Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction
-
摘要: 光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常数分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料5次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。Abstract: As a promising environmental remediation technology, the development of efficient and stable photocatalysts with visible light response is one of the important studies in photocatalysis technology. In this work, g-C3N4/porous organic polymers (POPs) composite photocatalysts were prepared via atmospheric solvothermal method. Different ratios of g-C3N4 were in-situ loaded on conjugated porous organic polymers TAPB-DMTP POP synthesized with 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) and 2, 5-dimethoxybenzene-1, 4-diformaldehyde (DMTP) as monomers. The chemical structure and optical properties of g-C3N4/POPs materials were characterized by XRD, FTIR, BET, TGA, UV-Vis DRS, current-time (i-t) and EIS methods. Cr(VI) was selected as the model pollutant, the photocatalytic reduction activities of g-C3N4/POPs photocatalysts with different g-C3N4 loading ratios were explored under visible light conditions, and the effects of pH value, catalyst dosage and substrate concentration were further investigated. The results shows that g-C3N4/POP-2 exhibits the best photocatalytic reduction performance at pH=2 with the reduction efficiency of 99.1% after 30 min of visible illumination. The reduction efficiency of Cr(VI) is significantly improved over g-C3N4/POP-2 compared with pure g-C3N4 and TAPB-DMTP POP, and the fitted first-order kinetics rate are 22.0 times and 2.2 times that of g-C3N4 and TAPB-DMTP POP, respectively. This composite also exhibits excellent photocatalytic stability as the Cr(VI) reduction rate reaches more than 90% after five cycles.
-
Key words:
- porous organic polymers (POPs) /
- g-C3N4 /
- heterojunction /
- photocatalytic /
- Cr(VI) reduction
-
图 9 g-C3N4、g-C3N4/POP和TAPB-DMTP POP的瞬态光电流曲线(a)和阻抗谱(b)(插图:等效电路)
Rs—Electrolyte solution resistance; Rp—Resistance of electrode to electrolyte interface charge transfer; CPE—Constant phase angle element
Figure 9. Transient photocurrent curves (a) and EIS Nyquist plots (b) (Inset: Equivalent circuit) of g-C3N4, g-C3N4/POP and TAPB-DMTP POP
图 10 (a) g-C3N4、g-C3N4/POP和TAPB-DMTP POP的Mott-Schottky曲线;(b) g-C3N4/POP光催化还原Cr(VI)机制图
C—Capacitance; Eg—Band gap; CB—Conduction band; VB—Valence band; EDTA-2Na—Ethylenediamine tetracetic acid sodium
Figure 10. (a) Mott-Schottky plots of g-C3N4, g-C3N4/POP and TAPB-DMTP POP; (b) Proposed mechanism of photocatalytic Cr(VI) reduction by g-C3N4/POP
表 1 g-C3N4/POP复合材料具体配比
Table 1. Specific composition ratios of g-C3N4/POP composites
Sample g-C3N4 content/wt% g-C3N4/POP-1 5.0 g-C3N4/POP-2 9.4 g-C3N4/POP-3 13.5 Note: POP—Porous organic polymers. -
[1] ZHANG G, LAN Z A, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(51):15712-15727. doi: 10.1002/anie.201607375 [2] ONG W, TAN L, NG Y, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075 [3] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese). [4] WANG Q, YANG G, FU Y, et al. Nanospace engineering of metal-organic frameworks for heterogeneous catalysis[J]. ChemNanoMat,2022,8(1):e202100396. [5] ZHANG W, AGUILA B, MA S. Retracted article: Potential applications of functional porous organic polymer materials[J]. Journal of Materials Chemistry A,2017,5(19):8795-8824. doi: 10.1039/C6TA11168H [6] 赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物制备及其吸附性能[J]. 复合材料学报, 2022, 39(8):3733-3746.ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica,2022,39(8):3733-3746(in Chinese). [7] QIAN X, WANG B, ZHU Z Q, et al. Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine[J]. Journal of Hazardous Materials,2017,338:224-232. doi: 10.1016/j.jhazmat.2017.05.041 [8] ZHANG T, XING G, CHEN W, et al. Porous organic polymers: A promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers,2020,4(2):332-353. doi: 10.1039/C9QM00633H [9] BYUN J, ZHANG K A I. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations[J]. Materials Horizons,2020,7(1):15-31. doi: 10.1039/C9MH01071H [10] SONG C, SHAO Y, YUE Z, et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples[J]. Analytica Chimica Acta,2021,1176:338772. doi: 10.1016/j.aca.2021.338772 [11] WANG T, LIANG H, ANITO D, et al. Emerging applications of porous organic polymers in visible-light photocatalysis[J]. Journal of Materials Chemistry A,2020,8(15):7003-7034. doi: 10.1039/D0TA00364F [12] ZHAO C, CHEN Z, SHI R, et al. Recent advances in conju-gated polymers for visible-light-driven water splitting[J]. Advanced Materials,2020,32(28):e1907296. doi: 10.1002/adma.201907296 [13] XIAO J, LIU X, PAN L, et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials[J]. ACS Catalysis,2020,10(20):12256-12283. doi: 10.1021/acscatal.0c03480 [14] YAO Y, ZHANG R, LIU T, et al. Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework[J]. Inorganic Chemistry Communications,2019,101:160-163. doi: 10.1016/j.inoche.2019.01.040 [15] IAMAEL M, WU Y, TAFFA D H, et al. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production[J]. New Journal of Chemistry,2019,43(18):6909-6920. doi: 10.1039/C9NJ00859D [16] 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7):3369-3375.FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2022,39(7):3369-3375(in Chinese). [17] ZHANG K, FU Y, HAO D, et al. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction[J]. Journal of Alloys and Compounds,2022,891:161994. doi: 10.1016/j.jallcom.2021.161994 [18] FU Y, ZHANG K, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engi-neering Journal,2021,412:128722. doi: 10.1016/j.cej.2021.128722 [19] SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications,2016,52(18):3690-3693. doi: 10.1039/C5CC10221A [20] XIN B, REN Z, HU H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Applied Surface Science,2005,252(5):2050-2055. doi: 10.1016/j.apsusc.2005.03.172 [21] GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151 [22] HE Q, FU Y, GE X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering,2021,9(5):105961. doi: 10.1016/j.jece.2021.105961