传导率逐渐增大,而面电阻逐渐变小,如M/N-3的质子传导率达到122.18 mS·cm−1,此改善效果得益于膜中—NH2和—SO3H形成的酸/碱对及存在的氢键网络[25]。当掺杂量超过6wt%时,M-U66-NH2在膜内团聚而缺陷产生,膜的质子传导率较低。比较可见,M/N-3膜的吸水率、溶胀率和质子传导率均高于T/N-3膜,这与UIO-66-NH2的尺寸均一性和完整结构相关。

    图  6  复合膜的吸水率和溶胀率(a)、面电阻和质子传导率(b)、力学性能(c)和应力-应变曲线(d)
    Figure  6.  Water uptake and swelling ratio (a), area resistance and conductivity (b), mechanical properties (c) and stress-strain curves of different membranes (d)
    N212—Nafion 212 commercial membrane, DuPont, USA

    通过拉伸测试评价膜的机械强度。如图6(c)图6(d)所示,M-U66-NH2掺杂量低于3wt%时,复合膜的拉伸强度均高于P-N膜,如M/N-3膜的强度达到27 MPa,也高于T/N-3膜(22.3 MPa)。主要原因是UIO-66-NH2具有刚性结构,且—NH2基团与Nafion的—SO3H基团可形成共轭酸碱对,其强相互作用促使Nafion的分子链与UIO-66-NH2发生物理交联,从而提高了复合膜的力学性能[26]。同时,尺寸更小、更规则的M-U66-NH2与Nafion树脂间的分散更充分、交联程度更高,表现出更优的强化作用[1]。当UIO-66-NH2掺杂量超过6wt%时,膜中的孔洞缺陷导致其机械强度显著降低。

    本实验选取的UIO-66-NH2的有效孔径为0.52 nm,介于水分子(<0.3 nm)和钒离子(>0.6 nm)之间[14],可通过筛分效应提高膜的离子选择性。如图7(a)所示,M/N-X系列复合膜的阻钒性更好,如M/N-3膜的钒离子渗透浓度最低,仅为P-N膜的23%左右,而M/N-9膜的阻钒性能最差。当测试时间大于48 h,T/N-3膜的表现略差于M/N-3膜,主要原因是传统水热法所制备UIO-66-NH2的晶体结构不够完善。

    图  7  复合膜的钒离子渗透浓度(a)、钒离子渗透率和离子选择性(b)
    Figure  7.  Vanadium ion permeation concentration (a), vanadium ion permeability and ion selectivity (b) of composite membranes

    高钒离子渗透性不利于钒电池长期稳定运行,如图7(b)所示,优化条件下所制备的M/N-3膜的钒离子渗透率最低,仅为8.3×10−8 cm2·min−1,且该膜的离子选择性达到15.6×105 S·min·cm−3,约为P-N膜的30倍。当UIO-66-NH2掺入量过低或过高时,膜的离子选择性均较低。另外,与M/N-3膜相比,掺杂T-U66-NH2的复合膜具有接近的离子选择性,这说明两种方法所制备UIO-66-NH2对复合膜离子选择性的影响较小。有研究结果指出增加厚度会提高膜的钒离子渗透率,进而降低膜的离子选择性[7, 27-29]。因此,本实验在充分参考文献数据的基础上,为了平衡氢离子、钒离子的渗透情况,确定膜厚度为40 μm左右。

    分别将P-N、M/N-X和T/N-3膜组装成模拟电池进行测试,评价不同电池的电压效率(Voltage efficiency,VE)、库伦效率(Coulombic efficiency,CE)和能量效率(EE)。由图8(a)可知,在相同电流密度下,随着M-U66-NH2掺杂量的增加,电池的CE逐渐增大,在100 mA·cm−2电流密度下,M/N-3膜电池的库伦效率达到97.66%,高于P-N膜(95.8%)。因膜内粒子团聚造成了结构缺陷,M/N-6和M/N-9膜电池的CE低于M/N-3膜。图8(b)显示M/N-X复合膜的VE高于P-N膜,且随着电流密度的增加,复合膜所装配电池的VE逐渐减小,该趋势与文献报道相似[5]。能量效率是电池性能的综合体现,由图8(c)可见,在电流密度为100~200 mA·cm−2的范围内,M/N-3膜的电池能量效率均高于P-N膜和N212膜(美国杜邦公司Nafion212商品膜),最高达到83.8%,说明M-U66-NH2的掺入有效提升了Nafion膜的电池性能。图8(d)~8(f)更清晰地显示了P-N膜、M/N-3膜和T/N-3膜的性能。在测试电流密度范围内,M/N-3膜的库伦效率与T/N-3膜相当,而其电压效率和能量效率均高于其他两种类型膜样品。可见,适宜比例M-U66-NH2的引入有利于改善膜性能,进而提升钒电池的充放电效率。

    图  8  不同膜所装配钒液流电池(VRBs)的库伦效率(CE) ((a), (d))、电压效率(VE) ((b), (e))和能量效率(EE) ((c), (f))
    Figure  8.  Coulombic efficiency (CE) ((a), (d)), voltage efficiency (VE) ((b), (e)) and energy efficiency (EE) ((c), (f)) of vanadium liquid flow battery (VRBs) assembled with different membranes

    在150 mA·cm−2电流密度下,对不同膜所装配电池充放电200次,比较其循环稳定性。如图9(a)所示,在200次的充放电测试过程中,M/N-3和T/N-3膜的电池CE、VE和EE相对较稳定,无明显降低,说明UIO-66-NH2的引入有效阻碍了钒离子在膜内的渗透,保证了质子在膜中快速、稳定传输。此外,在测试周期内,M/N-3和T/N-3膜的能量效率分别稳定在77.8%和76.5%,无明显衰减,说明复合膜的理化稳定性可以满足钒电池工作环境的需求。但是,测试周期内不同电池的容量衰减情况差异较大。由图9(b)可见,P-N膜的电池容量衰减了81%,而经过同样测试后,掺杂UIO-66-NH2膜的电池容量衰减率仅为45%左右,其中基于M-U66-NH2的复合膜显示出更低的容量衰减率,单次衰减率仅为0.19%,较T/N-3膜(0.24%)提高0.05%,较P-N膜(0.41%)提高0.22%,同时,图9(c)证明了掺杂M-U66-NH2的确会优化VRBs所用质子交换膜的电池性能。

    图  9  150 mA·cm−2电流密度下复合膜所装配电池的循环效率(a)、容量保持率(b)以及与报道性能的对比(c)
    Figure  9.  Cycle efficiency (a) and capacity retention (b) of composite membranes at 150 mA·cm−2, and comparisons with reported performance (c)
    PBI—Polybenzimidazole; PS—Polystyrene; GO—Graphene oxide; SPEEK—Sulfonated poly(ether ether ketone); 2D-ZMs—Two-dimensional zeolite

    (1)与传统水热法相比,微波加热合成UIO-66-NH2的效率更高,耗时仅为前者的1/96,且所制备晶体的结构更完整、更均匀,粒径约为200 nm,在Nafion溶液中分散性良好。

    (2) UIO-66-NH2可改善复合膜的理化稳定性,且可提高膜的质子传导性和离子选择性,优化条件下复合膜的质子传导率可达122.18 mS·cm−1,离子选择性可达15.6×105 S·min·cm−3

    (3)优化条件下复合膜体现出良好的电池性能。在150 mA·cm−2电流密度下,电池的能量效率大于77%,200次循环周期内单次容量衰减率为0.19%,较纯树脂膜提高0.22%。

    (4)基于微波法的UIO-66-NH2与Nafion形成的复合膜具有良好的理化性质和电池性能,为全钒液流电池用高性能质子交换膜的设计和制备提供了新的策略,具有良好的发展前景。

  • 图  1   石墨相氮化碳(g-C3N4)、g-C3N4/POP和多孔有机聚合物1, 3, 5-三(4-氨基苯基)苯-2, 5-二甲氧基苯-1, 4-二甲醛(TAPB-DMTP POP)的XRD图谱

    Figure  1.   XRD patterns of graphitic carbon nitride (g-C3N4), g-C3N4/POP and porous organic polymer 1, 3, 5-tris(4-aminophenyl)benzene-2, 5-dimethoxybenzene-1, 4-diformaldehyde (TAPB-DMTP POP)

    图  2   g-C3N4、反应前后的g-C3N4/POP、TAPB-DMTP POP、TAPB和DMTP的红外图谱

    Figure  2.   FTIR spectra of g-C3N4, g-C3N4/POP before and after the reaction, TAPB-DMTP POP, TAPB and DMTP

    图  3   g-C3N4、反应前后的g-C3N4/POP和TAPB-DMTP POP的N2吸附-脱附曲线

    Figure  3.   N2 adsorption-desorption curves of g-C3N4, g-C3N4/POP before and after the reaction and TAPB-DMTP POP

    图  4   g-C3N4、g-C3N4/POP和TAPB-DMTP POP的热重曲线

    Figure  4.   TGA curves of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  5   g-C3N4、g-C3N4/POP和TAPB-DMTP POP的紫外-可见漫反射光谱(插图:带隙图)

    Figure  5.   UV-Vis DRS of g-C3N4, g-C3N4/POP and TAPB-DMTP POP (Insert: Band gap)

    图  6   不同条件下光催化还原Cr(VI)动力学曲线

    k—Rate constant

    Figure  6.   Kinetic curves of photocatalytic reduction of Cr(VI) under different conditions

    图  7   pH值、Cr(VI)浓度和催化剂浓度对光催化去除率的影响

    Cinitial Cr(VI)—Cr(VI) concentration; Ccatalyst—Catalyst concentration

    Figure  7.   Influence of pH value, Cr(VI) concentration and catalyst concentration on photocatalytic removal rate

    图  8   g-C3N4/POP-2还原Cr(VI)的循环使用性能

    Figure  8.   Reusability of g-C3N4/POP-2 for the photocatalytic reduction of Cr(VI)

    图  9   g-C3N4、g-C3N4/POP和TAPB-DMTP POP的瞬态光电流曲线(a)和阻抗谱(b)(插图:等效电路)

    Rs—Electrolyte solution resistance; Rp—Resistance of electrode to electrolyte interface charge transfer; CPE—Constant phase angle element

    Figure  9.   Transient photocurrent curves (a) and EIS Nyquist plots (b) (Inset: Equivalent circuit) of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  10   (a) g-C3N4、g-C3N4/POP和TAPB-DMTP POP的Mott-Schottky曲线;(b) g-C3N4/POP光催化还原Cr(VI)机制图

    C—Capacitance; Eg—Band gap; CB—Conduction band; VB—Valence band; EDTA-2Na—Ethylenediamine tetracetic acid sodium

    Figure  10.   (a) Mott-Schottky plots of g-C3N4, g-C3N4/POP and TAPB-DMTP POP; (b) Proposed mechanism of photocatalytic Cr(VI) reduction by g-C3N4/POP

    表  1   g-C3N4/POP复合材料具体配比

    Table  1   Specific composition ratios of g-C3N4/POP composites

    Sample g-C3N4 content/wt%
    g-C3N4/POP-1 5.0
    g-C3N4/POP-2 9.4
    g-C3N4/POP-3 13.5
    Note: POP—Porous organic polymers.
    下载: 导出CSV
  • [1]

    ZHANG G, LAN Z A, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(51):15712-15727. DOI: 10.1002/anie.201607375

    [2]

    ONG W, TAN L, NG Y, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329. DOI: 10.1021/acs.chemrev.6b00075

    [3] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).

    [4]

    WANG Q, YANG G, FU Y, et al. Nanospace engineering of metal-organic frameworks for heterogeneous catalysis[J]. ChemNanoMat,2022,8(1):e202100396.

    [5]

    ZHANG W, AGUILA B, MA S. Retracted article: Potential applications of functional porous organic polymer materials[J]. Journal of Materials Chemistry A,2017,5(19):8795-8824. DOI: 10.1039/C6TA11168H

    [6] 赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物制备及其吸附性能[J]. 复合材料学报, 2022, 39(8):3733-3746.

    ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica,2022,39(8):3733-3746(in Chinese).

    [7]

    QIAN X, WANG B, ZHU Z Q, et al. Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine[J]. Journal of Hazardous Materials,2017,338:224-232. DOI: 10.1016/j.jhazmat.2017.05.041

    [8]

    ZHANG T, XING G, CHEN W, et al. Porous organic polymers: A promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers,2020,4(2):332-353. DOI: 10.1039/C9QM00633H

    [9]

    BYUN J, ZHANG K A I. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations[J]. Materials Horizons,2020,7(1):15-31. DOI: 10.1039/C9MH01071H

    [10]

    SONG C, SHAO Y, YUE Z, et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples[J]. Analytica Chimica Acta,2021,1176:338772. DOI: 10.1016/j.aca.2021.338772

    [11]

    WANG T, LIANG H, ANITO D, et al. Emerging applications of porous organic polymers in visible-light photocatalysis[J]. Journal of Materials Chemistry A,2020,8(15):7003-7034. DOI: 10.1039/D0TA00364F

    [12]

    ZHAO C, CHEN Z, SHI R, et al. Recent advances in conju-gated polymers for visible-light-driven water splitting[J]. Advanced Materials,2020,32(28):e1907296. DOI: 10.1002/adma.201907296

    [13]

    XIAO J, LIU X, PAN L, et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials[J]. ACS Catalysis,2020,10(20):12256-12283. DOI: 10.1021/acscatal.0c03480

    [14]

    YAO Y, ZHANG R, LIU T, et al. Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework[J]. Inorganic Chemistry Communications,2019,101:160-163. DOI: 10.1016/j.inoche.2019.01.040

    [15]

    IAMAEL M, WU Y, TAFFA D H, et al. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production[J]. New Journal of Chemistry,2019,43(18):6909-6920. DOI: 10.1039/C9NJ00859D

    [16] 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7):3369-3375.

    FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2022,39(7):3369-3375(in Chinese).

    [17]

    ZHANG K, FU Y, HAO D, et al. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction[J]. Journal of Alloys and Compounds,2022,891:161994. DOI: 10.1016/j.jallcom.2021.161994

    [18]

    FU Y, ZHANG K, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engi-neering Journal,2021,412:128722. DOI: 10.1016/j.cej.2021.128722

    [19]

    SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications,2016,52(18):3690-3693. DOI: 10.1039/C5CC10221A

    [20]

    XIN B, REN Z, HU H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Applied Surface Science,2005,252(5):2050-2055. DOI: 10.1016/j.apsusc.2005.03.172

    [21]

    GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. DOI: 10.1016/j.cej.2019.05.151

    [22]

    HE Q, FU Y, GE X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering,2021,9(5):105961. DOI: 10.1016/j.jece.2021.105961

图(10)  /  表(1)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  230
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-03-09
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-03-27
  • 刊出日期:  2023-02-14

目录

/

返回文章
返回