留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性量子点复合薄膜及其电致发光器件的弯折性能

陶焕 张明睿 雷诗云 喻康林 林雪慧 刘学清 肖标 刘继延

陶焕, 张明睿, 雷诗云, 等. 柔性量子点复合薄膜及其电致发光器件的弯折性能[J]. 复合材料学报, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002
引用本文: 陶焕, 张明睿, 雷诗云, 等. 柔性量子点复合薄膜及其电致发光器件的弯折性能[J]. 复合材料学报, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002
TAO Huan, ZHANG Mingrui, LEI Shiyun, et al. Bending performance of flexible quantum dot composite films and their electroluminescent device[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002
Citation: TAO Huan, ZHANG Mingrui, LEI Shiyun, et al. Bending performance of flexible quantum dot composite films and their electroluminescent device[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002

柔性量子点复合薄膜及其电致发光器件的弯折性能

doi: 10.13801/j.cnki.fhclxb.20220124.002
基金项目: 湖北省教育厅科学研究计划指导性项目(B2018259)
详细信息
    作者简介:

    刘继延,博士,教授,博士生导师,研究方向为先进功能材料 Email: liujiyan@jhun.edu.cn

    通讯作者:

    肖标,博士,副教授,硕士生导师,研究方向为光电化学材料与器件 E-mail: biaoxiao@jhun.edu.cn

  • 中图分类号: TN383+.1

Bending performance of flexible quantum dot composite films and their electroluminescent device

  • 摘要: 近年来,可弯曲的柔性电子器件引起了人们广泛的关注,但器件的性能稳定性和弯折稳定性阻碍了其实际应用。本文通过对柔性量子点发光二极管(QLED)施加弯折作用力,着重探究QLED弯折前后功能薄膜及器件性能的变化。通过调控QLED的弯折曲率半径,测试得到薄膜参数和器件电学性能。利用有限元方法对不同弯折半径下的聚对二甲酸乙二醇酯-氧化铟锡(PET-ITO)复合透明电极进行分析,结果显示随着弯曲曲率半径的减小,ITO电极会出现更明显的应力集中现象。对其进行形貌表征和方阻测试表明过度弯折会使电极材料出现损伤,方块电阻增大。电导率测试结果表明弯折行为会减弱电荷的传导能力。利用瞬态电致发光光谱(TREL)技术对弯折前后的器件进行了表征,结果表明弯折曲率半径的减小,降低了电极上电荷传输的效率,同时较小的弯折曲率半径会导致内部缺陷的增加,降低器件内部载流子的注入与传输效率,对器件的性能造成影响。

     

  • 图  1  柔性量子点发光二极管(QLED)器件结构示意图 (a);QLEDs各层能级示意图 (b); 弯折次数为50次的情况下具有不同弯折曲率半径R的器件电流密度-电压特性曲线 (c) 和亮度-电压特性曲线 (d)

    Figure  1.  Schematic device structure of flexible quantum dot light-emitting diodes (QLEDs) (a); Flat-band energy level diagram of QLEDs (b); Current density-voltage curves (c) and Brightness-voltage curves (d) of the QLEDs under various bending radii R after 50 bending cycles

    QD—Quantum dot; TFB—Poly (9, 9-dioctyl fluoren-co-N-(4-butylphenyl) diphenylamine); PEDOT:PSS—Poly (3, 4-ethylenedioxythiophene) : poly (styrene sulfonate); PET/ITO—Polyethylene terephthalate/indium tin oxide

    图  2  弯折50次后具有不同弯折曲率半径的聚对二甲酸乙二醇酯-氧化铟锡(PET-ITO)基底的光学显微图像 (a) 和方块电阻统计图 (b)

    Figure  2.  Optical microscope images (a) and sheet resistance statistics (b) of the polyethylene terephthalate-indium tin oxide (PET-ITO) substrates under various bending radii after bending for 50 times

    图  3  弯折50次后具有不同弯折曲率半径R的PET-ITO基底的应力分布图 ((a)~(c)) 和弯折区域剖面图 ((d)~(f))

    Figure  3.  Stress distribution ((a)-(c)) and enlarged view ((d)-(f)) of bending area images of the PET-ITO substrates under various bending radii R after bending for 50 times

    图  4  弯折50次后不同弯折曲率半径下量子点发光层的SPM形貌图像((a)~(d)) 和光学显微图像((e)~(h))

    Figure  4.  SPM morphologies ((a)-(d)) and corresponding optical microscope images ((e)-(h)) of the quantum dot light-emitting layers under different bending radii after bending for 50 times

    Ra—Root mean square roughness

    图  5  不同弯折曲率半径下单空穴器件(a)和单电子器件(b)电流密度-电压特性曲线

    Figure  5.  Current density-voltage curves on the hole-only (a) and electron-only (b) device under different bending radii

    图  6  不同弯折曲率半径R下QLED器件的阻抗谱图 (a) 和频率-电导率曲线 (b)

    Figure  6.  Impedance spectrum (a) and frequency-conductivity curves (b) under different bending radii R

    图  7  不同弯折曲率半径下QLED器件瞬态电致发光光谱(TREL)图谱(a) 和主要过程放大图Ⅰ (b)、Ⅱ (c)、Ⅳ (d)

    Figure  7.  Transient electroluminescence spectroscopy (TREL) response curves under various bending radii (a); The enlarged initial part of transient EL response Ⅰ (b) ,Ⅱ (c) and Ⅳ (d)

    τr—Signal enhancement time; τd—Delay time

  • [1] YANG J, CHOI M K, KIM D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications[J]. Advanced Materials,2016,28(6):1176-1207. doi: 10.1002/adma.201502851
    [2] DAI X, DENG Y, PENG X, et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization[J]. Advanced Materials,2017,29(14):1607022. doi: 10.1002/adma.201607022
    [3] PIMPUTKAR S, SPECK J S, DENBAARS S P, et al. Prospects for LED lighting[J]. Nature Photonics,2009,3(4):180-182. doi: 10.1038/nphoton.2009.32
    [4] YANG Y, ZHENG Y, CAO W, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nature Photonics,2015,9(4):259-266. doi: 10.1038/nphoton.2015.36
    [5] ZHANG H, WANG S, SUN X, et al. Solution-processed vanadium oxide as an efficient hole injection layer for quantum-dot light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(4):817-823. doi: 10.1039/C6TC04050K
    [6] FU Y, KIM D, MOON H, et al. Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes[J]. Journal of Materials Chemistry C,2017,5(3):522-526. doi: 10.1039/C6TC05119G
    [7] DAI X, ZHANG Z, JIN Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525):96-99. doi: 10.1038/nature13829
    [8] LI X, LIN Q, SONG J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness[J]. Advanced Optical Materials,2019,8(2):1901145.
    [9] WANG L, LIN J, HU Y, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency[J]. ACS Applied Materials & Interfaces,2017,9(44):38755-38760.
    [10] LIN J, DAI X, LIANG X, et al. High-performance quantum-dot light-emitting diodes using NiOx hole-injection layers with a high and stable work function[J]. Advanced Functional Materials,2019,30(5):1907265.
    [11] CAO W, XIANG C, YANG Y, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring[J]. Nature Communications,2018,9(1):2608. doi: 10.1038/s41467-018-04986-z
    [12] KIM D Y, HAN Y C, KIM H C, et al. Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes[J]. Advanced Functional Materials,2015,25(46):7145-7153. doi: 10.1002/adfm.201502542
    [13] KIM H M, MOHD YUSOFF A R B, KIM T W, et al. Semi-transparent quantum-dot light emitting diodes with an inverted structure[J]. Journal of Materials Chemistry C,2014,2(12):2259-2265. doi: 10.1039/c3tc31932f
    [14] CHOI M K, PARK I, KIM D C, et al. Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system[J]. Advanced Functional Materials,2015,25(46):7109-7118. doi: 10.1002/adfm.201502956
    [15] ZHAO B, HE Z, CHENG X, et al. Flexible polymer solar cells with power conversion efficiency of 8.7%[J]. Journal of Materials Chemistry C,2014,2(26):5077-5082. doi: 10.1039/C3TC32520B
    [16] YOON S H, KIM S, WOO H J, et al. Flexible quantum dot light-emitting diodes without sacrificing optical and electrical performance[J]. Applied Surface Science,2021,566(15):150614.
    [17] YANG X, MUTLUGUN E, DANG C, et al. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers[J]. ACS Nano,2014,8(8):8224-8231. doi: 10.1021/nn502588k
    [18] JI W, WANG T, ZHU B, et al. Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode[J]. Journal of Materials Chemistry C,2017,5(18):4543-4548. doi: 10.1039/C7TC00514H
    [19] TAK Y H, KIM K B, PARK H G, et al. Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode[J]. Thin Solid Films,2002,411(1):12-16. doi: 10.1016/S0040-6090(02)00165-7
    [20] KIM J H, PARK J W. Improving the flexibility of large-area transparent conductive oxide electrodes on polymer substrates for flexible organic light emitting diodes by introducing surface roughness[J]. Organic Electronics,2013,14(12):3444-3452. doi: 10.1016/j.orgel.2013.09.016
    [21] ALI A H, HASSAN Z, SHUHAIMI A, et al. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si[J]. Applied Surface Science,2018,443:544-547. doi: 10.1016/j.apsusc.2018.03.024
    [22] KIM K B, TAK Y H, HAN Y S, et al. Relationship between surface roughness of indium Tin oxide and leakage current of organic light-emitting diode[J]. Japanese Journal of Applied Physics,2003,42:L438-L440.
    [23] PUJARU S, MAJI P, SADHUKHAN P, et al. Dielectric relaxation and charge conduction mechanism in mechanochemically synthesized methylammonium bismuth iodide[J]. Materials in Electronics,2020,31:8670-8679. doi: 10.1007/s10854-020-03402-x
    [24] JIN Z W, WANG A J, ZHOU Q, et al. Detecting trap states in planar PbS colloidal quantum dot solar cells[J]. Scientific Reports,2016,6:37106. doi: 10.1038/srep37106
    [25] APURBA R, ATANU R, SAYAN D, et al. Frequency and tem-perature dependent dielectric properties of TiO2-V2O5 nanocomposites[J]. Applied Physics,2018,123:104102. doi: 10.1063/1.5012586
    [26] PRADHAN D K, MISRA P, PULI V S, et al. Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4[J]. Applied Physics,2014,115:243904. doi: 10.1063/1.4885420
    [27] XU M, PENG Q, ZOU W, et al. A transient-electroluminescence study on perovskite light-emitting diodes[J]. Applied Physics Letters,2019,115(4):041102.1-041102.4. doi: 10.1063/1.5099277
    [28] ZHANG Z, GUAN X, KANG Z, et al. A direct evidence for the energy transfer from phosphorescent molecules to quantum dots in a driving light emitting diode[J]. Organic Electronics,2019,73:337-341. doi: 10.1016/j.orgel.2019.06.045
  • 加载中
图(7)
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  587
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 修回日期:  2022-01-08
  • 录用日期:  2022-01-15
  • 网络出版日期:  2022-01-26
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回