留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属和磷共掺杂多孔碳作为氧气还原电催化剂

万泽远 李桂林 吴娇

万泽远, 李桂林, 吴娇. 过渡金属和磷共掺杂多孔碳作为氧气还原电催化剂[J]. 复合材料学报, 2023, 40(2): 844-851. doi: 10.13801/j.cnki.fhclxb.20220228.002
引用本文: 万泽远, 李桂林, 吴娇. 过渡金属和磷共掺杂多孔碳作为氧气还原电催化剂[J]. 复合材料学报, 2023, 40(2): 844-851. doi: 10.13801/j.cnki.fhclxb.20220228.002
WAN Zeyuan, LI Guilin, WU Jiao. Transition metal and phosphorus co-doped porous carbon as electrocatalyst for oxygen reduction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 844-851. doi: 10.13801/j.cnki.fhclxb.20220228.002
Citation: WAN Zeyuan, LI Guilin, WU Jiao. Transition metal and phosphorus co-doped porous carbon as electrocatalyst for oxygen reduction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 844-851. doi: 10.13801/j.cnki.fhclxb.20220228.002

过渡金属和磷共掺杂多孔碳作为氧气还原电催化剂

doi: 10.13801/j.cnki.fhclxb.20220228.002
基金项目: 山西省基础研究计划项目(201901D211157);山西省高校科技创新项目(2020L0044)Shanxi Basic Research Program Project (201901D211157); Science and Technology Innovation Project of Colleges and Universities in Shanxi Province (2020L0044)
详细信息
    通讯作者:

    吴娇,博士,副教授,硕士生导师,主要研究方向为高性能电催化材料 E-mail:jiaow@sxu.edu.cn

  • 中图分类号: TM911.4

Transition metal and phosphorus co-doped porous carbon as electrocatalyst for oxygen reduction

  • 摘要: 碳基材料作为非贵金属催化剂具有导电性能高、稳定性能好、价格低廉、环境友好等优点,在燃料电池阴极催化剂领域中引起了广泛的关注,尤其是过渡金属和异原子共掺杂能够显著提高碳材料的氧气还原催化活性。本文采用聚醚(F127)作为软模版,苯酚、甲醛作为碳源,四苯基溴化膦作为磷源,硝酸盐作为过渡金属来源,通过挥发溶剂自组装及高温煅烧过程制备了过渡金属(Co、Fe、Ni、Mn)和磷(P)共掺杂多孔碳材料(TM-P-C)。通过旋转环盘电极研究了TM-P-C在0.1 mol/L KOH电解液中的氧气还原电催化性能。研究结果表明:TM-P-C催化剂具有较高的氧化还原反应(ORR)电催化性能,其ORR活性为P-Co-C>P-Ni-C>P-Fe-C>P-Mn-C,其中P-Co-C的ORR电催化性能可与商业20wt%Pt/C催化剂相媲美,其电流密度与20wt%Pt/C催化剂的电流密度相当,与20wt%Pt/C仅存在66 mV的半波电位差,表现为ORR的4e转移途径。制备的TM-P-C催化剂所具有的较高氧气还原电催化活性主要来自于过渡金属和P原子之间的协同作用。此外,TM-P-C催化剂表现出优异的长期稳定性和抗甲醇毒化性能,优于商业化20wt%Pt/C催化剂。

     

  • 图  1  P-Co-C (a)、P-Fe-C (b),P-Ni-C (c)、P-Mn-C (d)的SEM图像

    Figure  1.  SEM images of P-Co-C (a), P-Fe-C (b), P-Ni-C (c) and P-Mn-C (d)

    图  2  P-Co-C、P-Fe-C、P-Ni-C和P-Mn-C样品的XRD图谱(a)和Raman图谱(b)

    Figure  2.  XRD patterns (a) and Raman spectra (b) of P-Co-C, P-Fe-C, P-Ni-C and P-Mn-C

    图  3  P-Co-C、P-Ni-C、P-Fe-C和P-Mn-C样品的N2吸脱附曲线(a)和相对应孔径分布(b)

    Figure  3.  N2 adsorption and desorption isotherm (a) and the corresponding pore size distribution curves (b) of P-Co-C, P-Ni-C, P-Fe-C and P-Mn-C

    图  4  Co2p(a)、Fe2p(b)、Ni2p(c)和Mn2p(d)高分辨XPS图谱

    Sat.—Satellite peak

    Figure  4.  High-resolution XPS spectra of Co2p (a), Fe2p (b), Ni2p (c) and Mn2p (d)

    图  5  (a) P-Co-C、P-Ni-C、P-Fe-C和P-Mn-C在N2饱和0.1 mol/L KOH及扫速10 mV·s−1下的循环伏安曲线;(b) O2饱和0.1 mol/L KOH 及转速1600 r/min条件下测得的线性扫描伏安曲线;(c)转移电子数n;(d)中间产物

    Figure  5.  (a) CVs of P-Co-C, P-Ni-C, P-Fe-C and P-Mn-C in N2-saturated 0.1 mol/L KOH with a scan rate of 10 mV·s−1; (b) LSVs of P-Co-C, P-Ni-C, P-Fe-C and P-Mn-C in O2-saturated 0.1 mol/L KOH with a scan rate of 10 mV·s−1 at rotating speed of 1600 r/min; (c) Electron transfer number n; (d) Determined peroxide percentage

    图  6  P-Co-C、P-Fe-C、P-Ni-C、P-Mn-C、P-C 及Pt/C的塔菲尔曲线

    Figure  6.  Tafel plots of P-Co-C, P-Fe-C, P-Ni-C, P-Mn-C, P-C and Pt/C

    图  7  P-Co-C、P-Ni-C、P-Fe-C、P-Mn-C和商业化Pt/C催化剂氧气还原反应计时电流响应曲线(a)及抗甲醇毒化性能曲线(b)(O2饱和0.1 mol/L KOH、−0.3 V恒电压、扫速10 mV·s−1、转速为1600 r/min)

    Figure  7.  Current-time (i-t) chronoamperometric responses (a) for the ORR of P-Co-C, P-Ni-C, P-Fe-C, P-Mn-C and commercial Pt/C and chronoamperometric response (b) upon addition of 3 mol/L methanol into O2-saturated 0.1 mol/L KOH at −0.3 V with a scan rate of 10 mV·s−1 and a rotating speed of 1600 r/min

  • [1] CHIU Y S P, LIAN J H, CHIU V, et al. Mathematical modeling for a multiproduct manufacturing system featuring postponement, external suppliers, overtime, and scrap[J]. International Journal of Industrial Engineering Computations,2020,13:1-12.
    [2] MA M J, YANG X X, QIAO J S, et al. Progress and challenges of carbon-fueled solid oxide fuel cells anode[J]. Journal of Energy Chemistry,2021,56:209-222. doi: 10.1016/j.jechem.2020.08.013
    [3] LYU D, YAO S X, BAHARI Y, et al. In situ molecular-level synthesis of N, S co-doped carbon as efficient metal-free oxygen redox electrocatalysts for rechargeable Zn-air batteries[J]. Applied Materials Today,2020,20:100737-100747. doi: 10.1016/j.apmt.2020.100737
    [4] LIU T, ZHANG L M, TIAN Y. Earthworm-like N, S-doped carbon tube-encapsulated Co9S8 nanocomposites derived from nanoscaled metal-organic frameworks for highly efficient bifunctional oxygen catalysis[J]. Journal of Materials Chemistry A,2018,6:5935-5943. doi: 10.1039/C7TA11122C
    [5] AMIJNU I S, PU Z H, LIU X B, et al. Multifunctional Mo-N/C@MoS2 electro-catalysts for HER, OER, ORR, and Zn-air batteries[J]. Advanced Functional Material,2017,27:1702300-1702311. doi: 10.1002/adfm.201702300
    [6] WEI J, HU Y X, LIANG Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Material,2015,25:5768-5777. doi: 10.1002/adfm.201502311
    [7] LI J, QIN X P, HOU P X, et al. Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts[J]. Carbon,2019,147:303-311. doi: 10.1016/j.carbon.2019.01.018
    [8] ZHAO Y, KAMYIYA K, HASHIMOTO K, et al. Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction[J]. Journal of Physical Chemistry C,2015,119:2583-2588. doi: 10.1021/jp511515q
    [9] QIAN Y H, HU Z G, GE X M. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries[J]. Carbon,2017,111:641-650. doi: 10.1016/j.carbon.2016.10.046
    [10] ZENG K, SU J M, CAO X C, et al. B, N co-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. Journal of Alloys and Compounds,2020,824:153908-153914. doi: 10.1016/j.jallcom.2020.153908
    [11] ZHANG D, SUN P P, ZUO Z, et al. N, P-co-doped carbon nanotubes coupled with Co2p nanoparticles as bifunctional oxygen electrocatalyst[J]. Journal of Electroanalytical Chemistry,2020,871:114327-114335. doi: 10.1016/j.jelechem.2020.114327
    [12] HUANG N, YANG L, ZHANG M Y, et al. Cobalt-embedded N-doped carbon arrays derived in situ as trifunctional catalyst toward hydrogen and oxygen evolution, and oxygen reduction[J]. ChemElectroChem,2019,6:4522-4532. doi: 10.1002/celc.201901106
    [13] QUÍLEZ-BERMEJ J, GONZALEZ-GAITAN C, EMILIA M, et al. Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR-Some insights about the nature of the active sites[J]. Carbon,2017,119:62-71. doi: 10.1016/j.carbon.2017.04.015
    [14] SON S, LIM D, NAM D, et al. N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction[J]. Journal of Solid State Chemistry,2019,274:237-242. doi: 10.1016/j.jssc.2019.03.036
    [15] ZHANG W M, YAO X Y, ZHOU S N, et al. ZIF-8/ZIF-67-derived co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst[J]. Small,2018,14:1800423-1800430. doi: 10.1002/smll.201800423
    [16] YUAN H L, WANG Y Q, ZHOU S M. Low-temperature preparation of superparamagnetic CoFe2O4 microspheres with high saturation magnetization[J]. Nanoscale Research Letters,2010,5:1817-1821. doi: 10.1007/s11671-010-9718-7
    [17] LI J S, LI S L, TANG Y J, et al. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER[J]. Chemical Communications,2015,51:2710-2713. doi: 10.1039/C4CC09062D
    [18] SHARMA Y, SHARMA N, RAO G V S, et al. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries[J]. Solid State Ionics,2008,179:587-597. doi: 10.1016/j.ssi.2008.04.007
    [19] OKU M, HIROKAWA K. X-ray photoelectron spectra of inequivalent atoms in inorganic compounds[J]. Journal of Solid State Chemistry,1979,30:45-53. doi: 10.1016/0022-4596(79)90128-2
    [20] XIAO J W, YANG S. Bio-inspired synthesis of NaCl-type CoxNi1-xO (0 ≤ x < 1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors[J]. Journal of Material Chemistry,2012,22:12253-12262. doi: 10.1039/c2jm31057k
    [21] FU Y Y, XU L, ZHAO W K, et al. Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode[J]. Applied Surface Science,2015,357:2013-2021. doi: 10.1016/j.apsusc.2015.09.176
    [22] MA S C, SUN L Q, CONG L N. Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li-O2 batteries[J]. Journal of Physical Chemistry C,2013,117:25890-25897. doi: 10.1021/jp407576q
    [23] WU J, YANG Z R, SUN Q J, et al. Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction[J]. Electrochimica Acta,2014,127:53-60. doi: 10.1016/j.electacta.2014.02.016
  • 加载中
图(7)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  433
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-02-08
  • 录用日期:  2022-02-12
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回