Prediction of in-plane tensile strength of needle punched C/C composites
-
摘要: 为研究针刺碳纤维增强碳基体复合材料(针刺C/C复合材料)面内拉伸强度与渐进损伤,建立了针刺C/C复合材料代表性体积单元有限元模型。模型包含无纬布层、网胎层、针刺纤维束、界面4类子区域,并考虑了孔隙的影响。采用基于应变的破坏准则及指数型损伤演化规律研究无纬布层及针刺纤维束损伤,采用弹塑性本构研究网胎层损伤,采用内聚力牵引分离定律和二次应力破坏准则分析界面损伤。通过两步法计算了孔隙对材料性能的折减效果,并得到上述4个子区域的力学性能,通过ABAQUS UMAT预测了材料的面内拉伸应力-应变曲线及各子区域损伤起始、演化与失效过程,非线性趋势及拉伸强度数值与试验数值吻合较好,验证了该模型有效性。Abstract: In order to study the in-plane tensile strength and the progressive damage behavior of needle punched carbon fiber reinforced carbon composites (needle punched C/C composites), a representative volume element finite element model of needle punched C/C composites was established. The model was divided into four sub-regions: non-woven cloth, short cut fiber felt, needling fibers and interface, and the effect of pores was estimated. Based on the failure criterion and exponential damage evolution law, the damage of the non-woven cloth and needling fibers was studied. The damage of the short cut fiber felt was defined by an elastic-plastic constitutive method. A cohesive force traction separation law and a quadratic nominal stress criterion were adopted at the interface. The negative influence of pores on mechanical properties of the material was considered by two steps. Then, mechanical properties of the four sub-regions were calculated. The in-plane tensile stress-strain curve of the material was predicted through ABAQUS UMAT subroutine, and the damage initiation, propagation and failure of the four sub-regions were simulated. The nonlinear trend and tensile strength agree well with experimentally measured data, which verifies the proposed model.
-
表 1 针刺碳纤维增强碳基体(C/C)复合材料各区域成分体积分数
Table 1. Ingredient volume fraction of needle punched carbon fiber reinforced carbon (C/C) composites in different region
Region Fiber volume fraction Vf
/%Matrix volume fraction Vm/% Pore volume fraction Vp
/%Needle punched C/C composite 33.3 47.4 19.3 Non-woven cloth (Needling fibers) 35.6 59.5 4.9 Short cut fiber felt 31.7 38.7 29.6 表 2 针刺C/C复合材料RVE模型几何参数
Table 2. Geometric parameters of the RVE model for needle punched C/C composites
Region Length/
mmWidth/
mmHeight/
mmRadius/
mmNeedle punched C/C composite 2.5 2.5 4.80 – Non-woven cloth 2.5 2.5 0.25 – Short cut fiber felt 2.5 2.5 0.35 – Needling fibers – – 3.60 0.20 $ {E}_{1}^{\mathrm{f}} $/GPa $ {E}_{2}^{\mathrm{f}} $/GPa $ {v }_{12}^{\mathrm{f}} $ $ {G}_{12}^{\mathrm{f}} $/GPa $ {G}_{23}^{\mathrm{f}} $/GPa $ {X}_{1}^{\mathrm{f}} $/MPa 230 18.22 0.27 36.59 7.01 4900 Notes: $ {E}_{1}^{\mathrm{f}} $ and $ {E}_{2}^{\mathrm{f}} $—Longitudinal and transverse tensile modulus of the carbon fiber; $ {v }_{12}^{\mathrm{f}} $−Longitudinal Poisson’s ratio of the carbon fiber; $ {G}_{12}^{\mathrm{f}} $ and $ {G}_{23}^{\mathrm{f}} $—Longitudinal and transverse shear modulus of the carbon fiber; $ {X}_{1}^{\mathrm{f}} $—Longitudinal tensile strength of the carbon fiber. $ {E}^{\mathrm{m}}/{\rm{GPa}} $ $ {v }^{\mathrm{m}} $ $ {\sigma }_{\mathrm{t}}^{\mathrm{m}} $/MPa $ {\sigma }_{\mathrm{c}}^{\mathrm{m}} $/MPa $ {\sigma }_{\mathrm{s}}^{\mathrm{m}} $/MPa 15 0.23 14.7 67.8 19.1 Notes: $ {E}^{\mathrm{m}} $ and $ {v }^{\mathrm{m}} $—Modulus and Poisson’s ratio of the carbon matrix; $ {\sigma }_{\mathrm{t}}^{\mathrm{m}} $, $ {\sigma }_{\mathrm{c}}^{\mathrm{m}} $, $ {\sigma }_{\mathrm{s}}^{\mathrm{m}} $—Tensile, compressive and shear strength of the carbon matrix. 表 5 针刺C/C复合材料各区域材料参数[27]
Table 5. Material parameters in each region of needle punched C/C composites[27]
Non-woven cloth (Needling fibers) $ {E}_{11}^{\mathrm{L}} $/GPa $ {E}_{22}^{\mathrm{L}} $/GPa $ {G}_{12}^{\mathrm{L}} $/GPa $ {G}_{23}^{\mathrm{L}} $/GPa $ {v }_{12}^{\mathrm{L}} $ $ {X}_{\mathrm{T}}^{\mathrm{L}} $/MPa 57.801 15.950 11.227 6.334 0.234 670.284 $ {X}_{\mathrm{C}}^{\mathrm{L}} $/MPa $ {Y}_{\mathrm{T}}^{\mathrm{L}} $/MPa $ {Y}_{\mathrm{C}}^{\mathrm{L}} $/MPa $ {S}_{12}^{\mathrm{L}} $/MPa $ {G}^{\mathrm{f}} $/(N·mm−1) $ {G}^{\mathrm{m}} $/(N·mm−1) 335.142 10.791 49.772 11.896 8 1 Short cut
fiber felt$ {E}^{\mathrm{S}} $/GPa ${v }^{{\rm{S}}}$ $ {\sigma }^{\mathrm{S}} $/MPa 11.243 0.146 20.7 Interface $ {K}_{\mathrm{n}} $/(N·mm−3) $ {K}_{\mathrm{s}} $/(N·mm−3) $ {t}_{\mathrm{n}} $/MPa $ {t}_{\mathrm{s}} $/MPa $ {G}_{\mathrm{n}} $/(N·mm−1) $ {G}_{\mathrm{s}} $/(N·mm−1) 106 106 13.8 18.0 1 1 Notes: $ {E}_{11}^{\mathrm{L}} $ and $ {E}_{22}^{\mathrm{L}} $—Longitudinal and transverse tensile modulus of the non-woven cloth (needling fibers); $ {G}_{12}^{\mathrm{L}} $ and $ {G}_{23}^{\mathrm{L}} $—Longitudinal and transverse shear modulus of the non-woven cloth (needling fibers); $ {v }_{12}^{\mathrm{L}} $—Longitudinal Poisson’s ratio of the non-woven cloth (needling fibers); $ {X}_{\mathrm{T}}^{\mathrm{L}} $ and $ {X}_{\mathrm{C}}^{\mathrm{L}} $—Longitudinal tensile and compressive strength of the non-woven cloth (needling fibers); $ {Y}_{\mathrm{T}}^{\mathrm{L}} $ and $ {Y}_{\mathrm{C}}^{\mathrm{L}} $—Transverse tensile and compressive strength of the non-woven cloth (needling fibers); $ {S}_{12}^{\mathrm{L}} $—Longitudinal shear strength of the non-woven cloth (needling fibers); $ {G}^{\mathrm{f}} $ and $ {G}^{\mathrm{m}} $—Fracture energy of the fiber and the matrix; $ {E}^{\mathrm{S}} $—Tensile modulus of the short cut fiber felt; $ {v }^{{\rm{S}}} $—Poisson’s ratio of the short cut fiber felt; ${\sigma }^{\rm{S} }$—Tensile strength of the short cut fiber felt; $ {K}_{\mathrm{n}} $ and $ {K}_{\mathrm{s}} $—Stiffness of the interface in normal and tangential direction; $ {t}_{\mathrm{n}} $ and $ {t}_{\mathrm{s}} $—Strength of the interface in normal and tangential direction; $ {G}_{\mathrm{n}} $ and $ {G}_{\mathrm{s}} $−Fracture energy of the interface in normal and tangential direction. 表 6 针刺C/C复合材料模拟结果和拉伸试验结果对比
Table 6. Result comparison of the finite element method with the tensile test for needle punched C/C composites
Property Modulus Strength Experimental result/MPa 23783 88.62 Predicted value/MPa 21736 82.83 Error/% 8.61 6.53 -
[1] 李贺军, 罗瑞盈. 碳/碳复合材料在航空领域的应用研究现状[J]. 材料工程, 1997(8):8-10.LI Hejun, LUO Ruiying. The status and future on research and application about carbon/carbon composites in the aeronautical area[J]. Journal of Materials Engineering,1997(8):8-10(in Chinese). [2] BERDOYES M. SRM nozzle design breakthroughs with advanced composite materials, AIAA-93-2009[R]. Monterey: AIAA,1993. [3] 刘建军, 李铁虎, 郝志彪, 等. 针刺炭布/网胎复合织物中的纤维转移和损伤研究[J]. 炭素技术, 2008, 27(5):13-15. doi: 10.3969/j.issn.1001-3741.2008.05.004LIU Jianjun, LI Tiehu, HAO Zhibiao, et al. Study of fiber transfer and damage of composite fabric made by needle punched carbon cloth and web[J]. Carbon Techniques,2008,27(5):13-15(in Chinese). doi: 10.3969/j.issn.1001-3741.2008.05.004 [4] 张晓虎, 李贺军, 郝志彪, 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响[J]. 无机材料学报, 2007, 22(5):963-967. doi: 10.3321/j.issn:1000-324x.2007.05.037ZHANG Tiehu, LI Hejun, HAO Zhibiao, et al. Influence of needle punching processing parameters on mechanical properties of C/C composites reinforced by carbon cloth and carbon fiber net[J]. Journal of Inorganic Materials,2007,22(5):963-967(in Chinese). doi: 10.3321/j.issn:1000-324x.2007.05.037 [5] 郑金煌, 李贺军, 崔红, 等. 针刺预制体参数对C/C复合材料力学性能的影响[J]. 固体火箭技术, 2017, 40(2):221-227.ZHENG Jinhuang, LI Hejun, CUI Hong, et al. Effect of needle-punched preform parameters on the mechanical properties of carbon/carbon composites[J]. Journal of Solid Rocket Technology,2017,40(2):221-227(in Chinese). [6] 嵇阿琳, 崔红, 李贺军, 等. 两种针刺纤维性能与成型性分析[J]. 固体火箭技术, 2010, 33(2):222-224. doi: 10.3969/j.issn.1006-2793.2010.02.023JI Alin, CUI Hong, LI Hejun, et al. Investigation on pro-perty and figuration for two kinds of needling fiber[J]. Journal of Solid Rocket Technology,2010,33(2):222-224(in Chinese). doi: 10.3969/j.issn.1006-2793.2010.02.023 [7] 王毅, 郑金煌, 崔红, 等. 针刺预制体纤维排布对C/C复合材料力学性能影响[J]. 固体火箭技术, 2016, 39(3):388-391.WANG Yi, ZHENG Jinhuang, CUI Hong, et al. Influence of fiber arrangement of needled preform on mechanical pro-perties of C/C composite[J]. Journal of Solid Rocket Technology,2016,39(3):388-391(in Chinese). [8] 郑蕊, 徐征, 李旭嘉, 等. 不同针刺预制体结构对C/C复合材料力学性能的影响[J]. 宇航材料工艺, 2012, 42(5):26-29. doi: 10.3969/j.issn.1007-2330.2012.05.006ZHENG Rui, XU Zheng, LI Xujia, et al. Effect of needled preform structure on mechanical of properties of C/C composite[J]. Aerospace Materials & Technology,2012,42(5):26-29(in Chinese). doi: 10.3969/j.issn.1007-2330.2012.05.006 [9] PIAT R, TSUKROV I, MLADENOV N, et al. Material modeling of the CVI-infiltrated carbon felt I: Basic formulae, theory and numerical experiments[J]. Composites Science and Technology,2006,66(15):2997-3003. doi: 10.1016/j.compscitech.2006.02.008 [10] XU Y, ZHANG P, LU H, et al. Hierarchically modeling the elastic properties of 2D needled carbon/carbon compo-sites[J]. Composite Structures,2015,133:148-156. doi: 10.1016/j.compstruct.2015.07.081 [11] XIE J, LIANG J, FANG G, et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology,2015,117:69-77. doi: 10.1016/j.compscitech.2015.06.003 [12] QI Y, FANG G, WANG Z, et al. An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes[J]. Composite Structures,2020,237(2):111938. [13] MENG S, SONG L, XU C, et al. Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell[J]. Composite Structures,2017,172:198-209. doi: 10.1016/j.compstruct.2017.03.090 [14] GE J, QI L, CHAO X, et al. The effects of interphase parameters on transverse elastic properties of carbon-carbon composites based on FE model[J]. Composite Structures,2021,268:113961. [15] YU J, ZHOU C, ZHANG H. A micro-image based reconstructed finite element model of needle-punched C/C composite[J]. Composites Science and Technology,2017,153:48-61. doi: 10.1016/j.compscitech.2017.09.029 [16] HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science and Technology,2018,168:371-380. [17] XIE J, FANG G, CHEN Z, et al. An anisotropic elastoplastic damage constitutive model for 3D needled C/C-SiC composites[J]. Composite Structures,2017,176:164-177. doi: 10.1016/j.compstruct.2017.04.043 [18] JIA Y, LIAO D, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials and Design,2016,104:19-26. doi: 10.1016/j.matdes.2016.04.101 [19] 谭勇洋, 燕瑛, 李欣, 等. 针刺 C/C 复合材料拉伸强度及渐进失效数值预测[J]. 航空学报, 2016, 37(12):3734-3741.TAN Yongyang, YAN Ying, LI Xin, et al. Numerical prediction of tensile strength and progressive damage of needled C/C composites[J]. Acta Aeronautica et Astronautica Sinica,2016,37(12):3734-3741(in Chinese). [20] 贾永臻. 针刺 C/C 复合材料细观结构表征及力学行为仿真研究[D]. 武汉: 华中科技大学, 2017.JIA Yongzhen. Research on meso-structure characterization and mechanical behavior simulation of needled carbon/carbon composites[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese). [21] 李龙, 高希光, 史剑, 等. 考虑孔隙的针刺C/SiC复合材料弹性参数计算[J]. 航空动力学报, 2013(6):1257-1263.LI Long, GAO Xiguang, SHI Jian, et al. Calculation of needled C/SiC composite elastic parameters in consideration of the porosity[J]. Journal of Aerospace Power,2013(6):1257-1263(in Chinese). [22] Toray Composite Material America, Inc. Product explorer[EB/OL]. (2021-12-03)[2022-02-12]. https://www.toraycma.com/products/carbon-fiber/. [23] XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of compo-sites and applications[J]. International Journal of Solids and Structures,2003,40(8):1907-1921. doi: 10.1016/S0020-7683(03)00024-6 [24] LINDE P, DE BOER H. Modelling of inter-rivet buckling of hybrid composites[J]. Composite Structures,2006,73(2):221-228. doi: 10.1016/j.compstruct.2005.11.062 [25] 卢子兴, 徐强, 王伯平, 等. 含缺陷平纹机织复合材料拉伸力学行为数值模拟[J]. 复合材料学报, 2011, 28(6):200-207.LU Zixing, XU Qiang, WANG Boping, et al. Numerical simulation of plain weave composites with defects under unidirectional tension[J]. Acta Materiae Compositae Sinica,2011,28(6):200-207(in Chinese). [26] 朱浩, 郭章新, 宋鲁彬, 等. 拉伸载荷下含孔复合材料层合板的力学性能及失效机理[J]. 高压物理学报, 2017, 31(4):373-381. doi: 10.11858/gywlxb.2017.04.004ZHU Hao, GUO Zhangxin, SONG Lubin, et al. Mechanical property and failure mechanism of composite laminates containing a circular hole under tension[J]. Chinese Journal of High Pressure Physics,2017,31(4):373-381(in Chinese). doi: 10.11858/gywlxb.2017.04.004 [27] 魏坤龙, 史宏斌, 李江, 等. 考虑孔隙缺陷三维编织C/C复合材料渐进损伤及强度预测[J]. 固体火箭技术, 2020, 43(4): 447-457.WEI Kunlong, SHI Hongbin, LI Jiang, et al. Progressive damage simulation and tensile strength prediction of three-dimensional braided C/C composites considering void defects[J]. Journal of Solid Rocket Technology, 2020, 43(4): 447-457(in Chinese). [28] GE L, LI H, ZHONG J, et al. Micro-CT based trans-scale damage analysis of 3D braided composites with pore defects[J]. Composites Science and Technology,2021,211:108830. [29] ZHAO L, GONG Y, ZHANG J, et al. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements[J]. Composite Structures,2014,116(1):509-522. [30] QUINTANILLA J. Microstructure functions for random media with impenetrable particles[J]. Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,1999,60(5):5788-5794. [31] CHAMIS C C. Mechanics of composite materials: Past, present and future[J]. Journal of Composites Technology and Research,1989,11(1):3-14. doi: 10.1520/CTR10143J [32] FEIH S, MOURITZ A P. Tensile properties of carbon fibres and carbon fibre-polymer composites in fire[J]. Compo-sites Part A: Applied Science and Manufacturing,2012,43(5):765-772. doi: 10.1016/j.compositesa.2011.06.016 [33] 中国国家标准化管理委员会. 碳/碳复合材料拉伸性能试验方法: GB/T 33501−2017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of the People’s Republic of China. Test method for tensile properties of C/C compo-sites: GB/T 33501−2017[S]. Beijing: China Standards Press, 2017(in Chinese).