留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

g-C3N4/POPs异质结制备及其可见光催化性能

郭佳允 傅炀杰 张柯杰 姬云 杨娟 王齐

郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001
引用本文: 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001
GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001
Citation: GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001

g-C3N4/POPs异质结制备及其可见光催化性能

doi: 10.13801/j.cnki.fhclxb.20220325.001
基金项目: 国家自然科学基金(21876154;52074103);浙江师范大学“先进催化材料”教育部重点实验室和浙江省“固体表面反应化学”重点实验室开放课题(KLMEACM202104)National Natural Science Foundation of China (21876154; 52074103); Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University (KLMEACM202104)
详细信息
    通讯作者:

    王齐,博士,教授,博士生导师,研究方向为环境光催化  E-mail:wangqi8327@zjgsu.edu.cn

  • 中图分类号: O643.36

Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction

  • 摘要: 光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常数分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料5次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。

     

  • 图  1  石墨相氮化碳(g-C3N4)、g-C3N4/POP和多孔有机聚合物1, 3, 5-三(4-氨基苯基)苯-2, 5-二甲氧基苯-1, 4-二甲醛(TAPB-DMTP POP)的XRD图谱

    Figure  1.  XRD patterns of graphitic carbon nitride (g-C3N4), g-C3N4/POP and porous organic polymer 1, 3, 5-tris(4-aminophenyl)benzene-2, 5-dimethoxybenzene-1, 4-diformaldehyde (TAPB-DMTP POP)

    图  2  g-C3N4、反应前后的g-C3N4/POP、TAPB-DMTP POP、TAPB和DMTP的红外图谱

    Figure  2.  FTIR spectra of g-C3N4, g-C3N4/POP before and after the reaction, TAPB-DMTP POP, TAPB and DMTP

    图  3  g-C3N4、反应前后的g-C3N4/POP和TAPB-DMTP POP的N2吸附-脱附曲线

    Figure  3.  N2 adsorption-desorption curves of g-C3N4, g-C3N4/POP before and after the reaction and TAPB-DMTP POP

    图  4  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的热重曲线

    Figure  4.  TGA curves of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  5  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的紫外-可见漫反射光谱(插图:带隙图)

    Figure  5.  UV-Vis DRS of g-C3N4, g-C3N4/POP and TAPB-DMTP POP (Insert: Band gap)

    图  6  不同条件下光催化还原Cr(VI)动力学曲线

    k—Rate constant

    Figure  6.  Kinetic curves of photocatalytic reduction of Cr(VI) under different conditions

    图  7  pH值、Cr(VI)浓度和催化剂浓度对光催化去除率的影响

    Cinitial Cr(VI)—Cr(VI) concentration; Ccatalyst—Catalyst concentration

    Figure  7.  Influence of pH value, Cr(VI) concentration and catalyst concentration on photocatalytic removal rate

    图  8  g-C3N4/POP-2还原Cr(VI)的循环使用性能

    Figure  8.  Reusability of g-C3N4/POP-2 for the photocatalytic reduction of Cr(VI)

    图  9  g-C3N4、g-C3N4/POP和TAPB-DMTP POP的瞬态光电流曲线(a)和阻抗谱(b)(插图:等效电路)

    Rs—Electrolyte solution resistance; Rp—Resistance of electrode to electrolyte interface charge transfer; CPE—Constant phase angle element

    Figure  9.  Transient photocurrent curves (a) and EIS Nyquist plots (b) (Inset: Equivalent circuit) of g-C3N4, g-C3N4/POP and TAPB-DMTP POP

    图  10  (a) g-C3N4、g-C3N4/POP和TAPB-DMTP POP的Mott-Schottky曲线;(b) g-C3N4/POP光催化还原Cr(VI)机制图

    C—Capacitance; Eg—Band gap; CB—Conduction band; VB—Valence band; EDTA-2Na—Ethylenediamine tetracetic acid sodium

    Figure  10.  (a) Mott-Schottky plots of g-C3N4, g-C3N4/POP and TAPB-DMTP POP; (b) Proposed mechanism of photocatalytic Cr(VI) reduction by g-C3N4/POP

    表  1  g-C3N4/POP复合材料具体配比

    Table  1.   Specific composition ratios of g-C3N4/POP composites

    Sample g-C3N4 content/wt%
    g-C3N4/POP-1 5.0
    g-C3N4/POP-2 9.4
    g-C3N4/POP-3 13.5
    Note: POP—Porous organic polymers.
    下载: 导出CSV
  • [1] ZHANG G, LAN Z A, WANG X. Conjugated polymers: Catalysts for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition,2016,55(51):15712-15727. doi: 10.1002/anie.201607375
    [2] ONG W, TAN L, NG Y, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews,2016,116(12):7159-7329. doi: 10.1021/acs.chemrev.6b00075
    [3] 王晓爽, 李育珍, 易思远, 等. Bi2MoS2O4改性g-C3N4光催化降解罗丹明B[J]. 复合材料学报, 2022, 39(8):3845-3851.

    WANG Xiaoshuang, LI Yuzhen, YI Siyuan, et al. Bi2MoS2O4 modified g-C3N4 photocatalytic degradation of Rhodamine B[J]. Acta Materiae Compositae Sinica,2022,39(8):3845-3851(in Chinese).
    [4] WANG Q, YANG G, FU Y, et al. Nanospace engineering of metal-organic frameworks for heterogeneous catalysis[J]. ChemNanoMat,2022,8(1):e202100396.
    [5] ZHANG W, AGUILA B, MA S. Retracted article: Potential applications of functional porous organic polymer materials[J]. Journal of Materials Chemistry A,2017,5(19):8795-8824. doi: 10.1039/C6TA11168H
    [6] 赵宏伟, 陈广, 彭琪, 等. 氟掺杂多孔聚合物制备及其吸附性能[J]. 复合材料学报, 2022, 39(8):3733-3746.

    ZHAO Hongwei, CHEN Guang, PENG Qi, et al. Preparation and adsorption properties of fluorine-doped porous polymers[J]. Acta Materiae Compositae Sinica,2022,39(8):3733-3746(in Chinese).
    [7] QIAN X, WANG B, ZHU Z Q, et al. Novel n-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine[J]. Journal of Hazardous Materials,2017,338:224-232. doi: 10.1016/j.jhazmat.2017.05.041
    [8] ZHANG T, XING G, CHEN W, et al. Porous organic polymers: A promising platform for efficient photocatalysis[J]. Materials Chemistry Frontiers,2020,4(2):332-353. doi: 10.1039/C9QM00633H
    [9] BYUN J, ZHANG K A I. Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations[J]. Materials Horizons,2020,7(1):15-31. doi: 10.1039/C9MH01071H
    [10] SONG C, SHAO Y, YUE Z, et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples[J]. Analytica Chimica Acta,2021,1176:338772. doi: 10.1016/j.aca.2021.338772
    [11] WANG T, LIANG H, ANITO D, et al. Emerging applications of porous organic polymers in visible-light photocatalysis[J]. Journal of Materials Chemistry A,2020,8(15):7003-7034. doi: 10.1039/D0TA00364F
    [12] ZHAO C, CHEN Z, SHI R, et al. Recent advances in conju-gated polymers for visible-light-driven water splitting[J]. Advanced Materials,2020,32(28):e1907296. doi: 10.1002/adma.201907296
    [13] XIAO J, LIU X, PAN L, et al. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials[J]. ACS Catalysis,2020,10(20):12256-12283. doi: 10.1021/acscatal.0c03480
    [14] YAO Y, ZHANG R, LIU T, et al. Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework[J]. Inorganic Chemistry Communications,2019,101:160-163. doi: 10.1016/j.inoche.2019.01.040
    [15] IAMAEL M, WU Y, TAFFA D H, et al. Graphitic carbon nitride synthesized by simple pyrolysis: Role of precursor in photocatalytic hydrogen production[J]. New Journal of Chemistry,2019,43(18):6909-6920. doi: 10.1039/C9NJ00859D
    [16] 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7):3369-3375.

    FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica,2022,39(7):3369-3375(in Chinese).
    [17] ZHANG K, FU Y, HAO D, et al. Fabrication of CN75/NH2-MIL-53(Fe) p-n heterojunction with wide spectral response for efficiently photocatalytic Cr(VI) reduction[J]. Journal of Alloys and Compounds,2022,891:161994. doi: 10.1016/j.jallcom.2021.161994
    [18] FU Y, ZHANG K, ZHANG Y, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance[J]. Chemical Engi-neering Journal,2021,412:128722. doi: 10.1016/j.cej.2021.128722
    [19] SMITH B J, OVERHOLTS A C, HWANG N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications,2016,52(18):3690-3693. doi: 10.1039/C5CC10221A
    [20] XIN B, REN Z, HU H, et al. Photocatalytic activity and interfacial carrier transfer of Ag-TiO2 nanoparticle films[J]. Applied Surface Science,2005,252(5):2050-2055. doi: 10.1016/j.apsusc.2005.03.172
    [21] GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [22] HE Q, FU Y, GE X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction[J]. Journal of Environmental Chemical Engineering,2021,9(5):105961. doi: 10.1016/j.jece.2021.105961
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  197
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-10
  • 录用日期:  2022-03-19
  • 网络出版日期:  2022-03-28
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回