留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制

曾涛涛 农海杜 沙海超 陈胜兵 张晓玲 刘金香

曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2023, 40(2): 1037-1049. doi: 10.13801/j.cnki.fhclxb.20220324.001
引用本文: 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2023, 40(2): 1037-1049. doi: 10.13801/j.cnki.fhclxb.20220324.001
ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1037-1049. doi: 10.13801/j.cnki.fhclxb.20220324.001
Citation: ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1037-1049. doi: 10.13801/j.cnki.fhclxb.20220324.001

污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制

doi: 10.13801/j.cnki.fhclxb.20220324.001
基金项目: 国家自然科学基金(52170164);湖南省教育厅创新平台开放基金项目(19K081)
详细信息
    通讯作者:

    刘金香,博士,教授,硕士生导师,研究方向为水处理理论与技术及污染控制  E-mail:cafardworm@163.com

  • 中图分类号: X703

Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron

Funds: National Natural Science Foundation of China (52170164); Opening Funding for Innovation Platform of Education Department in Hunan Province (19K081)
  • 摘要: 针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(VI),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(VI)的影响。通过SEM-EDS、XRD和XPS等手段对nZVI-SB去除Cr(VI)的机制进行分析。结果表明:nZVI-SB对Cr(VI)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下, Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(VI)吸附量最大为150.60 mg/g。Cr(VI)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(VI)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(VI)作用。

     

  • 图  1  SB (a)和污泥基生物炭负载纳米零价铁(nZVI-SB)(1∶1)处理Cr(VI)前(b)、处理Cr(VI)后(c)的SEM-EDS图像

    Figure  1.  SEM-EDS images of SB (a) and sludge-derived biochar loaded with nanoscale zero-valent iron (nZVI-SB)(1∶1) before (b) and after (c) treatment of Cr(VI)

    图  3  SB和nZVI-SB(1∶1)的N2吸附-脱附等温线(a)和孔径分布(b)

    dV/dW—Pore volume

    Figure  3.  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of SB and nZVI-SB(1∶1)

    图  2  nZVI-SB(1∶1)处理Cr(VI)前(a)、 处理Cr(VI)后(b)的TEM图像

    Figure  2.  TEM images of nZVI-SB(1∶1) before (a) and after (b) treatment of Cr(VI)

    图  4  SB和nZVI-SB(1∶1)去除Cr(VI)前、去除Cr(VI)后的XRD图谱(a)及nZVI-SB(1∶1)的XPS全谱图(b)

    Figure  4.  XRD patterns of SB and nZVI-SB(1∶1) before and after adsorption of Cr(VI) (a) and XPS full spectrum of nZVI-SB(1∶1) (b)

    图  5  不同Fe∶C质量比对Cr(VI)去除的影响

    Figure  5.  Effect of different Fe∶C mass ratio on Cr(VI) removal

    图  6  初始pH对nZVI-SB(1∶1)去除Cr(VI)的影响

    Figure  6.  Effect of initial pH on the removal of Cr(VI) by nZVI-SB(1∶1)

    图  7  不同pH值下Cr(VI)形态分布曲线图

    C0—Initial mass concentration of Cr(VI) in solution

    Figure  7.  Cr(VI) form distribution curves under different pH values

    图  8  nZVI-SB(1∶1)投加量对nZVI-SB(1∶1)去除Cr(VI)的影响

    Figure  8.  Influence of nZVI-SB(1∶1) dosage on the removal of Cr(VI) by nZVI-SB(1∶1)

    图  9  (a)吸附时间对nZVI-SB(1∶1)去除Cr(VI)的影响;准一级(b)、准二级(c)动力学拟合曲线和颗粒内扩散拟合曲线(d)

    Figure  9.  (a) Effect of adsorption time on the removal of Cr(VI) by nZVI-SB(1∶1); Quasi-first (b), quasi-second (c) kinetic fitting curves and intra-particle diffusion fitting curve (d)

    图  10  (a)温度对nZVI-SB(1∶1)去除Cr(VI)的影响;(b) Langmuir吸附等温线;(c) Freundlich吸附等温线

    Figure  10.  (a) Influence of temperature on the removal of Cr(VI) by nZVI-SB(1∶1); (b) Langmuir adsorption isotherm; (c) Freundlich adsorption isotherm

    图  11  nZVI-SB(1∶1)的XPS图谱:(a) C1s;(b) O1s;(c) Fe2p;(d) Cr2p

    Figure  11.  XPS spectra of nZVI-SB(1∶1): (a) C1s; (b) O1s; (c) Fe2p; (d) Cr2p

    图  12  nZVI-SB(1∶1)对Cr(VI)去除机制[15]

    Figure  12.  Schematic of Cr(VI) removal mechanisms by nZVI-SB(1∶1)[15]

    图  13  nZVI-SB(1∶1)洗脱再生试验

    Figure  13.  nZVI-SB(1∶1) regeneration test

    表  1  样品名称缩写

    Table  1.   Abbreviation name of samples

    Sample Fe/wt% SB/wt%
    nZVI-SB(1∶4) 20.0 80.0
    nZVI-SB(1∶2) 33.3 66.7
    nZVI-SB(1∶1) 50.0 50.0
    nZVI-SB(2∶1) 66.7 33.3
    Notes: nZVI—Nanoscale zero-valent iron; SB—Sludge-based biochar.
    下载: 导出CSV

    表  2  污泥及污泥基生物炭(SB)消解液中重金属浓度

    Table  2.   Heavy metal concentrations in digestion solution of sludge and sludge-based biochar (SB) (mg·L−1)

    SampleZnPbCuBaCdCr
    Sludge 5.28 0.34 2.37 7.32 0.06 0.14
    SB 7.81 0.51 3.01 8.67 0.09 0.13
    Specified value
    in GB/T
    5085.3—2007[18]
    100.00 5.00 100.00 100.00 1.00 15.00
    下载: 导出CSV

    表  3  SB和nZVI-SB的元素组成

    Table  3.   Elemental composition of SB and nZVI-SB wt%

    SampleCNONaMgAlSiKCaCrFe
    SB40.488.4634.940.190.393.266.430.883.050.33 1.59
    nZVI-SB(1∶4)36.637.5633.050.220.480.630.760.280.300.2219.87
    nZVI-SB(1∶2)30.416.4127.550.180.360.510.620.230.240.1833.31
    nZVI-SB(1∶1)23.923.1121.450.140.270.280.350.190.210.1649.92
    nZVI-SB(2∶1)16.481.7614.450.060.130.110.160.080.080.0666.63
    下载: 导出CSV

    表  4  nZVI-SB(1∶1)对Cr(VI)的吸附动力学参数

    Table  4.   Adsorption kinetic parameters of Cr(VI) adsorption by nZVI-SB(1∶1)

    Intraparticle diffusion model
    qe/(mg·g−1)K/(min−1)R2Kd/(mg·(m·min0.5)−1)CR2
    Quasi-first order dynamics model 38.570.01130.8555.85822.7310.971
    Quasi-second-stage dynamics model103.070.00050.9990.03898.5510.946
    Notes: qe—Equilibrium adsorption capacity; K—Adsorption rate constant; R2—Linear correlation coefficient; Kd—Particle diffusion constants; C—Constant.
    下载: 导出CSV

    表  5  nZVI-SB(1∶1)对Cr(VI)的吸附等温线拟合参数

    Table  5.   Adsorption isotherm fitting parameters of Cr(VI) by nZVI-SB(1∶1)

    Temperature/℃LangmuirFreundlich
    qm/(mg·g−1)KLR2KFnR2
    20141.550.4570.999 98.488.930.821
    30143.840.3380.999104.739.990.744
    40151.230.4330.999106.389.070.766
    Notes: qm—Maximum adsorption capacity; KL—Adsorption equilibrium constant of the Langmuir model; KF—Adsorption equilibrium constant of Freundlich model; n—Constants related to the adsorption intensity.
    下载: 导出CSV

    表  6  nZVI-SB(1∶1)和其他吸附剂对Cr(VI)的吸附能力比较

    Table  6.   Comparison of the adsorption capacity of Cr(VI) by nZVI-SB(1∶1) and other adsorbents

    AdsorbentpHTemperature/℃Adsorption
    capacity/(mg·g−1)
    Ref.
    Sludge biochar (500℃) 7 25 7.93 [13]
    Bentonite-supported nanoscale zero-valent iron (B-nZVI) 5 25 39.48 [23]
    Ficus carica biosorbent 3 30 19.68 [36]
    Magnetic nanoparticle-Phosphorene-Titanium nano tubes (MNP-PN-TNT) 9 25 35.00 [2]
    Nanoscale zero-valent iron grafted on acid-activated attapulgite (A-nZVI) 7 27 4.94 [31]
    HNO3 modified quinoa biochar 4 55.85 [37]
    ZnO modified hyacinth biochar 25 43.48 [38]
    Halloysite nanotubes/ploy composites 2 25 855.66 [39]
    nZVI-SB(1∶1) 2 40 150.60 This study
    下载: 导出CSV

    表  7  nZVI-SB(1∶1)去除Cr(VI)前、去除Cr(VI)后的C1s、O1s、Fe2p和Cr2p XPS光谱的成分和相应的相对百分比

    Table  7.   Composition and relative percents of C1s, O1s, Fe2p and Cr2p XPS spectra before and after Cr(VI) removal by nZVI-SB(1∶1)

    ComponentsRelative percentage/%Binding energy/eV
    BeforeAfterBeforeAfter
    C1s C—C 58.99 59.78 284.64 284.69
    C—O 26.24 24.00 286.06 286.27
    C=O 14.77 16.22 288.54 288.72
    O1s Fe—O 32.07 30.05 529.95 529.99
    C—O 29.94 57.76 531.17 531.40
    C=O 37.99 12.19 532.04 532.58
    Fe2p Fe0 0.36 0.00 706.70
    Fe(II) 70.31 67.96 711.10/724.39 711.11/724.45
    Fe(III) 29.33 32.04 714.41/728.15 714.44/728.55
    Cr2p Cr(III) 84.39 577.01/586.85
    Cr(VI) 15.61 580.40/590.28
    下载: 导出CSV
  • [1] GAO Q Y, LIN D G, FAN Y J, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal,2019,374:10-19. doi: 10.1016/j.cej.2019.05.151
    [2] LIN Y J, CHEN J J, CAO W Z, et al. Novel materials for Cr(VI) adsorption by magnetic titanium nanotubes coated phosphorene[J]. Journal of Molecular Liquids,2019,287:110826. doi: 10.1016/j.molliq.2019.04.103
    [3] GHADIKOLAEI N F, KOWSARI E, BALOU S, et al. Preparation of porous biomass-derived hydrothermal carbon modified with terminal amino hyperbranched polymer for prominent Cr(VI) removal from water[J]. Bioresource Technology,2019,288:121545. doi: 10.1016/j.biortech.2019.121545
    [4] ZHANG W Y, QIAN L B, OUYANG D, et al. Effective remo-val of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization[J]. Chemosphere,2019,221:683-692. doi: 10.1016/j.chemosphere.2019.01.070
    [5] 孙建德. 含铬废水的处理现状[J]. 湖南有色金属, 2013, 29(5):59-62. doi: 10.3969/j.issn.1003-5540.2013.05.017

    SUN Jiande. Current situation on the treatment for chromium-containing wastewater[J]. Hunan Nonferrous Metals,2013,29(5):59-62(in Chinese). doi: 10.3969/j.issn.1003-5540.2013.05.017
    [6] 秦泽敏, 董黎明, 刘平, 等. 零价纳米铁吸附去除水中六价铬的研究[J]. 中国环境科学, 2014, 34(12):3106-3111.

    QIN Zemin, DONG Liming, LIU Ping, et al. Removal Cr6+ from water using nanoscale zero-valent iron[J]. China Environmental Science,2014,34(12):3106-3111(in Chinese).
    [7] GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research,2015,75:224-248. doi: 10.1016/j.watres.2015.02.034
    [8] SHI L N, ZHANG X, CHEN Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research,2011,45(2):886-892. doi: 10.1016/j.watres.2010.09.025
    [9] PETALA E, DIMOS K, DOUVALIS A, et al. Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials,2013,261:295-306. doi: 10.1016/j.jhazmat.2013.07.046
    [10] ZHU H J, JIA Y F, WU X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon[J]. Journal of Hazardous Materials,2009,172(2-3):1591-1596. doi: 10.1016/j.jhazmat.2009.08.031
    [11] SU H J, FANG Z Q, TSANG P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials,2016,318:533-540. doi: 10.1016/j.jhazmat.2016.07.039
    [12] 刘剑, 黄莉, 彭钢, 等. 颗粒活性炭载纳米零价铁去除水中的Cr(Ⅵ)[J]. 过程工程学报, 2019, 19(4):714-720.

    LIU Jian, HUANG Li, PENG Gang, et al. Removal of Cr(VI) from water by granular activated carbon supported nanoscale zero-valent iron[J]. The Chinese Journal of Process Engineering,2019,19(4):714-720(in Chinese).
    [13] 陈林, 平巍, 闫彬, 等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程, 2020, 38(8):119-124.

    CHEN Lin, PING Wei, YAN Bin, et al. Adsorption characteristics of Cr(Ⅵ) by sludge biochar under different pyrolysis temperatures[J]. Environmental Engineering,2020,38(8):119-124(in Chinese).
    [14] 莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(VI)废水的效能与机理[J]. 化工学报, 2020, 71(5):2352-2362.

    MO Guanhai, XIE Shuibo, ZENG Taotao, et al. The efficiency and mechanism of U(VI) removal from acidic wastewater by sewage sludge-derived biochar[J]. CIESC Journal,2020,71(5):2352-2362(in Chinese).
    [15] CHEN X, FAN G J, LI H B, et al. Nanoscale zero-valent iron particles supported on sludge-based biochar for the removal of chromium (VI) from aqueous system[J]. Environmental Science and Pollution Research,2021,29(3):3853-3863.
    [16] ZHOU M, ZHANG C G, YUAN Y F, et al. Pinewood outperformed bamboo as feedstock to prepare biochar-supported zero-valent iron for Cr6+ reduction[J]. Environmental Research,2020,187:109695. doi: 10.1016/j.envres.2020.109695
    [17] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism[J]. Science of the Total Environment,2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
    [18] 国家环境保护总局, 国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别: GB/T 5085.3—2007[S]. 北京: 中国环境科学出版社, 2007.

    Environmental Protection Administration of China, General Administration of Quality Supervision, Inspection and Quarantine. Identification standards for hazardous wastes identification for extraction toxicity: GB/T 5085.3—2007[S]. Beijing: China Environmental Science Press, 2007(in Chinese).
    [19] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere,2020,245:125542. doi: 10.1016/j.chemosphere.2019.125542
    [20] MA F F, PHILIPPE B, ZHAO B W, et al. Simultaneous adsorption and reduction of hexavalent chromium on biochar-supported nanoscale zero-valent iron (nZVI) in aqueous solution[J]. Water Science and Technology,2020,82(7):1339-1349. doi: 10.2166/wst.2020.392
    [21] CHOI H, AL-ABED S R, AGARWAL S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J]. Chemistry of Materials,2008,20(11):3649-3655. doi: 10.1021/cm8003613
    [22] PHOUNGTHONG K, ZHANG H, SHAO L M, et al. Leaching characteristics and phytotoxic effects of sewage sludge biochar[J]. Journal of Material Cycles and Waste Management,2018,20(4):2089-2099. doi: 10.1007/s10163-018-0763-0
    [23] DIAO Z H, XU X R, JIANG D, et al. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(VI) and phenol from aqueous solutions[J]. Chemical Engineering Journal,2016,302:213-222. doi: 10.1016/j.cej.2016.05.062
    [24] SHI L N, DU J H, CHEN Z L, et al. Functional kaolinite supported Fe/Ni nanoparticles for simultaneous catalytic remediation of mixed contaminants (lead and nitrate) from wastewater[J]. Journal of Colloid and Interface Science,2014,428:302-307. doi: 10.1016/j.jcis.2014.04.059
    [25] YI Y, WANG X Y, MA J, et al. An efficient Egeria najas-derived biochar supported nZVI composite for Cr(VI) removal: Characterization and mechanism investigation based on visual MINTEQ model[J]. Environmental Research,2020,189:109912. doi: 10.1016/j.envres.2020.109912
    [26] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials,2017,332:79-86. doi: 10.1016/j.jhazmat.2017.03.002
    [27] FANG Y, WU X G, DAI M, et al. The sequestration of aqueous Cr(VI) by zero valent iron-based materials: From synthesis to practical application[J]. Journal of Cleaner Production,2021,312:127678. doi: 10.1016/j.jclepro.2021.127678
    [28] DONG H R, ZHANG C, HOU K J, et al. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution[J]. Separation and Purification Technology,2017,188:188-196. doi: 10.1016/j.seppur.2017.07.033
    [29] HUANG L H, ZHOU S J, JIN F, et al. Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2014,447:59-66.
    [30] CHOI K, LEE W. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II)[J]. Journal of Hazardous Materials,2012,211:146-153.
    [31] QUAN G X, ZHANG J, GUO J, et al. Removal of Cr(VI) from aqueous solution by nanoscale zero-valent iron grafted on acid-activated attapulgite[J]. Water Air and Soil Pollution,2014,225(6):1979.
    [32] QIU Y, ZHANG Q, GAO B, et al. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation[J]. Environmental Pollution,2020,265:115018. doi: 10.1016/j.envpol.2020.115018
    [33] LIU L H, LIU X, WANG D Q, et al. Removal and reduction of Cr(VI) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge[J]. Journal of Cleaner Production,2020,257:120562. doi: 10.1016/j.jclepro.2020.120562
    [34] WANG H B, CAI J Y, LIAO Z W, et al. Black liquor as biomass feedstock to prepare zero-valent iron embedded biochar with red mud for Cr(VI) removal: Mechanisms insights and engineering practicality[J]. Bioresource Technology,2020,311:123553. doi: 10.1016/j.biortech.2020.123553
    [35] AWANG N A, SALLEH W N W, ISMAIL A F, et al. Adsorption behavior of chromium(VI) onto regenerated cellulose membrane[J]. Industrial & Engineering Chemistry Research,2019,58(2):720-728.
    [36] GUPTA V K, PATHANIA D, AGARWAL S, et al. Removal of Cr(VI) onto Ficus carica biosorbent from water[J]. Environmental Science and Pollution Research,2013,20(4):2632-2644. doi: 10.1007/s11356-012-1176-6
    [37] IMRAN M, KHAN Z U, IQBAL M M, et al. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study[J]. Environmental Pollution,2020,261:114231. doi: 10.1016/j.envpol.2020.114231
    [38] YU J D, JIANG C Y, GUAN Q Q, et al. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere,2018,195:632-640. doi: 10.1016/j.chemosphere.2017.12.128
    [39] 陈泽文, 周子晗, 吴美仪, 等. 埃洛石纳米管/聚间苯二胺复合材料去除Cr(Ⅵ)的性能[J]. 复合材料学报, 2020, 37(3):493-503.

    CHEN Zewen, ZHOU Zihan, WU Meiyi, et al. Adsorption properties of halloysite nanotubes/poly(m-phenylenediamine) composites for Cr(VI)[J]. Acta Materiae Compo-sitae Sinica,2020,37(3):493-503(in Chinese).
    [40] 席冬冬, 李晓敏, 熊子璇, 等. 生物炭负载纳米零价铁对污染土壤中铜钴镍铬的协同去除[J]. 环境工程, 2020, 38(6):58-66.

    XI Dongdong, LI Xiaomin, XIONG Zixuan, et al. Synergis-tic removal of Cu, Co, Ni and Cr from contaminated soil by biochar-supported nanoscale zero-valent iron[J]. Environmental Engineering,2020,38(6):58-66(in Chinese).
    [41] YOON I H, BANG S, CHANG J S, et al. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems[J]. Journal of Hazardous Materials,2011,186(1):855-862. doi: 10.1016/j.jhazmat.2010.11.074
    [42] WANG Z, CHEN G H, WANG X R, et al. Removal of hexavalent chromium by bentonite supported organosolv lignin-stabilized zero-valent iron nanoparticles from wastewater[J]. Journal of Cleaner Production,2020,267:122009. doi: 10.1016/j.jclepro.2020.122009
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  978
  • HTML全文浏览量:  549
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-08
  • 录用日期:  2022-03-13
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回