留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚丙烯酰胺有机凝胶的柔性可变色应变传感器

李瑶 刘群 黄培 李元庆 付绍云

李瑶, 刘群, 黄培, 等. 基于聚丙烯酰胺有机凝胶的柔性可变色应变传感器[J]. 复合材料学报, 2022, 39(6): 2716-2723. doi: 10.13801/j.cnki.fhclxb.20220225.005
引用本文: 李瑶, 刘群, 黄培, 等. 基于聚丙烯酰胺有机凝胶的柔性可变色应变传感器[J]. 复合材料学报, 2022, 39(6): 2716-2723. doi: 10.13801/j.cnki.fhclxb.20220225.005
LI Yao, LIU Qun, HUANG Pei, et al. Wearable color-changeable strain sensor based on polyacrylamide organogel[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2716-2723. doi: 10.13801/j.cnki.fhclxb.20220225.005
Citation: LI Yao, LIU Qun, HUANG Pei, et al. Wearable color-changeable strain sensor based on polyacrylamide organogel[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2716-2723. doi: 10.13801/j.cnki.fhclxb.20220225.005

基于聚丙烯酰胺有机凝胶的柔性可变色应变传感器

doi: 10.13801/j.cnki.fhclxb.20220225.005
基金项目: 国家自然科学基金(11672049;U1837204;11632004;51803016)
详细信息
    通讯作者:

    付绍云,博士,教授,博士生导师,研究方向为航空复合材料 E-mail:syfu@cqu.edu.cn

  • 中图分类号: TB333

Wearable color-changeable strain sensor based on polyacrylamide organogel

  • 摘要: 柔性应变传感器在可穿戴医疗设备、电子皮肤等领域具有广泛的应用前景,然而传统柔性应变传感器只能输出电信号,缺乏对应力应变的直接可视化响应,限制了其在应力预警、健康监测等方面的应用。本文以柔性透明银纳米线(Silver nanowire,AgNW)/硅橡胶薄膜为电极,以浸渍有机电致变色染料和锂离子的聚丙烯酰胺有机凝胶(Polyacrylamide,PAAm)为变色单元,成功制备了一种具有三明治结构的柔性可变色应变传感器。研究结果表明,该PAAm传感器具有优异的拉伸和压缩回弹性及中等应变响应性能(响应灵敏度为0.7),此外它可在外力作用下产生颜色变化,实现对应变的可视化响应。该传感器在交互式可穿戴设备、电子皮肤、防伪、人工假肢和智能机器人等方面具有广阔的应用前景。

     

  • 图  1  1-甲基-4,4'-联吡啶碘化物(MBI)合成反应图[26]

    Figure  1.  Synthesis of 1-methyl-4,4'-bipyridine iodide (MBI)[26]

    图  2  银纳米线(AgNW)/聚二甲基硅氧烷(PDMS)透明导电薄膜的制备流程图

    Figure  2.  Synthesis of the transparent and conductive silver nanowires (AgNW)/polydimethylsiloxane (PDMS) film

    图  3  (a) AgNW的SEM图像;(b)~(f) AgNW/PDMS薄膜的SEM图像;(g) AgNW/PDMS薄膜的表面电阻率;(h) AgNW/PDMS薄膜的光学照片;(i) 氧化铟锡(ITO)和AgNW/PDMS薄膜在可见光区的透光率

    Figure  3.  (a) SEM image of AgNW; (b)-(f) SEM images of AgNW/PDMS films; (g) Surface resistivity of AgNW/PDMS films; (h) Optical image of AgNW/PDMS films; (i) Optical transmission of Indium tin oxide (ITO) and AgNW/PDMS films

    图  4  (a) 纯PDMS和AgNW-1.5/PDMS薄膜的典型拉伸应力-应变曲线;(b) AgNW-1.5/PDMS薄膜在1000次拉伸循环载荷作用下的力学响应

    Figure  4.  (a) Typical tensile stress-strain curves of the pure PMDS and AgNW-1.5/PDMS film; (b) Mechanical behavior of AgNW-1.5/PDMS film under 1000 cycles of tensile loading

    图  5  (a) 聚丙烯酰胺(PAAm)气凝胶的光学照片;(b) PAAm气凝胶的SEM图像;(c) PAAm有机凝胶的光学照片;(d) MBI和PAAm气凝胶的FTIR图谱;(e) PAAm有机凝胶的典型拉伸应力-应变曲线

    Figure  5.  (a) Optical image of polyacrylamide (PAAm) aerogel; (b) SEM image of PAAm aerogel; (c) Optical image of PAAm orangogel; (d) FTIR spectrum of MBI and PAAm aerogel; (e) Typical tensile stress-strain curve of PAAm organogel

    图  6  PAAm传感器的力学特性:(a) 典型拉伸应力-应变曲线;(b) 加载频率为0.1 Hz、1 Hz和10 Hz,加载应变为10%时的循环拉伸应力曲线;(c) 1000次循环拉伸载荷下的应力变化曲线;(d) 典型的压缩应力-应变曲线;(e) 加载频率为0.1 Hz、1 Hz和10 Hz,加载应变为50%时的循环压缩应力曲线;(f) 1000次循环压缩载荷下的应力变化曲线

    Figure  6.  Mechanical behavior of PAAm sensor: (a) Typical tensile stress-strain curve; (b) Stress under cyclic tensile strain of 10% at the frequency of 0.1, 1 and 10 Hz; (c) Stress under 1000 cycles of tensile loading; (d) Typical compressive stress-strain curve; (e) Stress under cyclic compression strain of 50% at the frequency of 0.1, 1 and 10 Hz; (f) Stress under 1000 cycles of compressive loading

    图  7  (a) PAAm传感器的相对电阻变化(RCR)-压缩应变曲线;(b) PAAm传感器对不同频率30%压缩应变的RCR响应曲线;(c) PAAm传感器随电压变化的光学照片;(d) PAAm传感器的循环伏安曲线

    Figure  7.  (a) Change in relative resistance (RCR)-compression curve of the PAAm sensor; (b) RCR curves of the PAAm sensor response to compressive strain of 30% at 0.1, 1 and 10 Hz; (c) Optical images of the PAAm sensor at varied voltage; (d) Cyclic voltammogram curves of the PAAm sensor

    图  8  ((a)、(b)) PAAm传感器用于手腕运动和膝盖运动监测;(c) 传感器用于应变可视化的电路图;(d) 按压模式下传感器的颜色变化;(e) 手指按压后传感器应变分布的有限元模拟

    Figure  8.  ((a), (b)) PAAm sensor to wrist movement and knee movement; (c) Circuit diagram of the PAAm sensor for direct visualization of strain; (d) Color change of the sensor under pressure; (e) Finite element simulation of the strain distribution of the PAAm sensor pressed by a thumb

    R0—Initial resistance; RL—Resistance load

    表  1  AgNW/PDMS复合薄膜的命名

    Table  1.   Naming of AgNW/PDMS films

    Sample Concentration of AgNW/(mg·mL−1)
    AgNW-1/PDMS 0.01
    AgNW-1.5/PDMS 0.015
    AgNW-2/PDMS 0.02
    AgNW-2.5/PDMS 0.025
    AgNW-3/PDMS 0.03
    下载: 导出CSV
  • [1] LIU Y, FU Y, LI Y, et al. Bio-inspired highly flexible dual-mode electronic cilia[J]. Journal of Materials Chemistry B,2018,6(6):896-902. doi: 10.1039/C7TB03078A
    [2] CHEN J, ZHANG J, LUO Z, et al. Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring[J]. ACS Applied Materials & Interfaces,2020,12(19):22200-22211.
    [3] GUL J, SAJID M, CHOI K H. Retracted article: 3D printed highly flexible strain sensor based on TPU-graphene composite for feedback from high speed robotic applications[J]. Journal of Materials Chemistry C,2019,7(16):4692-4701. doi: 10.1039/C8TC03423K
    [4] QU M, QIN Y, SUN Y, et al. Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black[J]. ACS Applied Materials & Interfaces,2020,12(37):42140-42152.
    [5] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.

    HU H L, MA Y L, ZHANG F, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese).
    [6] 金凡, 吕大伍, 张天成, 等. 基于微结构的柔性压力传感器设计、制备及性能[J]. 复合材料学报, 2021, 38(10):3133-3150.

    JIN F, LV D W, ZHANG T C, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica,2021,38(10):3133-3150(in Chinese).
    [7] QIAN C, XIAO T, CHEN Y, et al. 3D printed reduced graphene oxide/elastomer resin composite with structural modulated sensitivity for flexible strain sensor[J]. Advanced Engineering Materials,2021:2101068. doi: 10.1002/adem.202101068
    [8] SUN X, QIN Z, YE L, et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness[J]. Chemical Engineering Journal,2020,382:122832. doi: 10.1016/j.cej.2019.122832
    [9] MENG Q, LIU Z, HAN S, et al. A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film[J]. Journal of Materials Science,2019,54(15):10856-10870. doi: 10.1007/s10853-019-03650-1
    [10] MAJIDI C. Soft robotics: A perspective—current trends and prospects for the future[J]. Soft Robotics,2013,1(1):5-11.
    [11] HONG J, WU J, MAO Y, et al. Transferred laser-scribed graphene-based durable and permeable strain sensor[J]. Advanced Materials Interfaces,2021,8(20):2100625. doi: 10.1002/admi.202100625
    [12] EMON M, RUSSELL A, NADKARNI G, et al. A low-cost visual grasp aid for neuropathy patients using flexible three-dimensional printed tactile sensors[J]. Journal of Medical Devices,2021,15(3):034502-034508. doi: 10.1115/1.4051247
    [13] WANG D, LI X, TIAN H, et al. Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity[J]. Applied Materials Today,2021,25:101247. doi: 10.1016/j.apmt.2021.101247
    [14] QIU Z, ZHAO W, CAO M, et al. Dynamic visualization of stress/strain distribution and fatigue crack propagation by an organic mechanoresponsive AIE luminogen[J]. Advanced Materials,2018,30(44):1803924. doi: 10.1002/adma.201803924
    [15] 姜晓帆, 胡继祥, 韩松德, 等. 一例具有室温光致变色和光磁耦合的稀土膦酸链 [C]//中国化学会2019年中西部地区无机化学化工学术研讨会会议论文集, 2019: 6-7.

    JIANG X F, HU J X, HAN S D, et al. A case of rare earth phosphonic acid chains with room temperature photochromism and photomagnetic coupling [C]//Proceedings of the 2019 Conference on Inorganic Chemistry and Chemical Engineering in the Central and Western Regions of the Chinese Chemical Society, 2019: 6 -7(in Chinese).
    [16] 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10):3412-3423.

    QIN C Y, GAO Y, WANG C, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica,2021,38(10):3412-3423(in Chinese).
    [17] 杨海英, 郭蕊, 任泽春, 等. 抗氧剂/光稳定剂对3D打印光致变色木塑复合材料性能的影响[J]. 复合材料学报, 2021, 38(3):761-769.

    YANG H Y, GUO R, REN Z C, et al. Effect of antioxidant/light stabilizer on properties of 3D printed photochromic wood-plastic composites[J]. Acta Materiae Compositae Sinica,2021,38(3):761-769(in Chinese).
    [18] ZHANG Y, REN J, WU Y, et al. Application of moisture-induced discoloration material Nickel(II) iodide in humidity detection[J]. Sensors and Actuators B: Chemical,2020,309:127769. doi: 10.1016/j.snb.2020.127769
    [19] LIU L, XU C, YOSHIDA A, et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis[J]. Advanced Materials Technologies,2019,4(1):1800336. doi: 10.1002/admt.201800336
    [20] XU H, ZHANG M, LU Y, et al. Dual-mode wearable strain sensor sased on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions[J]. Advanced Materials Technologies,2020,5(2):1901056. doi: 10.1002/admt.201901056
    [21] MAO J, ZHAO C, LIU L, et al. Adhesive, transparent, stretchable, and strain-sensitive hydrogel as flexible strain sensor[J]. Composites Communications,2021,25:100733. doi: 10.1016/j.coco.2021.100733
    [22] SU L, JIANG Z, TIAN Z, et al. Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence[J]. Nano Energy,2021,79:105431. doi: 10.1016/j.nanoen.2020.105431
    [23] HOLTZ J H, ASHER S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J]. Nature,1997,389(6653):829-832. doi: 10.1038/39834
    [24] WANG W, MATSUBARA T, TAKAO Y, et al. Visualization of stress distribution using smart mechanoluminescence sensor[J]. Materials Science Forum,2009,614:169-174. doi: 10.4028/www.scientific.net/MSF.614.169
    [25] LIU Y, LIU Q, LONG J, et al. Bioinspired color-changeable organogel tactile sensor with excellent overall performance[J]. ACS Applied Materials & Interfaces,2020,12(44):49866-49875.
    [26] GÉLINAS B, DAS D, ROCHEFORT D. Air-stable, self-bleaching electrochromic device based on viologen- and ferrocene-containing triflimide redox ionic liquids[J]. ACS Applied Materials & Interfaces,2017,9(34):28726-28736.
    [27] MARTI´ A A, PARALITICI G, MALDONADO L, et al. Photophysical characterization of methyl viologen ion-exchanged within a zirconium phosphate framework[J]. Inorganica Chimica Acta,2007,360(5):1535-1542. doi: 10.1016/j.ica.2006.08.052
    [28] 陈和生, 邵景昌. 聚丙烯酰胺的红外光谱分析[J]. 分析仪器, 2011(3):36-40. doi: 10.3969/j.issn.1001-232X.2011.03.009

    CHEN H S, SHAO J C. Infrared spectroscopy analysis of polyacrylamide[J]. Analytical Instruments,2011(3):36-40(in Chinese). doi: 10.3969/j.issn.1001-232X.2011.03.009
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  552
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 修回日期:  2022-01-16
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回