留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子取向调控对有机太阳电池器件性能的提升

郭丰 钟天 喻康林 雷诗云 张明睿 肖标 胡黎文 王亮

郭丰, 钟天, 喻康林, 等. 分子取向调控对有机太阳电池器件性能的提升[J]. 复合材料学报, 2022, 39(5): 1986-1994. doi: 10.13801/j.cnki.fhclxb.20220222.001
引用本文: 郭丰, 钟天, 喻康林, 等. 分子取向调控对有机太阳电池器件性能的提升[J]. 复合材料学报, 2022, 39(5): 1986-1994. doi: 10.13801/j.cnki.fhclxb.20220222.001
GUO Feng, ZHONG Tian, YU Kanglin, et al. Improved device performance enabled by optimized molecular orientation in organic solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1986-1994. doi: 10.13801/j.cnki.fhclxb.20220222.001
Citation: GUO Feng, ZHONG Tian, YU Kanglin, et al. Improved device performance enabled by optimized molecular orientation in organic solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1986-1994. doi: 10.13801/j.cnki.fhclxb.20220222.001

分子取向调控对有机太阳电池器件性能的提升

doi: 10.13801/j.cnki.fhclxb.20220222.001
基金项目: 国家自然科学基金 (52103213;21302064);中央引导地方科技发展专项(2019ZYYD005)
详细信息
    作者简介:

    肖标,博士,副教授,硕士生导师,江汉大学光电化学材料与器件教育部重点实验室。2015年6月获华南理工大学高分子化学与物理专业博士学位。主要从事聚合物太阳能电池及量子点发光二极管相关科研工作,主持国家自然科学基金、中国博士后科学基金、湖北省自然科学基金等课题7项。已在国际一流学术期刊上发表SCI论文30余篇,论文引用次数超过2 000次,授权发明专利8项(E-mail: biaoxiao@jhun.edu.cn

    通讯作者:

    肖标,博士,副教授,硕士生导师,研究方向为光电化学材料与器件 E-mail: biaoxiao@jhun.edu.cn

    胡黎文,博士,讲师,研究方向为共轭光电材料的合成 E-mail: hulw@jhun.edu.cn

    王亮,博士,副教授,硕士生导师,研究方向为新型光电材料的合成 E-mail: wangliang@mail.jhun.edu.cn

  • 中图分类号: TM914.4

Improved device performance enabled by optimized molecular orientation in organic solar cells

  • 摘要: 活性层形貌对有机太阳电池的器件效率有着重要的影响。调控活性层中的分子取向是优化其形貌的方式之一。本文旨在采用Layer-by-Layer (LbL)的方法调控有机太阳电池活性层中分子的取向,进而提升电池器件的效率。通过向电子受体中加入不同的添加剂实现活性层中受体分子(Y6)的取向调节,优化后器件的能量转换效率达到16.2%。利用椭圆偏振光谱和掠入射广角X射线散射(GIWAXS)技术对活性层薄膜进行了表征,结果表明,向受体中加入1, 8-二碘辛烷(DIO)作为添加剂后,活性层中的Y6分子倾向水平取向,向受体中加入氯萘(CN)作为添加剂后,Y6分子倾向于垂直取向。电学和光学表征结果表明,Y6的水平取向增加了器件内激子的分离效率,进而提升了器件的能量转换效率。

     

  • 图  1  (a)器件电流密度-电压曲线图;(b)器件的外量子效率图(EQE);(c)受体分子(Y6)薄膜在添加不同添加剂时的紫外-可见吸收光谱图;(d)通过Layer-by-Layer (LbL)方式制备的聚合物PBDB-T-2F (PM6):Y6薄膜的紫外-可见吸收光谱图,插图为(d)图在长波峰值处的放大图

    Figure  1.  (a) Current density-voltage curve of device; (b) External quantum efficiency (EQE) diagram of the device; (c) UV-vis absorption spectra of acceptor molecule (Y6) film with different additives; (d) UV-vis absorption spectra of PBDB-T-2F (PM6):Y6 films prepared by Layer-by-Layer (LbL) method, Figure (d) is a magnified view at the long wave peak

    图  2  (a) 不同条件制备的薄膜的二维掠入射广角X射线散射图像;(b) 薄膜在面内(In plane)和面外(Out of plane)方向上的积分曲线

    Figure  2.  (a) 2D grazing incidence wide-angle X-ray scattering images of films prepared under different conditions; (b) Integral curves of the film in and out of plane directions

    图  3  PM6:Y6 (a)、PM6:Y6+CN (b)、PM6:Y6+DIO (c)三种薄膜的nk曲线图;(d)三种薄膜中分子取向示意图

    Figure  3.  n and k curves of PM6:Y6 (a), PM6:Y6+CN (b), PM6:Y6+DIO (c) films; (d) Schematic diagram of molecular orientation in three thin films

    no, ne—Refractive indices of light parallel and perpendicular to the plane of incidence; ko, ke—Extinction coefficients of light parallel and perpendicular to the plane of incidence; S—Hermans orientation parameter

    图  4  (a) 器件光生电流-有效电压图;(b) 器件的开路电压-光强关系曲线;器件在较大有效电压(1 V) (c)和较小有效电压(0.1 V) (d)时的光生电流-光强曲线图

    Figure  4.  (a) Photogenerated current-effective voltage diagram of the device; (b) Open-circuit voltage-light intensity relationship curve of the device; Photogenerated current-light intensity curves of the device at a large effective voltage (1 V) (c) and a small effective voltage (0.1 V) (d)

    Veff—Effective voltage; Jph—Photocurrent density

    表  1  器件基本性能参数表

    Table  1.   Basic performance parameters of the device

    PCE/%Voc/VFF/%Jsc/(mA·cm−2)
    PM6:Y615.160.8568.8725.90
    PM6:Y6+CN15.010.8671.6224.36
    PM6:Y6+DIO16.240.8274.8026.35
    Notes: PCE—Power conversion efficiency; Voc—Open-circuit voltage; FF—Fill factor; Jsc—Short-circuit current density.
    下载: 导出CSV
  • [1] LI H, WANG J. Layer-by-Layer processed high-perfor-mance polymer solar cells[J]. Applied Physics Letters,2012,101(26):263901. doi: 10.1063/1.4773515
    [2] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters,1986,48(2):183-185. doi: 10.1063/1.96937
    [3] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science,1995,270(5243):1789. doi: 10.1126/science.270.5243.1789
    [4] LIANG Y, XU Z, XIA J, et al. For the bright future-bulk hetero-junction polymer solar cells with power conversion efficiency of 7.4%[J]. Advance Materials,2010,22(20):135-138. doi: 10.1002/adma.200903528
    [5] LIAO S H, JHUO H J, CHENG Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance[J]. Advance Materials,2013,25(34):4766-4771. doi: 10.1002/adma.201301476
    [6] HE Z, XIAO B, LIU F, et al. Single-junction polymer solar cells with high efficiency and photovoltage[J]. Nature Photonics,2015,9(3):174-179. doi: 10.1038/nphoton.2015.6
    [7] LIN C, LIU J, HE G, et al. Non-linear viscoelastic properties of TATB-based polymer bonded explosives modified by a neutral polymeric bonding agent[J]. RSC Advances,2015,5(45):35811-35820. doi: 10.1039/C5RA05824D
    [8] ZHAO W, LI S, YAO H, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. Journal of the American Chemical Society,2017,139(21):7148-7151. doi: 10.1021/jacs.7b02677
    [9] CHEN D, YAO J, CHEN L, et al. Dye-incorporated poly-naphthalenediimide acceptor for additive-free high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition,2018,57(17):4580-4584. doi: 10.1002/anie.201800035
    [10] YUAN J, ZHANG Y, ZHOU L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring accep-tor with electron-deficient core[J]. Joule,2019,3(4):1140-1151. doi: 10.1016/j.joule.2019.01.004
    [11] LIU Q, JIANG Y, JIN K, et al. 18% Efficiency organic solar cells[J]. Science Bulletin,2020,65(4):272-275. doi: 10.1016/j.scib.2020.01.001
    [12] CUI Y, ZHANG S, LIANG N, et al. Toward efficient polymer solar cells processed by a solution-processed Layer-by-Layer approach[J]. Advanced Materials,2018,30(34):1802499. doi: 10.1002/adma.201802499
    [13] WANG Y, ZHAN X. Layer-by-Layer processed organic solar cells[J]. Advanced Energy Materials,2016,6(17):1600414. doi: 10.1002/aenm.201600414
    [14] AYZNER A L, TASSONE C J, TOLBERT S H, et al. Reapprai-sing the need for bulk heterojunctions in polymer−fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells[J]. Journal of Physical Chemistry C,2009,113(46):20050-20060. doi: 10.1021/jp9050897
    [15] LEE K H, SCHWENN P E, SMITH A R, et al. Morphology of all-solution-processed "bilayer" organic solar cells[J]. Advance Materials,2011,23(6):766-770. doi: 10.1002/adma.201003545
    [16] CHENG P, HOU J, LI Y, et al. Layer-by-Layer solution-processed low-bandgap polymer-PC61BM solar cells with high efficiency[J]. Advanced Energy Materials,2014,4(9):1301349. doi: 10.1002/aenm.201301349
    [17] LI Q, WANG L M, LIU S, et al. Vertical composition distribution and crystallinity regulations enable high-perfor-mance polymer solar cells with >17% efficiency[J]. ACS Energy Letters,2020,5(11):3637-3646. doi: 10.1021/acsenergylett.0c01927
    [18] HU M, ZHANG Y, LIU X, et al. Layer-by-Layer solution-processed organic solar cells with perylene diimides as accep-tors[J]. ACS applied materials & interfaces,2021,13(25):29876-29884.
    [19] SUN R, WU Q, GUO J, et al. A Layer-by-Layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency[J]. Joule,2020,4(2):407-419. doi: 10.1016/j.joule.2019.12.004
    [20] REN M, ZHANG G, CHEN Z, et al. High-performance ter-nary organic solar cells with controllable morphology via sequential Layer-by-Layer deposition[J]. ACS Applied Materials & Interfaces,2020,12(11):13077-13086.
    [21] CHENG C H, WANG J, DU G T, et al. Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode[J]. Applied Physics Letters,2010,97(8):083305. doi: 10.1063/1.3483159
    [22] VOHRA V, KAWASHIMA K, KAKARA T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation[J]. Nature Photonics,2015,9(6):403-408. doi: 10.1038/nphoton.2015.84
    [23] ZHOU K, WU Y, LIU Y, et al. Molecular orientation of polymer acceptor dominates open-circuit voltage losses in all-polymer solar cells[J]. ACS Energy Letters,2019,4(5):1057-1064. doi: 10.1021/acsenergylett.9b00416
    [24] LI X, DU X, ZHAO J, et al. Layer-by-Layer solution processing method for organic solar cells[J]. Solar RRL,2020,5(1):2000592.
    [25] PAN M A, LAU T K, TANG Y, et al. 16.7%-Efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity[J]. Journal of Materials Chemistry A,2019,7(36):20713-20722. doi: 10.1039/C9TA06929A
    [26] WIGNALL G D, LIN J S, SPOONER S. Reduction of parasitic scattering in small-angle X-ray scattering by a three-pinhole collimating system[J]. Journal of Applied Crystallography,1990,23(4):241-245. doi: 10.1107/S0021889890001984
    [27] ASPNES D E, THEETEN J B, HOTTIER F. Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry[J]. Physical Review B,1979,20(8):3292-3302. doi: 10.1103/PhysRevB.20.3292
    [28] HAJDUK B, BEDNARSKI H, TRZEBICKA B. Temperature-dependent spectroscopic ellipsometry of thin polymer films[J]. Journal of Physical Chemistry B,2020,124(16):3229-3251. doi: 10.1021/acs.jpcb.9b11863
    [29] SIRARD S M, GREEN P F, JOHNSTON K P. Spectroscopic ellipsometry investigation of the swelling of poly(dimethylsiloxane) thin films with high pressure carbon dioxide[J]. Journal of Physical Chemistry B,2001,105(4):766-772. doi: 10.1021/jp002592d
    [30] WOODS H J. Contribution to the physics of cellulose fibres [J]. Nature, 1946, 159: 519–520.
    [31] WARD I M. Structure and properties of oriented polymers [M]. Dordrecht: Springer Science & Business Media, 2012.
    [32] WU J L, CHEN F C, HSIAO Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells[J]. ACS Nano,2011,5(2):959-967. doi: 10.1021/nn102295p
    [33] KOSTER L J A, MIHAILETCHI V D, RAMAKER R, et al. Light intensity dependence of open-circuit voltage of polymer: Fullerene solar cells[J]. Applied Physics Letters,2005,86(12):123509. doi: 10.1063/1.1889240
    [34] LENES M, MORANA M, BRABEC C J, et al. Recombination-limited photocurrents in low bandgap polymer/fullerene solar cells[J]. Advanced Functional Materials,2009,19(7):1106-1111. doi: 10.1002/adfm.200801514
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  754
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-25
  • 录用日期:  2022-01-30
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回