留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合溶剂分散法制备耐高温、高导热六方氮化硼/半芳香聚酰胺12T复合材料及其性能

陈晓杰 马舸 孟慧迪 崔喆 付鹏 赵蔚 庞新厂 赵清香 刘民英 张晓朦

陈晓杰, 马舸, 孟慧迪, 等. 混合溶剂分散法制备耐高温、高导热六方氮化硼/半芳香聚酰胺12T复合材料及其性能[J]. 复合材料学报, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003
引用本文: 陈晓杰, 马舸, 孟慧迪, 等. 混合溶剂分散法制备耐高温、高导热六方氮化硼/半芳香聚酰胺12T复合材料及其性能[J]. 复合材料学报, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003
CHEN Xiaojie, MA Ge, MENG Huidi, et al. Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003
Citation: CHEN Xiaojie, MA Ge, MENG Huidi, et al. Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003

混合溶剂分散法制备耐高温、高导热六方氮化硼/半芳香聚酰胺12T复合材料及其性能

doi: 10.13801/j.cnki.fhclxb.20220321.003
基金项目: 国家重点研发计划(2017YFB0307600);中国博士后科学基金(2020M682317);河南省博士后基金(202002018);高分子材料工程国家重点实验室开放课题(sklpme2021-05-10);河南省高等学校重点科研项目(22A430037)
详细信息
    通讯作者:

    刘民英,博士,教授,博士生导师,研究方向为聚酰胺的结构设计与聚合方法 E-mail: lmy@zzu.edu.cn;

    张晓朦,博士,副教授,硕士生导师,研究方向为聚酰胺基复合材料的结构设计与性能研究 E-mail: zhangxm@zzu.edu.cn

  • 中图分类号: TB332

Preparation and properties of hexagonal boron nitride/semi-aromatic polyamide 12T composites with high-temperature resistance and high thermal conductivity prepared by mixed solvent dispersion method

Funds: National Key Research and Development Program of China (2017YFB0307600); China Postdoctoral Science Foundation (2020M682317); Henan Postdoctoral Foundation (202002018); Opening Project of State Key Laboratory of Polymer Materials Engineering (sklpme2021-05-10); Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430037)
  • 摘要: 制备兼具优异耐高温性能和导热性能的聚合物基复合材料对于电子元器件的封装保护、高效散热和稳定成型至关重要。本文通过混合溶剂分散法(MSD)制备了六方氮化硼(BN)/半芳香聚酰胺12T (PA12T)复合材料,并对复合材料的微观结构、导热、耐高温、介电和力学性能进行了表征。结果表明:混合溶剂分散法可以有效实现BN和PA12T粉末的均匀悬浮,并可协同真空辅助自组装法与真空热压法构筑具有均一分散和取向结构的复合材料。研究表明,当BN/PA12T复合材料中的BN含量为40wt%时,混合溶剂分散法制备的样品的平面导热率可以达到2.73 W/(m·K),是机械混合法(MM)制备的样品(1.59 W/(m·K))的1.72倍,同时其具有优异的力学性能、低介电常数(3.6)、介电损耗(0.016)和显著的耐高温性能(维卡软化点超过250℃且初始分解温度可达446℃)。综上所述,混合溶剂分散法制备的BN/PA12T复合材料在电子封装及热管理领域中具有广阔的应用前景。

     

  • 图  1  六方氮化硼(BN)和半芳香聚酰胺12T (PA12T)粉末悬浮于不同溶剂和混合溶剂(a)及不同静置时间的40wt%BN/PA12T混合粉末悬浮于混合溶剂(b)的光学图像

    Figure  1.  Images of hexagonal boron nitride (BN) and semi-aromatic polyamide 12T (PA12T) powder suspended in different solvents and mixed solvent (a) and 40wt%BN/PA12T mixed powder suspended in mixed solvent with different resting time (b)

    图  2  BN (a)、PA12T (b) 及机械混合法(MM) ((c), (e), (g), (i))和混合溶剂分散法(MSD) ((d), (f), (h), (j))制备BN/PA12T复合材料的SEM图像

    Figure  2.  SEM images of BN powder (a) and pure PA12T (b), the composites prepared by mechanical mixing (MM) method ((c), (e), (g), (i)) and mixed solvent dispersion (MSD) method ((d), (f), (h), (j))

    图  3  不同方法制备的BN/PA12T复合材料的XRD图谱

    Figure  3.  XRD patterns of the BN/PA12T composites prepared by different methods

    图  4  不同方法制备的BN/PA12T复合材料沿平面方向和厚度方向的导热率(a)及各项异性指数(b)

    Figure  4.  Thermal conductivities (a) along the in-plane and through-plane directions and anisotropy index (b) of the BN/PA12T composites prepared by different methods

    图  5  机械混合法(A)和混合溶剂分散法(B)制备的40wt%BN/PA12T复合材料在LED热管理应用过程中的热成像图

    Figure  5.  Optical and thermal images of the 40wt%BN/PA12T composites prepared by the mechanical mixing method (A) and the mixed solvent dispersion method (B) for the thermal management of LED

    图  6  不同方法制备的BN/PA12T复合材料的储能模量

    Figure  6.  Storage modulus of BN/PA12T composites prepared by different methods

    图  7  不同方法制备的BN/PA12T复合材料的拉伸(a)和弯曲(b)性能

    Figure  7.  Tensile (a) and flexural (b) properties of BN/PA12T composites prepared by different methods

    图  8  混合溶剂分散法制备的BN/PA12T复合材料在氮气气氛下的TG (a)和DTG (b)曲线

    Figure  8.  TG (a) and DTG (b) curves of BN/PA12T composites prepared by mixed solvent dispersion method under N2 atmosphere

    图  9  混合溶剂分散法制备的BN/PA12T复合材料的维卡软化温度

    Figure  9.  Vicat softening temperatures of BN/PA12T composites prepared by mixed solvent dispersion method

    图  10  混合溶剂分散法制备的BN/PA12T复合材料的介电常数

    Figure  10.  Dielectric constant of the BN/PA12T composites prepared by mixed solvent dispersion method

    表  1  BN的取向度分析

    Table  1.   Analysis on the orientation degree of BN

    BN content/wt%Preparation
    methods
    I(002)I(100)I(002)/I(100)
    10 MSD 63324 2369 27
    10 MM 22879 4133 6
    20 MSD 93765 3610 26
    20 MM 50005 5838 9
    30 MSD 89145 6069 15
    30 MM 65127 7285 9
    40 MSD 106008 7416 14
    40 MM 97303 8151 12
    Note: I—Intensity.
    下载: 导出CSV

    表  2  热塑性耐高温聚合物基导热复合材料的导热率

    Table  2.   Thermal conductivities of thermoplastic heat-resistance polymer-based composites

    MatrixFillerContentTC/
    (W·(m·K)−1)
    Preparation method/
    Testing method
    Year
    Liquid crystral polymer (LCP) BN (~60 μm) 33vol% 3.29 Clamped-air-cooling/Heat flow 2013[31]
    Poly(ether ether ketone)
    (PEEK)
    BN nanopowders (~70 nm) 30wt% 1.04 Casting/LFA 2021[32]
    Poly(ether ether ketone)
    (PEEK)
    BN (4-10 μm) 30wt% 1.01 Hot pressing/LFA 2020[33]
    Polyetherimide (PEI) Non-covalent modified BN 30wt% 0.82 Hot pressing/LFA 2021[34]
    Polyetherimide (PEI) Polyimide-coated BN 60wt% 2.55 Injection molding/LFA 2014[35]
    Polyphenylene sulfide (PPS) Micrometer BN/nanometer BN 60wt% 2.64 Hot pressing/Hot disk 2017[36]
    Polyphenylene sulfide (PPS) Siloxane modified BN 50wt% 1.60 Injection molding/LFA 2018[37]
    Polyphenylene sulfide (PPS) Siloxane modified nanometer BN 60wt% 1.12 Hot pressing/Hot disk 2017[38]
    Thermoplastic polyimide (TPI) Silver nanowires-decorated multi-walled carbon nanotubes 3wt% 0.44 Casting/Transient hot-wire 2022[39]
    Polyamide 46 (PA46) Carbon fiber (Diameter=7.2 μm, Aspect ratio=7) 40wt% 1.49 Injection molding/LFA 2017[40]
    PA12T BN (2-4 μm) 40wt% 2.73 Mixed solvent dispersion/LFA This work
    Notes: TC—Thermal conductivity; LFA—Laser flash apparatus.
    下载: 导出CSV

    表  3  混合溶剂分散法制备的BN/PA12T复合材料的热失重性能

    Table  3.   Thermogravimetic analysis of BN/PA12T composites prepared by mixed solvent dispersion method

    BN content/wt%T5%/℃Tmax/℃Vmax/(%·℃−1)ω/% (600℃)
    04394763.018 1.353
    104424732.65410.375
    204414742.42621.261
    304444732.14630.852
    404464721.89639.622
    Notes: T5%—Decomposition temperature in 5wt% mass loss fraction; Tmax—Temperature corresponding to the maximum decomposition rate; −Vmax—Maximum decomposition rate; ω—Mass residual rate at 600℃.
    下载: 导出CSV

    表  4  混合溶剂分散法制备的BN/PA12T复合材料的介电损耗

    Table  4.   Dielectric loss of BN/PA12T composites prepared by mixed solvent dispersion method

    BN content/wt%Dielectric loss/(106 Hz)
    00.050
    100.041
    200.033
    300.025
    400.016
    下载: 导出CSV
  • [1] LIU H B, FU R L, SU X Q, et al. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application[J]. Composites Communications,2021,23:100593. doi: 10.1016/j.coco.2020.100593
    [2] HAN Y X, SHI X T, YANG X T, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers[J]. Composites Science and Technology,2020,187:107944. doi: 10.1016/j.compscitech.2019.107944
    [3] WAN Y J, LI G, YAO Y M, et al. Recent advances in polymer-based electronic packaging materials[J]. Composites Communications,2020,19:154-167. doi: 10.1016/j.coco.2020.03.011
    [4] 别正业. 无铅焊接技术的现状与应用[J]. 电机电器技术, 2002(6):12-14.

    BIE Zhengye. The present situations and applications of lead-free soldering technology[J]. Electric Machine and Apparatus Technology,2002(6):12-14(in Chinese).
    [5] 陈仕国, 戈早川, 杨海朋, 等. 聚合物基电子封装复合材料研究进展[J]. 宇航材料工艺, 2007(5):4-7. doi: 10.3969/j.issn.1007-2330.2007.05.002

    CHEN Shiguo, GE Zaochuan, YANG Haipeng, et al. Progress in polymer composite for electroinc packaging[J]. Aerospace Materials and Technology,2007(5):4-7(in Chinese). doi: 10.3969/j.issn.1007-2330.2007.05.002
    [6] JIN F L, LI X, PARK S. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1-11. doi: 10.1016/j.jiec.2015.03.026
    [7] OU X H, CHEN S S, LU X M, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications,2021,23:100549. doi: 10.1016/j.coco.2020.100549
    [8] GWON T M, KIM C, SHIN S, et al. Liquid crystal polymer (LCP)-based neural prosthetic devices[J]. Biomedical Engineering Letters,2016,6(3):148-163. doi: 10.1007/s13534-016-0229-z
    [9] ZHANG C H. Progress in semicrystalline heat-resistant polyamides[J]. E-Polymers,2018,18(5):373-408. doi: 10.1515/epoly-2018-0094
    [10] LIU B W, LONG J W, CHEN L, et al. Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance[J]. Polymer,2021,224:123757. doi: 10.1016/j.polymer.2021.123757
    [11] 张美林, 岳文斌, 郎绪志, 等. 半芳香族聚酰胺特种工程塑料的发展与应用现状[J]. 中国塑料, 2020, 34(5):115-122.

    ZHANG Meilin, YUE Wenbin, LANG Xuzhi, et al. Development and application of special engineering plastics: Semi-aromatic polyamide[J]. China Plastics,2020,34(5):115-122(in Chinese).
    [12] 张传辉, 麦堪成, 曹民, 等. 高温尼龙研究进展[J]. 工程塑料应用, 2012, 40(11):95-100. doi: 10.3969/j.issn.1001-3539.2012.11.023

    ZHANG Chuanhui, MAI Kancheng, CAO Min, et al. Research progress in heat-resistant nylon[J]. Engineering Plastics Application,2012,40(11):95-100(in Chinese). doi: 10.3969/j.issn.1001-3539.2012.11.023
    [13] PAPASPYRIDES C D, PORFYRIS A D, RULKENS R, et al. The effect of diamine length on the direct solid state polycondensation of semi-aromatic nylon salts[J]. Journal of Polymer Science Part A-Polymer Chemistry,2016,54(16):2493-2506. doi: 10.1002/pola.28126
    [14] LIU M Y, LI K F, YANG S H, et al. Synthesis and thermal decomposition of poly(dodecamethylene terephthalamide)[J]. Journal of Applied Polymer Science,2011,122(5):3369-3376. doi: 10.1002/app.34416
    [15] CAO J P, ZHAO J, ZHAO X D, et al. High thermal conducti-vity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers[J]. Composites Science and Technology,2013,89:142-148. doi: 10.1016/j.compscitech.2013.09.024
    [16] CAO B Y, LI Y W, KONG J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique[J]. Polymer,2011,52(8):1711-1715. doi: 10.1016/j.polymer.2011.02.019
    [17] HU J T, HUANG Y, YAO Y M, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN[J]. ACS Applied Materials & Interfaces,2017,9(15):13544-13553.
    [18] PAN G R, YAO Y M, ZENG X L, et al. Learning from natural nacre: Constructing layered polymer composites with high thermal conductivity[J]. ACS Applied Materials & Interfaces,2017,9(38):33001-33010.
    [19] REN Y J, REN L C, LI J X, et al. Enhanced thermal conducti-vity in polyamide 6 composites based on the compatibilization effect of polyether-grafted graphene[J]. Composites Science and Technology,2020,199:108340. doi: 10.1016/j.compscitech.2020.108340
    [20] GUO H C, ZHAO H Y, NIU H Y, et al. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications[J]. ACS Nano,2021,15(4):6917-6928. doi: 10.1021/acsnano.0c10768
    [21] 刘民英, 赵清香, 付鹏, 等. 一种半芳香尼龙的制备方法: 中国专利, CN101768266A[P]. 2010-07-07.

    LIU Minying, ZHAO Qingxiang, FU Peng, et al. A preparation method of semi-aromatic nylon: Chinese patent, CN101768266A[P]. 2010-07-07(in Chinese).
    [22] ZHANG J, WANG X N, YU C P, et al. A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity[J]. Composites Science and Technology,2017,149:41-47. doi: 10.1016/j.compscitech.2017.06.008
    [23] WANG X, WU P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation[J]. ACS Applied Materials & Interfaces,2018,10(40):34311-34321.
    [24] 国家质量技术监督局. 热塑性塑料维卡软化温度(VST)的测定: GB/T 1633—2000[S]. 北京: 中国标准出版社, 2000.

    State Bureau of Quality and Technical Supervision. Plastics-Thermoplasitic materials-Determination of vicat softening temperature (VST): GB/T 1633—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plastic-Deformation of tensile properties-Determination for moulding or extrusion plastic: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of China. Plasitc-Deformation of flexural properties: GB/T 9341—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [27] ZHANG X M, ZHANG J J, XIA L C, et al. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides[J]. ACS Applied Materials & Interfaces,2017,9(27):22977-22984.
    [28] YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
    [29] LIN Z Y, LIU Y, RAGHAVAN S, et al. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation[J]. ACS Applied Materials & Interfaces,2013,5(15):7633-7640.
    [30] SONG N, JIAO D J, DING P, et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C,2016,4(2):305-314. doi: 10.1039/C5TC02194D
    [31] LEUNG S N, KHAN O M, SHI H, et al. Study on liquid crystal polymer-hexagonal boron nitride composites for hybrid heat sinks[J]. Industrial & Engineering Chemistry Research,2013,52(24):8332-8339.
    [32] GHOSH B, XU F, HOU X H. Thermally conductive poly(ether ether ketone)/boron nitride composites with low coefficient of thermal expansion[J]. Journal of Materials Science,2021,56(17):10326-10337. doi: 10.1007/s10853-021-05923-0
    [33] LIU X, GAO Y W, SHANG Y S, et al. Non-covalent modification of boron nitride nanoparticle-reinforced PEEK composite: Thermally conductive, interfacial, and mechanical properties[J]. Polymer,2020,203:122763. doi: 10.1016/j.polymer.2020.122763
    [34] BOZKURT Y E, YILDIZ A, TÜRKARSLAN Ö, et al. Thermally conductive h-BN reinforced PEI composites: The role of processing conditions on dispersion states[J]. Materials Today Communications,2021,29:102854. doi: 10.1016/j.mtcomm.2021.102854
    [35] LEE H L, KWON O H, HA S M, et al. Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles[J]. Physical Chemistry Chemical Physics,2014,16(37):20041-20046. doi: 10.1039/C4CP02730B
    [36] GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
    [37] KIM K, LEE J, RYU S, et al. Laser direct structuring and electroless plating applicable super-engineering plastic PPS based thermal conductive composite with particle surface modification[J]. RSC Advances,2018,8(18):9933-9940. doi: 10.1039/C8RA00967H
    [38] YANG X T, TANG L, GUO Y Q, et al. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-poss functionalized n-BN fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,101:237-242. doi: 10.1016/j.compositesa.2017.06.005
    [39] ZHANG X W, ZHANG B, SUN M M, et al. Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(3): 1577-1588.
    [40] YANG Y S, LI D X, SI G J, et al. Improved thermal and mechanical properties of carbon fiber filled polyamide 46 composites[J]. Journal of Polymer Engineering,2017,37(4):345-353. doi: 10.1515/polyeng-2016-0092
    [41] 张娜娜. 短切玻纤增强尼龙12T复合材料的制备和性能研究[D]. 郑州: 郑州大学, 2018.

    ZHANG Nana. Preparation and properties of short glass fiber reinforced PA12T composites[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [42] MENG H, SUI G X, XIE G Y, et al. Friction and wear behavior of carbon nanotubes reinforced polyamide 6 compo-sites under dry sliding and water lubricated condition[J]. Composites Science and Technology,2009,69(5):606-611. doi: 10.1016/j.compscitech.2008.12.004
    [43] CHATTERJEE S, NUESCH F A, CHU B T. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites[J]. Nanotechnology,2011,22(27):275714. doi: 10.1088/0957-4484/22/27/275714
    [44] HOU J, LI G H, YANG N, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity[J]. RSC Advances,2014,4(83):44282-44290. doi: 10.1039/C4RA07394K
    [45] DASTAKEER S, SAMINATHAN P, VENKATESAN S, et al. Studies on thermal degradation kinetics and dielectric properties of polyether imide foam/nanosilica-based nanocomposites[J]. Plastics Rubber and Composites,2019,48(8):356-363. doi: 10.1080/14658011.2019.1630200
    [46] WU K, LEI C X, YANG W X, et al. Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss[J]. Composites Science and Technology,2016,134:191-200. doi: 10.1016/j.compscitech.2016.08.015
    [47] LATURIA A, VAN DE PUT M L, VANDENBERGHE W G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk[J]. NPJ 2D Materials and Applications,2018,2(1):6. doi: 10.1038/s41699-018-0050-x
    [48] 蔡德龙, 陈斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(Z1):4-120.

    CAI Delong, CHEN Fei, HE Fengmei, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics,2019,40(Z1):4-120(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  618
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-04
  • 录用日期:  2022-03-13
  • 网络出版日期:  2022-03-22
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回