留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料双波纹面外褶皱缺陷细观力学分析方法

陆媚 胡祎乐 余音

陆媚, 胡祎乐, 余音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1129-1141. doi: 10.13801/j.cnki.fhclxb.20220317.002
引用本文: 陆媚, 胡祎乐, 余音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1129-1141. doi: 10.13801/j.cnki.fhclxb.20220317.002
LU Mei, HU Yile, YU Yin. Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1129-1141. doi: 10.13801/j.cnki.fhclxb.20220317.002
Citation: LU Mei, HU Yile, YU Yin. Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1129-1141. doi: 10.13801/j.cnki.fhclxb.20220317.002

复合材料双波纹面外褶皱缺陷细观力学分析方法

doi: 10.13801/j.cnki.fhclxb.20220317.002
基金项目: 国家自然科学基金(11902197)
详细信息
    通讯作者:

    余音,博士,研究员,博士生导师,研究方向为复合材料结构分析与修理、结构动力学、智能结构和近场动力学方法 E-mail: yuyin@sjtu.edu.cn

  • 中图分类号: TB332

Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness

Funds: National Natural Science Foundation of China (11902197)
  • 摘要: 复合材料由于其高比模量、高比强度和疲劳寿命长等突出的优点被广泛应用于航空航天领域,但在制备过程中易产生褶皱缺陷,并对复合材料层合板的刚度、强度产生负面影响。本文主要研究含有单波纹和双波纹外部褶皱的复合材料力学性能。提出一种解析方法计算单波纹和双波纹褶皱细观力学模型的等效材料属性,通过与数值模型结果的对比与分析,发现含褶皱层合板的等效模量随波纹比绝对值的增大而减小。当波纹比绝对值相同时,含凹陷褶皱的层合板等效模量比含凸起褶皱的层合板等效模量低。不同厚度的含有褶皱的层合板等效模量曲线存在交汇点,交汇点两侧等效模量随厚度变化的趋势相反,且双波纹褶皱与单波纹褶皱的交汇点不同。

     

  • 图  1  内部褶皱

    Figure  1.  Internal wrinkle

    图  2  常见的外部褶皱

    Figure  2.  Common external wrinkles

    图  3  实际制备过程中出现的双波纹褶皱

    Figure  3.  Double-fiber-waviness wrinkle in the actual production process

    图  4  单波纹褶皱模型:(a)凸起褶皱;(b)凹陷褶皱

    Figure  4.  Single-fiber-waviness wrinkle model: (a) Convex wrinkle; (b) Concave wrinkle

    H—Wrinkle height; L—Wrinkle wavelength; t—Laminate thickness; t1—Thickness of wrinkle-free zone; φ—Out-of-plane orientation angle

    图  5  双波纹褶皱模型:(a) 含有凸起褶皱;(b) 含有凸起褶皱和凹陷褶皱

    Figure  5.  Double-fiber-waviness wrinkle model: (a) Containing convex wrinkle; (b) Containing convex and concave wrinkle

    H1—Wrinkle height (Left); L1—Wrinkle wavelength (Left); H2—Wrinkle height (Right); L2—Wrinkle wavelength (Right)

    图  6  含褶皱层合板两步均质化过程

    Figure  6.  Two-step homogenization procedure for wrinkled composite laminates

    图  7  含褶皱复合材料有限元模型示意图

    RP—Reference point

    Figure  7.  Schematic illustration of finite element model of wrinkled composites

    图  8  ${[0]_{{\text{5s}}}}$铺层AS4/8552单波纹褶皱层合板等效材料属性随H/L的变化情况

    Figure  8.  Change of the effective material properties versus H/L of AS4/8552 single-fiber-waviness wrinkle laminate with ${[0]_{{\text{5s}}}}$ layup

    图  9  不同铺层AS4/8552单波纹褶皱的等效模量$E_{xx}^{**}$H/L的变化趋势

    Figure  9.  Variation trend of $E_{xx}^{**}$ for AS4/8552 single-fiber-waviness wrinkle of different layers versus H/L

    图  10  不同厚度AS4/8552单波纹褶皱$E_{xx}^{**}$$H/L$的变化情况:(a) ${[0]_{{\text{5s}}}}$铺层;(b) $ {[0/45/90/ - 45/0]_{\text{s}}} $铺层

    Figure  10.  Variations of $E_{xx}^{**}$ versus $H/L$ for AS4/8552 single-fiber-waviness wrinkle of different thicknesses: (a) ${[0]_{{\text{5s}}}}$ layup; (b) $ {[0/45/90/ - 45/0]_{\text{s}}} $ layup

    图  11  ${[0]_{{\text{5s}}}}$铺层AS4/8552双波纹褶皱层合板等效材料属性随${H_2}/{L_2}$的变化情况

    Figure  11.  Change of the effective material properties versus ${H_2}/{L_2}$ of AS4/8552 double-fiber-waviness wrinkle laminate with ${[0]_{{\text{5s}}}}$ layup

    图  12  不同铺层AS4/8552双波纹褶皱的$E_{xx}^{**}$${H_2}/{L_2}$的变化情况

    Figure  12.  Variations of $E_{xx}^{**}$ for AS4/8552 double-fiber-waviness wrinkle of different layers versus ${H_2}/{L_2}$

    图  13  不同厚度AS4/8552双波纹褶皱的$E_{xx}^{**}$${H_2}/{L_2}$的变化情况:(a) ${[0]_{{\text{5s}}}}$铺层,${H_1}/{L_1}{\text{ = 0}}{\text{.10}}$; (b) $ {[0/45/90/ - 45/0]_{\text{s}}} $铺层,${H_1}/{L_1}{\text{ = 0}}{\text{.10}}$;(c) ${[0]_{{\text{5s}}}}$铺层,${H_1}/{L_1}{{ = - }}0.10$

    a, b, c—Intersection point

    Figure  13.  Variations of $E_{xx}^{**}$ versus ${H_2}/{L_2}$ for AS4/8552 double-fiber-waviness wrinkle of different thicknesses: (a) ${[0]_{{\text{5s}}}}$ layup, ${H_1}/{L_1} = 0.10$; (b) $ {[0/45/90/ - 45/0]_{\text{s}}} $ layup, ${H_1}/{L_1} = 0.10$; (c) ${[0]_{{\text{5s}}}}$ layup, ${H_1}/{L_1} = - 0.10$

    表  1  碳纤维/环氧树脂复合材料AS4/8552的力学性能

    Table  1.   Mechanical properties of AS4/8552 carbon fiber/epoxy composites

    $ \begin{gathered} {\text{ }}E_{11} /{\text{GPa}} \end{gathered} $$ \begin{gathered} {\text{ }}E_{22}^{} {\text{/GPa}} \end{gathered} $$\begin{gathered} {\text{ } }E_{33}^{} {\text{/GPa} } \end{gathered}$$ \begin{gathered} {\text{ }}G_{12}^{} {\text{/GPa}} \end{gathered} $$ \begin{gathered} {\text{ }}G_{13}^{} {\text{/GPa}} \end{gathered} $$ \begin{gathered} {\text{ }}G_{23}^{} {\text{/GPa}} \end{gathered} $${v_{12}}$${v_{13} }$${v_{23}}$
    1308.58.54.24.23.70.350.350.43
    Notes: E—Tensile modulus; G—Shear modulus; $v $—Poisson's ratio; 1, 2, 3—Longitudinal, transverse and thickness directions of materials.
    下载: 导出CSV

    表  2  ${[0]_{{\text{5s}}}}$铺层AS4/8552单波纹褶皱模型通过解析和数值方法获得的等效材料属性

    Table  2.   Effective material properties of AS4/8552 single-fiber-waviness wrinkle model with ${[0]_{{\text{5s}}}}$ layup obtained by analytical and numerical methods

    Effective material properties$ H/L{{ = - 0}}{\text{.2 mm/}}3.0\;{\text{mm}} $$ H/L{\text{ = 0}}{\text{.2 mm/}}3.0\;{\text{mm}} $
    Analytical methodNumerical methodError/%Analytical methodNumerical methodError/%
    $E_{xx}^{**}{\text{/GPa}}$ 113.174 112.988 0.160 128.069 127.232 0.660
    $ E_{yy}^{**}{\text{/GPa}} $ 7.939 7.937 0.025 9.071 9.072 –0.011
    $ E_{zz}^{**}{\text{/GPa}} $ 9.140 9.168 –0.310 7.992 8.012 –0.250
    $ v_{yz}^{**} $ 0.3990 0.3980 0.25 0.4560 0.4560 0.00
    $ v_{zx}^{**} $ 0.0270 0.0246 9.76 0.0240 0.0218 10.09
    $ v_{xy}^{**} $ 0.3410 0.3260 4.60 0.3400 0.3260 4.29
    $ G_{yz}^{**}{\text{/GPa}} $ 3.976 2.178 82.55 3.477 2.678 29.84
    $ G_{zx}^{**}{\text{/GPa}} $ 4.713 3.540 33.14 4.139 3.256 27.12
    $ G_{xy}^{**}{\text{/GPa}} $ 3.908 3.890 0.46 4.469 4.450 0.43
    Note: **—After two steps homogenization.
    下载: 导出CSV

    表  3  $ {[0/45/90/ - 45/0]_{\text{s}}} $铺层AS4/8552单波纹褶皱模型通过解析和数值方法获得的等效材料属性

    Table  3.   Effective material properties of AS4/8552 single-fiber-waviness wrinkle model with ${[0/45/90/ - 45/0]_{\text{s}}}$ layup obtained by analytical and numerical methods

    Effective material properties$ H/L{\text{ = 0}}{\text{.2 mm/3}}{\text{.0 mm}} $
    Analytical methodNumerical methodError/%
    $E_{xx}^{**}{\text{/GPa}}$ 65.172 66.398 −1.85
    $ E_{yy}^{**}{\text{/GPa}} $ 45.170 45.616 −0.98
    $ E_{zz}^{**}{\text{/GPa}} $ 9.348 9.372 −0.26
    $ v_{yz}^{**} $ 0.3870 0.3790 2.11
    $ v_{zx}^{**} $ 0.0515 0.0476 8.19
    $ v_{xy}^{**} $ 0.3100 0.3050 1.64
    $ G_{yz}^{**}{\text{/GPa}} $ 3.668 3.044 20.50
    $ G_{zx}^{**}{\text{/GPa}} $ 3.838 2.989 28.40
    $ G_{xy}^{**}{\text{/GPa}} $ 16.387 16.750 −2.17
    下载: 导出CSV

    表  4  ${[0]_{{\text{5s}}}}$铺层 AS4/8552双波纹褶皱模型通过解析和数值方法获得的等效材料属性

    Table  4.   Effective material properties of AS4/8552 double-fiber-waviness wrinkle model with ${[0]_{{\text{5s}}}}$ layup obtained by analytical and numerical methods

    Effective material properties$ {H_1}/{L_1}=0.2\;{\text{mm/}}3.0\;{\text{mm}} $
    $ {H_2}/{L_2}=0.1\;{\text{mm/}}3.0\;{\text{mm}} $$ {H_2}/{L_2}= - 0.1\;{\text{mm/}}3.0\;{\text{mm}} $
    Analytical methodNumerical methodsError/%Analytical methodNumerical methodsError/%
    $ E_{xx}^{**}{\text{/GPa}} $ 129.570 131.622 −1.560 125.396 127.513 −1.660
    $ E_{yy}^{**}{\text{/GPa}} $ 8.924 8.926 −0.022 8.649 8.642 0.081
    $ E_{zz}^{**}{\text{/GPa}} $ 8.113 8.125 −0.150 8.401 8.412 −0.130
    $ v_{yz}^{**} $ 0.4500 0.4500 0.00 0.4350 0.4340 0.23
    $ v_{zx}^{**} $ 0.0234 0.0219 6.70 0.0242 0.0223 8.52
    $ v_{xy}^{**} $ 0.3430 0.3500 −2.00 0.3430 0.3380 1.48
    $ G_{yz}^{**}{\text{/GPa}} $ 3.530 2.612 35.14 3.654 2.487 46.92
    $ G_{zx}^{**}{\text{/GPa}} $ 4.133 2.540 62.72 4.270 2.563 66.60
    $ G_{xy}^{**}{\text{/GPa}} $ 4.402 4.389 0.30 4.253 4.239 0.14
    下载: 导出CSV

    表  5  $ {[0/45/90/ - 45/0]_{\text{s}}} $铺层AS4/8552双波纹褶皱模型通过解析和数值方法获得的等效材料属性

    Table  5.   Effective material properties of AS4/8552 double-fiber-waviness wrinkle model with $ {[0/45/90/ - 45/0]_{\text{s}}} $ layup obtained by analytical and numerical methods

    Effective material properties$ {H_1}/{L_1}{\text{ = }}0.2\;{\text{mm/}}3.0\;{\text{mm}} $
    $ {H_2}/{L_2}{\text{ = }}0.1\;{\text{mm/2}}.0\;{\text{mm}} $$ {H_2}/{L_2}{ = - }0.1\;{\text{mm/2}}.0\;{\text{mm}} $
    Analytical methodNumerical methodsError/%Analytical methodNumerical methodsError/%
    $ E_{xx}^{**}{\text{/GPa}} $ 65.029 64.571 0.71 62.784 63.684 −1.41
    $ E_{yy}^{**}{\text{/GPa}} $ 44.681 44.660 0.05 44.156 43.630 1.21
    $ E_{zz}^{**}{\text{/GPa}} $ 9.464 9.483 −0.20 9.572 9.752 −1.85
    $ v_{yz}^{**} $ 0.3830 0.3840 −0.26 0.3780 0.3730 1.34
    $ v_{zx}^{**} $ 0.0514 0.0505 1.78 0.0538 0.0494 8.91
    $ v_{xy}^{**} $ 0.3120 0.3110 −0.32 0.3060 0.3120 −1.92
    $ G_{yz}^{**}{\text{/GPa}} $ 3.710 2.972 24.83 3.763 2.375 58.44
    $ G_{zx}^{**}{\text{/GPa}} $ 3.872 2.410 60.66 3.942 2.877 37.02
    $ G_{xy}^{**}{\text{/GPa}} $ 16.275 16.171 0.64 15.820 15.867 0.30
    下载: 导出CSV
  • [1] CHUN H, SHIN J, DANIEL I M. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness[J]. Composite Science Technology,2001,61:125-134. doi: 10.1016/S0266-3538(00)00201-3
    [2] TAKEDA T. Micromechanics model for three-dimensional effective elastic properties of composite laminates with ply wrinkles[J]. Composite Structures,2018,189:419-427. doi: 10.1016/j.compstruct.2017.10.086
    [3] ALVES M P, CIMINI JUNIOR C A, HA S K. Fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites: An enhanced review[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106526. doi: 10.1016/j.compositesa.2021.106526
    [4] KULKARNI P, MALI K D, SINGH S. An overview of the formation of fiber waviness and its effect on the mechanical performance of fiber reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2020,137:106013. doi: 10.1016/j.compositesa.2020.106013
    [5] MUKHOPADHYAY S, JONES M I, HALLETT S R. Compres-sive failure of laminates containing an embedded wrinkle: Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing,2015,73:132-142. doi: 10.1016/j.compositesa.2015.03.012
    [6] ZHU J, WANG J, ZU L. Influence of out-of-plane ply waviness on elastic properties of composite laminates under uniaxial loading[J]. Composite Structures, 2015, 132: 440-450.
    [7] 朱俊, 吴维清, 欧阳佳斯, 等. 面外波纹对复合材料层合板弹性性能的影响[J]. 复合材料学报, 2016, 33(9):1981-1988.

    ZHU Jun, WU Weiqing, OUYANG Jiasi, et al. Influence of out-of-plane waviness on elastic properties of composite laminates[J]. Acta Materiae Compositae Sinica,2016,33(9):1981-1988(in Chinese).
    [8] 欧阳佳斯, 倪爱清, 朱俊, 等. 均一波纹单向复合材料板的力学性能研究[J]. 玻璃钢/复合材料, 2016(3):38-43.

    OUYANG Jiasi, NI Aiqing, ZHU Jun, et al. The mechanical behavior of unidirectional composite laminates[J]. Fiber Reinforced Plastics/Composites,2016(3):38-43(in Chinese).
    [9] 吴维清, 朱俊, 王继辉, 等. 纤维波纹对复合材料层合板刚度影响研究[J]. 玻璃钢/复合材料, 2015(12):41-47.

    WU Weiqing, ZHU Jun, WANG Jihui, et al. Effects of fiber waviness on the stiffness of composite laminates[J]. Fiber Reinforced Plastics/Composites,2015(12):41-47(in Chinese).
    [10] 曾文浩, 何鹏, 刘菲, 等. 含纤维波纹缺陷复合材料层合板的损伤分析[J]. 复合材料学报, 2019, 36(2):330-336.

    ZENG Wenhao, HE Peng, LIU Fei, et al. Damage analysis for composite laminate with fiber waviness[J]. Acta Materiae Compositae Sinica,2019,36(2):330-336(in Chinese).
    [11] GARNICH M R, KARAMI G. Finite element micromechanics for stiffness and strength of wavy fiber composites[J]. Journal of Composite Material, 2004, 38(4): 273–292.
    [12] XIE N, SMITH R, MUKHOPADHYA S. A numerical study on the influence of composite wrinkle defect geometry on compressive strength[J]. Materials and Design,2018,140:7-20. doi: 10.1016/j.matdes.2017.11.034
    [13] 郑亦媚, 程吉, 王轩, 等. 褶皱层数对玻璃纤维层合板拉伸性能的影响[J]. 兵器材料科学与工程, 2021, 44(1):104-110.

    ZHENG Yimei, CHENG Ji, WANG Xuan, et al. Effect of different wrinkled layers on tensile properties of glass fiber reinforced laminates[J]. Ordnance Material Science and Engineering,2021,44(1):104-110(in Chinese).
    [14] BARBERO E J, BARBERO J C. Determination of material properties for progressive damage analysis of carbon/epoxy laminates[J]. Mechanics of Advanced Materials and Structures,2019,26:938-947. doi: 10.1080/15376494.2018.1430281
    [15] 于晓东, 胡海晓, 贾欲明. 褶皱缺陷影响L型层合板失效行为: 实验和数值研究[J]. 复合材料学报, 2020, 37(8):1932-1943.

    YU Xiaodong, HU Haixiao, JIA Yuming, et al. Impact of wrinkle defects on failure behavior of L-shaped laminates: Experimental and numerical study[J]. Acta Materiae Compositae Sinica,2020,37(8):1932-1943(in Chinese).
    [16] WANG Y, ZHU S, LI H, et al. Experimental and numerical study on the compressive failure of composite laminates with fiber waviness defects[J]. Polymers,2021,13:3204. doi: 10.3390/polym13193204
    [17] OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenization[J]. Engineering with Computers,2019,35:567-577. doi: 10.1007/s00366-018-0616-4
    [18] HU H, CAO D, CAO Z, et al. Experimental and numerical investigations of wrinkle effect on failure behavior of curved composite laminates[J]. Composite Structures, 2021, 261: 113541.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  781
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-02-26
  • 录用日期:  2022-03-06
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回