Transition metal and phosphorus co-doped porous carbon as electrocatalyst for oxygen reduction
-
摘要: 碳基材料作为非贵金属催化剂具有导电性能高、稳定性能好、价格低廉、环境友好等优点,在燃料电池阴极催化剂领域中引起了广泛的关注,尤其是过渡金属和异原子共掺杂能够显著提高碳材料的氧气还原催化活性。本文采用聚醚(F127)作为软模版,苯酚、甲醛作为碳源,四苯基溴化膦作为磷源,硝酸盐作为过渡金属来源,通过挥发溶剂自组装及高温煅烧过程制备了过渡金属(Co、Fe、Ni、Mn)和磷(P)共掺杂多孔碳材料(TM-P-C)。通过旋转环盘电极研究了TM-P-C在0.1 mol/L KOH电解液中的氧气还原电催化性能。研究结果表明:TM-P-C催化剂具有较高的氧化还原反应(ORR)电催化性能,其ORR活性为P-Co-C>P-Ni-C>P-Fe-C>P-Mn-C,其中P-Co-C的ORR电催化性能可与商业20wt%Pt/C催化剂相媲美,其电流密度与20wt%Pt/C催化剂的电流密度相当,与20wt%Pt/C仅存在66 mV的半波电位差,表现为ORR的4e–转移途径。制备的TM-P-C催化剂所具有的较高氧气还原电催化活性主要来自于过渡金属和P原子之间的协同作用。此外,TM-P-C催化剂表现出优异的长期稳定性和抗甲醇毒化性能,优于商业化20wt%Pt/C催化剂。Abstract: Carbon-based materials, as non-noble catalysts, have attracted extensive attention in the field of cathode catalysts for fuel cells due to their high conductivity, long-term stability, low-cost and environmental friendliness. Especially, the oxygen reduction reaction (ORR) activity of carbon materials can be significantly improved after co-doping with transition metal and heteroatoms. In this work, transition metal (Co, Fe, Ni, Mn) and phosphorus (P) co-doped porous carbon (TM-P-C) was prepared via self-assembly method combined with a carbonization process, in which polyether (F127) was introduced as soft template, phenol and formaldehyde as carbon precursor, tetraphenylphosphine bromide as phosphorus source, and nitrate as transition metal source. The electrocatalytic activity of TM-P-C for ORR in alkaline electrolyte was studied by using the rotating ring-disk electrode (RRDE) technique. The results reveal that TM-P-C exhibits high electrocatalytic performance for ORR in 0.1 mol/L KOH, and the activity follows P-Co-C>P-Ni-C>P-Fe-C>P-Mn-C. Moreover, the ORR performance of P-Co-C is compared to that of commercial 20wt%Pt/C catalyst. The diffusion limiting current density of P-Co-C reaches that of 20wt%Pt/C and a negative shift of about 66 mV exists in the half-wave potential of P-Co-C as compared to 20wt%Pt/C, indicating the four-electron pathway during the ORR. The enhancement in the activity for ORR is mainly attributed to the synergistic effect of P and transition metal doping in carbon of TM-P-C. Moreover, TM-P-C shows excellent long-term stability and methanol toxicity resistance, superior to that of commercial 20wt%Pt/C.
-
Key words:
- transition metal /
- phosphorus /
- co-doping /
- porous carbon /
- non-precious metal /
- oxygen reduction reaction
-
图 5 (a) P-Co-C、P-Ni-C、P-Fe-C和P-Mn-C在N2饱和0.1 mol/L KOH及扫速10 mV·s−1下的循环伏安曲线;(b) O2饱和0.1 mol/L KOH 及转速1600 r/min条件下测得的线性扫描伏安曲线;(c)转移电子数n;(d)中间产物
Figure 5. (a) CVs of P-Co-C, P-Ni-C, P-Fe-C and P-Mn-C in N2-saturated 0.1 mol/L KOH with a scan rate of 10 mV·s−1; (b) LSVs of P-Co-C, P-Ni-C, P-Fe-C and P-Mn-C in O2-saturated 0.1 mol/L KOH with a scan rate of 10 mV·s−1 at rotating speed of 1600 r/min; (c) Electron transfer number n; (d) Determined peroxide percentage
图 7 P-Co-C、P-Ni-C、P-Fe-C、P-Mn-C和商业化Pt/C催化剂氧气还原反应计时电流响应曲线(a)及抗甲醇毒化性能曲线(b)(O2饱和0.1 mol/L KOH、−0.3 V恒电压、扫速10 mV·s−1、转速为1600 r/min)
Figure 7. Current-time (i-t) chronoamperometric responses (a) for the ORR of P-Co-C, P-Ni-C, P-Fe-C, P-Mn-C and commercial Pt/C and chronoamperometric response (b) upon addition of 3 mol/L methanol into O2-saturated 0.1 mol/L KOH at −0.3 V with a scan rate of 10 mV·s−1 and a rotating speed of 1600 r/min
-
[1] CHIU Y S P, LIAN J H, CHIU V, et al. Mathematical modeling for a multiproduct manufacturing system featuring postponement, external suppliers, overtime, and scrap[J]. International Journal of Industrial Engineering Computations,2020,13:1-12. [2] MA M J, YANG X X, QIAO J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry,2021,56:209-222. doi: 10.1016/j.jechem.2020.08.013 [3] LYU D, YAO S X, BAHARI Y, et al. In situ molecular-level synthesis of N, S co-doped carbon as efficient metal-free oxygen redox electrocatalysts for rechargeable Zn-air batteries[J]. Applied Materials Today,2020,20:100737-100747. doi: 10.1016/j.apmt.2020.100737 [4] LIU T, ZHANG L M, TIAN Y. Earthworm-like N, S-doped carbon tube-encapsulated Co9S8 nanocomposites derived from nanoscaled metal-organic frameworks for highly efficient bifunctional oxygen catalysis[J]. Journal of Materials Chemistry A,2018,6:5935-5943. doi: 10.1039/C7TA11122C [5] AMIJNU I S, PU Z H, LIU X B, et al. Multifunctional Mo-N/C@MoS2 electro-catalysts for HER, OER, ORR, and Zn-air batteries[J]. Advanced Functional Material,2017,27:1702300-1702311. doi: 10.1002/adfm.201702300 [6] WEI J, HU Y X, LIANG Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Material,2015,25:5768-5777. doi: 10.1002/adfm.201502311 [7] LI J, QIN X P, HOU P X, et al. Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts[J]. Carbon,2019,147:303-311. doi: 10.1016/j.carbon.2019.01.018 [8] ZHAO Y, KAMYIYA K, HASHIMOTO K, et al. Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction[J]. Journal of Physical Chemistry C,2015,119:2583-2588. doi: 10.1021/jp511515q [9] QIAN Y H, HU Z G, GE X M. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries[J]. Carbon,2017,111:641-650. doi: 10.1016/j.carbon.2016.10.046 [10] ZENG K, SU J M, CAO X C, et al. B, N co-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. Journal of Alloys and Compounds,2020,824:153908-153914. doi: 10.1016/j.jallcom.2020.153908 [11] ZHANG D, SUN P P, ZUO Z, et al. N, P-co-doped carbon nanotubes coupled with Co2p nanoparticles as bifunctional oxygen electrocatalyst[J]. Journal of Electroanalytical Chemistry,2020,871:114327-114335. doi: 10.1016/j.jelechem.2020.114327 [12] HUANG N, YANG L, ZHANG M Y, et al. Cobalt-embedded N-doped carbon arrays derived in situ as trifunctional catalyst toward hydrogen and oxygen evolution, and oxygen reduction[J]. ChemElectroChem,2019,6:4522-4532. doi: 10.1002/celc.201901106 [13] QUÍLEZ-BERMEJ J, GONZALEZ-GAITAN C, EMILIA M, et al. Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR-Some insights about the nature of the active sites[J]. Carbon,2017,119:62-71. doi: 10.1016/j.carbon.2017.04.015 [14] SON S, LIM D, NAM D, et al. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction[J]. Journal of Solid State Chemistry,2019,274:237-242. doi: 10.1016/j.jssc.2019.03.036 [15] ZHANG W M, YAO X Y, ZHOU S N, et al. ZIF-8/ZIF-67-derived co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst[J]. Small,2018,14:1800423-1800430. doi: 10.1002/smll.201800423 [16] YUAN H L, WANG Y Q, ZHOU S M. Low-temperature preparation of superparamagnetic CoFe2O4 microspheres with high saturation magnetization[J]. Nanoscale Research Letters,2010,5:1817-1821. doi: 10.1007/s11671-010-9718-7 [17] LI J S, LI S L, TANG Y J, et al. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER[J]. Chemical Communications,2015,51:2710-2713. doi: 10.1039/C4CC09062D [18] SHARMA Y, SHARMA N, RAO G V S, et al. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries[J]. Solid State Ionics,2008,179:587-597. doi: 10.1016/j.ssi.2008.04.007 [19] OKU M, HIROKAWA K. X-ray photoelectron spectra of inequivalent atoms in inorganic compounds[J]. Journal of Solid State Chemistry,1979,30:45-53. doi: 10.1016/0022-4596(79)90128-2 [20] XIAO J W, YANG S. Bio-inspired synthesis of NaCl-type CoxNi1-xO (0 ≤ x < 1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors[J]. Journal of Material Chemistry,2012,22:12253-12262. doi: 10.1039/c2jm31057k [21] FU Y Y, XU L, ZHAO W K, et al. Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode[J]. Applied Surface Science,2015,357:2013-2021. doi: 10.1016/j.apsusc.2015.09.176 [22] MA S C, SUN L Q, CONG L N. Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry C,2013,117:25890-25897. doi: 10.1021/jp407576q [23] WU J, YANG Z R, SUN Q J, et al. Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction[J]. Electrochimica Acta,2014,127:53-60. doi: 10.1016/j.electacta.2014.02.016