留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型磁性环氧树脂水泥浆液硬化机制与孔径分析

刘杰 李政 黎照 孙涛 程其芬 秦仕福

刘杰, 李政, 黎照, 等. 新型磁性环氧树脂水泥浆液硬化机制与孔径分析[J]. 复合材料学报, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002
引用本文: 刘杰, 李政, 黎照, 等. 新型磁性环氧树脂水泥浆液硬化机制与孔径分析[J]. 复合材料学报, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002
LIU Jie, LI Zheng, LI Zhao, et al. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002
Citation: LIU Jie, LI Zheng, LI Zhao, et al. Hardening mechanism and pore size analysis of new magnetic epoxy cement grout[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002

新型磁性环氧树脂水泥浆液硬化机制与孔径分析

doi: 10.13801/j.cnki.fhclxb.20220324.002
基金项目: 国家自然科学基金面上项目(52079071;51979151);三峡库区地质灾害教育部重点实验室开放基金(2020KDZ08);三峡大学博士培优基金(2021BSPY016)
详细信息
    通讯作者:

    李政,博士,研究方向为岩土工程  E-mail:1442486283@qq.com

  • 中图分类号: TU528

Hardening mechanism and pore size analysis of new magnetic epoxy cement grout

Funds: National Natural Science Foundation (52079071; 51979151); Fund for the Opening of Key Laboratory of Geological Disaster in the Three Gorges Reservoir Area by the Ministry of Education (2020KDZ08); Research Fund for Excellent Dissertation of China Three Gorges University (2021BSPY016)
  • 摘要: 常规砂浆无法满足反倾斜裂隙和缺陷的工程填充要求,在注浆压力驱使下会引入大量气泡,浆液密实度得不到保障。针对此,研发了一种新型磁性环氧树脂水泥(MEC)浆液,可实现反重力式注浆锚固、导向式流动、增大浆体密实度、浆液黏度实时调控。采用SEM、XRD、N2吸附测试方法,对MEC浆液在不同磁场作用下的微观形貌、水化产物和孔径进行了分析。结果表明:MEC浆液主要分为环氧树脂固化、水泥水化两个硬化过程。固化产物对水化产物进行包裹,与钙矾石(Ettringite,AFt)和Ca(OH)2中的Ca2+发生离子作用,形成络合物包裹磁粉,对浆液中存在的微小孔隙进行填充;磁场强度由400 GS增大到6000 GS时,孔隙面积减小率达77.6%,孔隙数量减小率达76.8%。N2吸附试验表明:附加磁场会降低介孔和大孔的数量,显著减小比表面积,磁性浆液符合H4型滞回线,主要表现为墨水瓶孔;基于磁偶极子理论,数值模拟了磁颗粒受力,分析结果表明在磁场强度为2000~6000 GS可高效减小孔隙面积。

     

  • 图  1  微米级磁粉SEM图像

    Figure  1.  SEM images of micrometer-grade magnetic powder

    图  2  MEC样品微观形貌

    Figure  2.  Microscopic morphologies of MEC samples

    图  3  水泥砂浆与MEC水化产物对比

    AFt—Ettringite; C-S-H—Calcium silicate hydrates

    Figure  3.  Hydration products comparison between cement mortar and MEC

    图  4  不同环氧掺量的MEC浆液7天的XRD图谱

    C3S—Tricalcium silicate; C2S—Dicalcium silicate

    Figure  4.  XRD patterns of MEC slurry with different epoxy contents at 7 d

    图  5  不同龄期普通水泥浆液和MEC浆液XRD图谱

    Figure  5.  XRD patterns of ordinary cement grout and MEC slurry at different ages

    图  6  MEC锚固体

    Figure  6.  MEC anchor solid

    图  7  不同磁力下MEC锚固段孔径分析

    Figure  7.  Analysis of aperture of anchor section of MEC under different magnetic forces

    图  8  MEC锚固体内外圈层截面分区示意图

    L1—Thickness of external circle; L2—Thickness of internal circle

    Figure  8.  Schematic diagram of section partition of inner and outer layers of MEC anchorage

    图  9  MEC锚固体孔隙分布与孔隙数量分布直方图

    Figure  9.  Histogram of pore distribution and pore number distribution of MEC anchorage

    图  10  MEC锚固体图像分区与孔径统计

    D—Thickness

    Figure  10.  Image partition and aperture statistics of MEC anchorage

    图  11  MEC锚固体孔径分区统计

    Figure  11.  Stats of aperture partition of MEC anchorage

    图  12  MEC锚固体SEM图像二值化处理

    Figure  12.  SEM images binarization processing of MEC anchorage

    图  13  水泥浆液和MEC的N2吸附-脱附等温线

    H—Magnetic field intensity; V—Adsorption volume

    Figure  13.  N2 adsorption-desorption isotherms of cement grout and MEC

    图  14  水泥浆液和MEC多点BET

    Figure  14.  Plasma multipoint BET plot of cement grout and MEC

    图  15  水泥浆液和MEC累积孔容曲线

    Figure  15.  Cumulative pore curves of cement grout and MEC

    图  16  水泥浆液和MEC微分孔径分布曲线

    Figure  16.  Differential aperture distribution curves of cement grout and MEC

    图  17  MEC中磁颗粒的磁偶极子磁矩分布图

    i, j—Magnetic particle

    Figure  17.  Distribution diagram of magnetic dipoles of magnetic particles in MEC

    图  18  MEC中磁颗粒受力及孔隙率与磁场强度关系

    Figure  18.  Relationship between magnetic particle force and porosity and magnetic field intensity in MEC

    表  1  磁性环氧树脂水泥(MEC)浆液配合比

    Table  1.   Design of magnetic epoxy cement (MEC) slurry g

    MaterialsCementAbsolute water consumptionWater-borne epoxy resinCuring agentMagnetic powder contentDisperser
    Cement grout400160 0 0 00.0
    MEC400110100851001.5
    下载: 导出CSV

    表  2  MEC锚固体内外圈层孔隙统计

    Table  2.   Porosity statistics in the inner and outer circles of MEC anchorage


    Layered
    category

    Total pore numberMacrovoid (0.18-0.4 mm)Fine pore (Pore diameter d<0.1 mm)
    Area/mm2NumberArea/mm2Number
    External circle2180.32660.4180165
    Internal circle 920.06120.1918 65
    下载: 导出CSV

    表  3  水泥浆液和MEC的孔结构参数

    Table  3.   Hole structure parameters of cement grout and MEC

    SampleSpecific surface area/(m2·g−1)Adsorption constant cBETTotal volume/(m3(STP)·g−1)
    Cement grout25.73447.0215.9124
    MEC (H=0 GS) 8.20595.0221.8853
    MEC (H=6000 GS) 6.36834.6451.4632
    Note: STP—Standard temperature and pressure.
    下载: 导出CSV
  • [1] 陈文, 刘永球, 仇学明. 锦屏水电站左岸帷幕灌浆试验与分析[J]. 水利水电技术, 2008, 39(9):22-25. doi: 10.3969/j.issn.1000-0860.2008.09.007

    CHEN Wen, LIU Yongqiu, QIU Xueming. Experiment and analysis of curtain grouting on left bank of Jinping hydropower station[J]. Water Resources and Hydro-power Engineering,2008,39(9):22-25(in Chinese). doi: 10.3969/j.issn.1000-0860.2008.09.007
    [2] 李小波, 吴莉, 祝华平. 锦屏一级水电站左岸深部裂缝岩体灌浆试验研究[J]. 水电站设计, 2009, 25(91):54-56.

    LI Xiaobo, WU Li, ZHU Huaping. Experimental study on grouting of deep fractured rock mass on the left bank of Jinping I hydropower station[J]. Design of Hydroelectric Power Station,2009,25(91):54-56(in Chinese).
    [3] 林宝玉, 吴绍章. 混凝土工程材料设计与施工[M]. 北京: 中国水利水电出版社, 1998.

    LIN Baoyu, WU Shaozhang. Concrete engineering material design and construction[M]. Beijing: China Water Power Press, 1998(in Chinese).
    [4] SCHULZE J. Influence of water-cement ratio and cement content on the properties of polymer-modified mortars[J]. Cement and Concrete Research,1999,29(6):909-915. doi: 10.1016/S0008-8846(99)00060-5
    [5] MA H, LI Z. Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms[J]. Construction and Building Materials,2013,47:579-587.
    [6] LIU S J, HU Q Q, ZHAO F Q, et al. Utilization of steel slag, iron tailings and fly ash as aggregates to prepare a polymer-modified waterproof mortar with a core-shell styrene-acrylic copolymer as the modifier[J]. Construction and Building Materials,2014,72:15-22. doi: 10.1016/j.conbuildmat.2014.09.016
    [7] 沈凡, 黄绍龙, 孙政, 等. 水性环氧树脂-水泥-乳化沥青复合胶结体系的硬化机理[J]. 中南大学学报(自然科学版), 2012, 43(1):105-110.

    SHEN Fan, HUANG Shaolong, SUN Zheng, et al. Hardening mechanism of waterborne epoxy-cement-emulsified asphalt bonding system[J]. Journal of Central South University,2012,43(1):105-110(in Chinese).
    [8] 李明, 徐文, 王康臣, 等. 高吸水树脂在水泥浆体硬化过程中的释水行为[J]. 建筑材料学报, 2022, 25(2): 111-116.

    LI Ming, XU Wen, WANG Kangchen, et al. Desorption behavior of superabsorbent polymers in cement paste during harden process[J]. Journal of Building Materials, 2022, 25(2): 111-116(in Chinese).
    [9] SHAKER F A, EI-DIEB A S, REDA M M. Durability of styrene-butadiene latex modified concrete[J]. Cement and Concrete Research,1997,27(5):711-720.
    [10] 文生, 叶家元, 王妍萍, 等. 掺杂有机大分子水化硅酸钙的孔结构及表面分形特征[J]. 硅酸盐学报, 2006(12):1497-1502. doi: 10.3321/j.issn:0454-5648.2006.12.015

    WEN Sheng, YE Jiayuan, WANG Yanping, et al. Pore structure and surface fractal characteristics of calcium silicatehydrates contained organic macromolecule[J]. Journal of the Chinese Ceramic Society,2006(12):1497-1502(in Chinese). doi: 10.3321/j.issn:0454-5648.2006.12.015
    [11] 佘安明, 马坤, 王中平, 等. 低场核磁共振低温 测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5): 916-920.

    SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR crvoporometry[J]. Journal of Building Materials, 2021, 24(5): 916-920(in Chinese).
    [12] 陈宗丽, 李俊锋, 宋杨. 基于图像观测的硬化水泥浆体孔径分析[J]. 硅酸盐通报, 2020, 39(2):440-446.

    CHEN Zongli, LI Junfeng, SONG Yang. Pore size analysis of hardened cement paste based on image observation[J]. Bulletin of the Chinese Ceramic Society,2020,39(2):440-446(in Chinese).
    [13] FAURE P F, CARE S, MAGAT J, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Construction and Building Materials,2012,29:496-503. doi: 10.1016/j.conbuildmat.2011.07.012
    [14] HERSCHEL W H, BULKLEY R. Konsistenzmessungen von Gummi-Benzoll 8 sungen[J]. Kolloid-Z,1926,39(5):291-300.
    [15] 金伟良, 张军, 陈才生, 等. 基于压磁效应的钢筋混凝土疲劳研究新方法[J]. 建筑结构学报, 2016, 37(4):133-142.

    JIN Weiliang, ZHANG Jun, CHEN Caisheng, et al. A new method for fatigue study of reinforced concrete structures based on piezomagnetism[J]. Journal of Building Structures,2016,37(4):133-142(in Chinese).
    [16] 金伟良, 项凯潇, 毛江鸿, 等. 基于压磁效应的锈蚀钢筋应力状态检测试验研究[J]. 海洋工程, 2017, 35(6):62-70.

    JIN Weiliang, XIANG Kaixiao, MAO Jianghong, et al. Experimental study on stress detection of corroded steel bars based on piezomagnetic effect[J]. The Ocean Engineering,2017,35(6):62-70(in Chinese).
    [17] 李月光, 伊书国, 张霖波, 等. 磁化水水泥混凝土研究现状与发展前景[J]. 材料科学与工程学报, 2019, 37(2):331-338.

    LI Yueguang, YIN Shuguo, ZHANG Linbo, et al. Recent and prospective research on magnetized water-based concrete[J]. Journal of Materials Science and Engineering,2019,37(2):331-338(in Chinese).
    [18] 赵华玮, 代学灵, 曾宪桃, 等. 磁化水降低喷射混凝土粉尘含量的试验研究[J]. 采矿与安全工程学报, 2008(3):371-374. doi: 10.3969/j.issn.1673-3363.2008.03.026

    ZHAO Huawei, DAI Xueling, ZENG Xiantao, et al. Experiment study on using magnetized water for decreasing shotcrete dust density[J]. Journal of Mining & Safety Engineering,2008(3):371-374(in Chinese). doi: 10.3969/j.issn.1673-3363.2008.03.026
    [19] 殷青英, 翁光远. 智能材料在结构振动控制中的应用研究[J]. 科技导报, 2009, 27(12):93-97. doi: 10.3321/j.issn:1000-7857.2009.12.019

    YIN Qingying, WENG Guangyuan. Applications of intelligent materials in structural vibration[J]. Science & Technology Review,2009,27(12):93-97(in Chinese). doi: 10.3321/j.issn:1000-7857.2009.12.019
    [20] 慕儒, 李辉, 王晓伟, 等. 单向分布钢纤维增强水泥基复合材料(II)制备及钢纤维增强作用[J]. 建筑材料学报, 2015, 18(3):388-392.

    MU Ru, LI Hui, WANG Xiaowei, et al. Aligned steel fibre reinforced cement based composites(II): Preparation and reinforcement of aligned steel fibres[J]. Journal of Building Materials,2015,18(3):388-392(in Chinese).
    [21] 田稳苓, 马林翔, 张楷婕, 等. 定向钢纤维水泥基复合材料的纤维分布研究[J]. 建筑科学, 2016, 32(3):14-18.

    TIAN Wenlin, MA Linxiang, ZHANG Kaijie, et al. Investigation of fibre distribution on aligned steel fibre cement-based composite materials[J]. Building Science,2016,32(3):14-18(in Chinese).
    [22] 慕儒, 赵全明, 田稳苓. 单向分布钢纤维增强水泥浆的制备与性能研究[J]. 河北工业大学学报, 2012, 41(2):101-104. doi: 10.3969/j.issn.1007-2373.2012.02.023

    MU Ru, ZHAO Quanming, TIAN Wenlin. Investigation on the preparation and properties of aligned steel fibre reinforce cement paste[J]. Journal of Hebei University of Technology,2012,41(2):101-104(in Chinese). doi: 10.3969/j.issn.1007-2373.2012.02.023
    [23] 宋贺月, 丁一宁. 钢纤维在混凝土基体中空间分布的研究方法评述[J]. 材料科学与工程学报, 2015, 33(5):768-775.

    SONG Heyue, DING Yining. Research methods of spatial distribution of steel fiber in concrete matrix[J]. Journal of Materials Science and Engineering,2015,33(5):768-775(in Chinese).
    [24] TANG H S, KALYON D M. Estimation of the parameters of Herschel-Bulkley fluid under wall sip using a combination of capillary and squeeze flow viscometers[J]. Rheologica Acta,2004,43(15):80-88.
    [25] PAPANASTASIOU T C. Flows of materials with yield[J]. Jourmal of Rheology,1987,31(5):385-404. doi: 10.1122/1.549926
    [26] LI H T, PENG X H, CHEN W G. A micro- to- macroscopic analysis for the yield stress of magnetorheological fluids[C]//International Conference on Heterogeneous Materials Mechanics. Chongqing: Chongqing University Press, 2004: 276-280.
    [27] 李海涛, 彭向和, 易成建. 附着颗粒对磁流变液偶极子链力学特性的影响[J]. 重庆大学学报, 2010, 33(7):81-85. doi: 10.11835/j.issn.1000-582X.2010.07.015

    LI Haitao, PENG Xianghe, YI Chengjian. Effect of attached particles on the mechanical properties of dipolar chains in magnetorheological fluids[J]. Journal of Chongqing University,2010,33(7):81-85(in Chinese). doi: 10.11835/j.issn.1000-582X.2010.07.015
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1062
  • HTML全文浏览量:  480
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-10
  • 录用日期:  2022-03-12
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回