Wearable color-changeable strain sensor based on polyacrylamide organogel
-
摘要: 柔性应变传感器在可穿戴医疗设备、电子皮肤等领域具有广泛的应用前景,然而传统柔性应变传感器只能输出电信号,缺乏对应力应变的直接可视化响应,限制了其在应力预警、健康监测等方面的应用。本文以柔性透明银纳米线(Silver nanowire,AgNW)/硅橡胶薄膜为电极,以浸渍有机电致变色染料和锂离子的聚丙烯酰胺有机凝胶(Polyacrylamide,PAAm)为变色单元,成功制备了一种具有三明治结构的柔性可变色应变传感器。研究结果表明,该PAAm传感器具有优异的拉伸和压缩回弹性及中等应变响应性能(响应灵敏度为0.7),此外它可在外力作用下产生颜色变化,实现对应变的可视化响应。该传感器在交互式可穿戴设备、电子皮肤、防伪、人工假肢和智能机器人等方面具有广阔的应用前景。Abstract: Flexible strain sensor has great potential in medical industry, health care and robotics, etc. However, most flexible strain sensors reported only output electrical signal (e.g. resistance, current and capacitance) in response to external strain, and lack direct notice of external loading, restricting their applications in early warning and health care, etc. In this work, we produced a flexible color-changeable strain sensor by using the silver nanowire (AgNW)/silicone composite film as the transparent electrode and polyacrylamide organogel as the electrochromic component. In addition to the excellent flexibility and moderate strain sensing performance (strain sensitivity of 0.07), the senor obtained has a reversible color transformation in response to external strain via the electrochromic effect. In virtue of these advantages mentioned above, the current sensor has broad applications in interactive wearable devices, electronic skin, anti-counterfeiting, artificial prosthetics and intelligent robots.
-
Key words:
- flexibility /
- transparent electrode /
- electrochromic /
- visualization /
- strain sensor
-
图 3 (a) AgNW的SEM图像;(b)~(f) AgNW/PDMS薄膜的SEM图像;(g) AgNW/PDMS薄膜的表面电阻率;(h) AgNW/PDMS薄膜的光学照片;(i) 氧化铟锡(ITO)和AgNW/PDMS薄膜在可见光区的透光率
Figure 3. (a) SEM image of AgNW; (b)-(f) SEM images of AgNW/PDMS films; (g) Surface resistivity of AgNW/PDMS films; (h) Optical image of AgNW/PDMS films; (i) Optical transmission of Indium tin oxide (ITO) and AgNW/PDMS films
图 5 (a) 聚丙烯酰胺(PAAm)气凝胶的光学照片;(b) PAAm气凝胶的SEM图像;(c) PAAm有机凝胶的光学照片;(d) MBI和PAAm气凝胶的FTIR图谱;(e) PAAm有机凝胶的典型拉伸应力-应变曲线
Figure 5. (a) Optical image of polyacrylamide (PAAm) aerogel; (b) SEM image of PAAm aerogel; (c) Optical image of PAAm orangogel; (d) FTIR spectrum of MBI and PAAm aerogel; (e) Typical tensile stress-strain curve of PAAm organogel
图 6 PAAm传感器的力学特性:(a) 典型拉伸应力-应变曲线;(b) 加载频率为0.1 Hz、1 Hz和10 Hz,加载应变为10%时的循环拉伸应力曲线;(c) 1000次循环拉伸载荷下的应力变化曲线;(d) 典型的压缩应力-应变曲线;(e) 加载频率为0.1 Hz、1 Hz和10 Hz,加载应变为50%时的循环压缩应力曲线;(f) 1000次循环压缩载荷下的应力变化曲线
Figure 6. Mechanical behavior of PAAm sensor: (a) Typical tensile stress-strain curve; (b) Stress under cyclic tensile strain of 10% at the frequency of 0.1, 1 and 10 Hz; (c) Stress under 1000 cycles of tensile loading; (d) Typical compressive stress-strain curve; (e) Stress under cyclic compression strain of 50% at the frequency of 0.1, 1 and 10 Hz; (f) Stress under 1000 cycles of compressive loading
图 7 (a) PAAm传感器的相对电阻变化(RCR)-压缩应变曲线;(b) PAAm传感器对不同频率30%压缩应变的RCR响应曲线;(c) PAAm传感器随电压变化的光学照片;(d) PAAm传感器的循环伏安曲线
Figure 7. (a) Change in relative resistance (RCR)-compression curve of the PAAm sensor; (b) RCR curves of the PAAm sensor response to compressive strain of 30% at 0.1, 1 and 10 Hz; (c) Optical images of the PAAm sensor at varied voltage; (d) Cyclic voltammogram curves of the PAAm sensor
图 8 ((a)、(b)) PAAm传感器用于手腕运动和膝盖运动监测;(c) 传感器用于应变可视化的电路图;(d) 按压模式下传感器的颜色变化;(e) 手指按压后传感器应变分布的有限元模拟
Figure 8. ((a), (b)) PAAm sensor to wrist movement and knee movement; (c) Circuit diagram of the PAAm sensor for direct visualization of strain; (d) Color change of the sensor under pressure; (e) Finite element simulation of the strain distribution of the PAAm sensor pressed by a thumb
R0—Initial resistance; RL—Resistance load
表 1 AgNW/PDMS复合薄膜的命名
Table 1. Naming of AgNW/PDMS films
Sample Concentration of AgNW/(mg·mL−1) AgNW-1/PDMS 0.01 AgNW-1.5/PDMS 0.015 AgNW-2/PDMS 0.02 AgNW-2.5/PDMS 0.025 AgNW-3/PDMS 0.03 -
[1] LIU Y, FU Y, LI Y, et al. Bio-inspired highly flexible dual-mode electronic cilia[J]. Journal of Materials Chemistry B,2018,6(6):896-902. doi: 10.1039/C7TB03078A [2] CHEN J, ZHANG J, LUO Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. ACS Applied Materials & Interfaces,2020,12(19):22200-22211. [3] GUL J, SAJID M, CHOI K H. Retracted article: 3D printed highly flexible strain sensor based on TPU-graphene composite for feedback from high speed robotic applications[J]. Journal of Materials Chemistry C,2019,7(16):4692-4701. doi: 10.1039/C8TC03423K [4] QU M, QIN Y, SUN Y, et al. Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black[J]. ACS Applied Materials & Interfaces,2020,12(37):42140-42152. [5] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.HU H L, MA Y L, ZHANG F, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese). [6] 金凡, 吕大伍, 张天成, 等. 基于微结构的柔性压力传感器设计、制备及性能[J]. 复合材料学报, 2021, 38(10):3133-3150.JIN F, LV D W, ZHANG T C, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica,2021,38(10):3133-3150(in Chinese). [7] QIAN C, XIAO T, CHEN Y, et al. 3D printed reduced graphene oxide/elastomer resin composite with structural modulated sensitivity for flexible strain sensor[J]. Advanced Engineering Materials,2021:2101068. doi: 10.1002/adem.202101068 [8] SUN X, QIN Z, YE L, et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chemical Engineering Journal,2020,382:122832. doi: 10.1016/j.cej.2019.122832 [9] MENG Q, LIU Z, HAN S, et al. A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film[J]. Journal of Materials Science,2019,54(15):10856-10870. doi: 10.1007/s10853-019-03650-1 [10] MAJIDI C. Soft robotics: A perspective—current trends and prospects for the future[J]. Soft Robotics,2013,1(1):5-11. [11] HONG J, WU J, MAO Y, et al. Transferred laser-scribed graphene-based durable and permeable strain sensor[J]. Advanced Materials Interfaces,2021,8(20):2100625. doi: 10.1002/admi.202100625 [12] EMON M, RUSSELL A, NADKARNI G, et al. A low-cost visual grasp aid for neuropathy patients using flexible three-dimensional printed tactile sensors[J]. Journal of Medical Devices,2021,15(3):034502-034508. doi: 10.1115/1.4051247 [13] WANG D, LI X, TIAN H, et al. Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity[J]. Applied Materials Today,2021,25:101247. doi: 10.1016/j.apmt.2021.101247 [14] QIU Z, ZHAO W, CAO M, et al. Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen[J]. Advanced Materials,2018,30(44):1803924. doi: 10.1002/adma.201803924 [15] 姜晓帆, 胡继祥, 韩松德, 等. 一例具有室温光致变色和光磁耦合的稀土膦酸链 [C]//中国化学会2019年中西部地区无机化学化工学术研讨会会议论文集, 2019: 6-7.JIANG X F, HU J X, HAN S D, et al. A case of rare earth phosphonic acid chains with room temperature photochromism and photomagnetic coupling [C]//Proceedings of the 2019 Conference on Inorganic Chemistry and Chemical Engineering in the Central and Western Regions of the Chinese Chemical Society, 2019: 6 -7(in Chinese). [16] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10):3412-3423.QIN C Y, GAO Y, WANG C, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica,2021,38(10):3412-3423(in Chinese). [17] 杨海英, 郭蕊, 任泽春, 等. 抗氧剂/光稳定剂对3D打印光致变色木塑复合材料性能的影响[J]. 复合材料学报, 2021, 38(3):761-769.YANG H Y, GUO R, REN Z C, et al. Effect of antioxidant/light stabilizer on properties of 3D printed photochromic wood-plastic composites[J]. Acta Materiae Compositae Sinica,2021,38(3):761-769(in Chinese). [18] ZHANG Y, REN J, WU Y, et al. Application of moisture-induced discoloration material Nickel(II) iodide in humidity detection[J]. Sensors and Actuators B: Chemical,2020,309:127769. doi: 10.1016/j.snb.2020.127769 [19] LIU L, XU C, YOSHIDA A, et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis[J]. Advanced Materials Technologies,2019,4(1):1800336. doi: 10.1002/admt.201800336 [20] XU H, ZHANG M, LU Y, et al. Dual-mode wearable strain sensor sased on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions[J]. Advanced Materials Technologies,2020,5(2):1901056. doi: 10.1002/admt.201901056 [21] MAO J, ZHAO C, LIU L, et al. Adhesive, transparent, stretchable, and strain-sensitive hydrogel as flexible strain sensor[J]. Composites Communications,2021,25:100733. doi: 10.1016/j.coco.2021.100733 [22] SU L, JIANG Z, TIAN Z, et al. Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence[J]. Nano Energy,2021,79:105431. doi: 10.1016/j.nanoen.2020.105431 [23] HOLTZ J H, ASHER S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature,1997,389(6653):829-832. doi: 10.1038/39834 [24] WANG W, MATSUBARA T, TAKAO Y, et al. Visualization of stress distribution using smart mechanoluminescence sensor[J]. Materials Science Forum,2009,614:169-174. doi: 10.4028/www.scientific.net/MSF.614.169 [25] LIU Y, LIU Q, LONG J, et al. Bioinspired color-changeable organogel tactile sensor with excellent overall performance[J]. ACS Applied Materials & Interfaces,2020,12(44):49866-49875. [26] GÉLINAS B, DAS D, ROCHEFORT D. Air-stable, self-bleaching electrochromic device based on viologen- and ferrocene-containing triflimide redox ionic liquids[J]. ACS Applied Materials & Interfaces,2017,9(34):28726-28736. [27] MARTI´ A A, PARALITICI G, MALDONADO L, et al. Photophysical characterization of methyl viologen ion-exchanged within a zirconium phosphate framework[J]. Inorganica Chimica Acta,2007,360(5):1535-1542. doi: 10.1016/j.ica.2006.08.052 [28] 陈和生, 邵景昌. 聚丙烯酰胺的红外光谱分析[J]. 分析仪器, 2011(3):36-40. doi: 10.3969/j.issn.1001-232X.2011.03.009CHEN H S, SHAO J C. Infrared spectroscopy analysis of polyacrylamide[J]. Analytical Instruments,2011(3):36-40(in Chinese). doi: 10.3969/j.issn.1001-232X.2011.03.009