留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属磷化物钠离子电池负极材料研究进展

王海花 金倩倩 舒珂维

王海花, 金倩倩, 舒珂维. 金属磷化物钠离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009
引用本文: 王海花, 金倩倩, 舒珂维. 金属磷化物钠离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009
WANG Haihua, JIN Qianqian, SHU Kewei. Research progress on metal phosphides anode materials for sodium ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009
Citation: WANG Haihua, JIN Qianqian, SHU Kewei. Research progress on metal phosphides anode materials for sodium ion batteries[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009

金属磷化物钠离子电池负极材料研究进展

doi: 10.13801/j.cnki.fhclxb.20220120.009
基金项目: 国家自然科学基金面上项目(21978164;22078189);陕西省创新团队项目(2018TD-015);陕西省杰出青年基金项目(2021JC-46)
详细信息
    通讯作者:

    王海花,博士,教授,博士生导师,研究方向为高性能及功能复合材料等 E-mail:whh@sust.edu.cn

  • 中图分类号: O646

Research progress on metal phosphides anode materials for sodium ion batteries

  • 摘要: 钠离子电池(SIBs)因其成本低、安全性高等优势引起了愈加广泛的关注与研究。在已报道的SIBs负极材料中,磷由于理论容量极高被认为是最具应用前景的负极材料之一。然而磷的电导率低,且在充放电过程中会发生体积膨胀,极大地影响了其倍率性能和循环稳定性。将磷与锗、锡、铜等金属结合形成金属磷化物可有效提高其导电性,并显著改善磷基负极材料的倍率性能和循环性能。本文主要综述了金属磷化物及其与碳纳米管、石墨烯等复合材料作为SIBs负极的最新研究进展,总结了目前金属磷化物SIBs负极材料存在的问题,比如实际容量偏低、储钠机制研究不够深入等;提出了相应的解决方法和手段,例如复合材料设计和构筑、表面修饰、尺寸形貌调控和先进原位表征手段等;并对金属磷化物SIBs负极材料的发展前景进行了展望。

     

  • 图  1  CuP2@石墨烯(GNs)合成过程示意图[27](a)和Cu2P7-黑磷(BP)(CuP5)和CuP5/多壁碳纳米管(MWCNTs)合成过程示意图[28](b)

    Figure  1.  Schematic of synthesis process of CuP2@graphene (GNs)[27] (a) and Cu2P7-balck phosphorus (BP) (CuP5) and CuP5/multiwalled carbon nanotubes (MWCNTs)[28](b)

    RP—Red phosphorus

    图  2  (a) NiP3/Na电池在0.0~2.5 V的电压范围内以C/3的倍率第一次放电时的不同阶段的原位XRD图谱[29];(b) Ni2P@CNT、Ni2P@酸处理的碳纳米管(ACNT)和Ni2P@ACNT(CTAB)合成过程示意图;(c) Ni2P@ACNT(CTAB)储钠机制示意图[30]

    Figure  2.  (a) XRD patterns collected at various stages of the first discharge of a NiP3/Na cell cycled between 0.0 and 2.5 V at a C/3 rate[29]; (b) Schematic illustration of the synthesis process of Ni2P@CNT, Ni2P@acid treated carbon nanotubes (ACNT) and Ni2P@ACNT(CTAB); (c) Sodiation schematics of Ni2P@ACNT(CTAB) [30]

    CATB—Cetyltrimethyl ammonium bromid

    图  3  多孔纳米片组装花状Ni5P4(PNAF-NP)颗粒的SEM图像[31]((a)、(b))、Ni12P5@C/GNs复合材料合成过程示意图[32](c)

    Figure  3.  SEM images of Porous nanosheets assemble flower-like Ni5P4 (PNAF-NP) particle[31]((a), (b)), schematic illustration of the synthesis process of Ni12P5@C/GNs[32](c)

    图  4  Ge2P3复合材料合成过程示意图[35](a);GeP3、GeP3@还原氧化石墨烯(rGO)、GeP3/C和GeP3/C@rGO合成路线示意图(GeP3/C和GeP3/C@rGO中的线表示碳基体)及循环性能和相应的库伦效率[36](b);GeP5/乙炔黑(AB)/部分还原氧化石墨烯(p-rGO)复合材料合成过程示意图[40](c);FL-GP/rGO合成过程示意图[41](d);多孔磷化锗(MGePx)的SEM图像及其与其他磷化物在不同电流密度下的比容量比较[42](e)

    Figure  4.  Illustrated preparation process of the Ge2P3 composite [35] (a); Schematic illustration of the synthesis routes for bare GeP3, GeP3@reduced graphene oxide (rGO), GeP3/C, and GeP3/C@rGO (Lines in GeP3/C and GeP3/C@rGO represent the carbon matrix) and their long-term cyclability and corresponding coulombic efficiency[36] (b); Schematic illustration of the synthesis process for the GeP5/acetylene black (AB)/partially reduced graphene oxide (p-rGO) composite[40] (c); Synthesis process for FL-GP/rGO[41] (d); SEM images for porous germanium phosphate (MGePx) and comparison of the specific capacities at various current densities for MGePx with other phosphides[42] (e)

    HEMM—High-energy mechanical ball milling; p-rGO—Partially reduced graphene oxide

    图  5  (a) Sn4P3-P(Sn:P=1:3)@GNs(SPPG)的机械化学合成过程原理图;(b)不同的电流密度下,SPPG的循环性能和相应的库仑效率;(c) SPPG中的钠嵌入/脱出机制示意图[46]

    Figure  5.  (a) Schematic of the mechanochemical synthesis process of Sn4P3-P(Sn:P=1:3)@GNs(SPPG); (b) Long-term cyclability and corresponding coulombic efficiencies of SPPG at different current rates; (c) Schematic illustration on the de-/sodiation mechanism in SPPG[46]

    HEBM—High energy ball milling

    图  6  SnP3/C复合材料的钠化和脱钠过程示意图(外层表示碳)[50]

    Figure  6.  Schematic illustration for the sodiation and desodiation of SnP3/C composite (Outer layer denotes carbon)[50]

    图  7  Zn3P2 (a) 和ZnP2 (b) 的充放电曲线(电流密度:0.05 A·g−1);(c) ZnP2-C在钠嵌入/脱出过程中的结晶相变反应机制示意图[51]

    Figure  7.  Discharge-charge curves of Zn3P2 (a) and ZnP2 (b) (Current density: 0.05 A·g−1); (c) Crystallographic phase-change reaction mechanism of ZnP2-C during sodiation/desodiation[51]

    表  1  SnPx的性能比较

    Table  1.   Comparison of properties of SnPx

    SampleSn/PTheoretical specific capacity/(mA·h·g−1)CompositeICE/%Cycling stability/(mA·h· g−1/cycles/A·g−1)Ref.
    Sn4P31.331132SPPG75.1>550/1000/1[46]
    Sn4P3@HC69.5430/100/0.1[47]
    Sn4P3@CNF31.0297.6/1750/1[48]
    SnP11209SnP NCs>60600/200/0.1[49]
    SnP30.331616SnP3/C71.2810/150/0.15[50]
    Notes: ICE—Initial coulombic efficiency; HC—Hard carbon; CNF—Carbon nanofibers; NCs—Nanocrystallines.
    下载: 导出CSV

    表  2  金属磷化物负极材料电化学性能

    Table  2.   Electrochemical performance of metal phosphides for SIBs

    SampleVoltage range/VICE/%Charging potential/VCycling Stability/
    (mA·h·g−1)/cycles/(A·g−1)
    Rate performance/
    (mA·h·g−1)/(A·g−1)
    Ref.
    Cu3P/C0.01-2.5500.4120/120/0.0366130/0.363[25]
    CuP2@GNs830.5-0.9640/50/0.5508/5[27]
    CuP5/MWCNTs840.41170/200/-580/5[28]
    NiP30.0-2.50.2900/15/0.1C[29]
    Ni2P@ACNT(CTAB)0.01-335.20.6150.1/100/0.1104.8/4[30]
    PNAF-NP0.01-388.490.2456.34/300/0.2432.23/5[31]
    Ni12P5@C/GNs0.1-345.50.8164.8/500/0.1105.6/2[32]
    FeP@NPC0.01-3490.5391/1000/0.1250.2/5[33]
    FeP40.05-2.084.00.61000/30/0.089~920/3.578[34]
    Ge2P3880.6890/100/-275/5[35]
    GeP3/C@rGO0.01-2.557.80.7823/400/0.2435.4/5[36]
    Monolayer GeP31295.42(theoretical)[38]
    GeP5/AB/p-rGO0.01-2.8~600.5400/50/0.5175/5[40]
    FL-GP/rGO0.01-2.5570.5504.2/70/0.1
    230/250/1
    250/2[41]
    MGePx0.01-265.280.4704/100/0.24
    278/200/1.2
    117/12[42]
    SPPG0.005-275.10.5>550/1000/1315/10[46]
    SnP NCs0.005-1.5>600.46600/200/0.1396/2.5[49]
    SnP3/C0-2.071.20.5810/150/0.15400/2.56[50]
    ZnP2-C0-2.065.80.6883/130/0.05350/2.7[51]
    Notes: PNAF-NP—Porous nanosheets assemble flower-like Ni5P4; NPC—N, P-codoped carbon nanofifiber; FL-GP—Few-layer GeP.
    下载: 导出CSV
  • [1] TANG Yakun, WANG Hairong, ZHANG Yue, et al. In-situ reduction synthesis of one dimensional hybrid porous TiO@C anode for high-performance Li-ion storage[J]. Ceramics International,2021,47(4):5832-5836. doi: 10.1016/j.ceramint.2020.10.053
    [2] XIA Yang, QUE Lanfang, YU Fuda, et al. Boosting ion/e- transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors[J]. Chemical Engineering Journal,2021,404:127116. doi: 10.1016/j.cej.2020.127116
    [3] YANG Zhaofeng, YU Haifeng, HU Yanjie, et al. Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5 V-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries[J]. Chemical Engineering Science,2021,231:116297. doi: 10.1016/j.ces.2020.116297
    [4] 薛俊鹏, 夏笑虹, 刘洪波. MXene@Sn4P3复合材料的制备及在锂离子电池负极材料中的应用研究[J]. 陶瓷学报, 2020, 41(3):364-370.

    XUE Junpeng, XIA Xiaohong, LIU Hongbo. Preparation and application of MXene@Sn4P3 composite as anode for lithium ion batteries[J]. Journal of Ceramics,2020,41(3):364-370(in Chinese).
    [5] ZENG Cheng, XIE Fangxi, YANG Xianfeng, et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie International Edition,2018,57(28):8540-8544. doi: 10.1002/anie.201803511
    [6] ZHANG Jian, LIU Yongchang, ZHAO Xudong, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials,2020,32(11):1906348. doi: 10.1002/adma.201906348
    [7] 夏广辉, 王丁, 李雪豹, 等. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13):13041-13051. doi: 10.11896/cldb.20010069

    XIA Guanghui, WANG Ding, LI Xuebao, et al. Recent research progress of metal sulfides as anode materials for sodium ion batteries[J]. Materials Reports,2021,35(13):13041-13051(in Chinese). doi: 10.11896/cldb.20010069
    [8] 王思岚, 杨国锐, NASIR Muhammad salman, 等. 磷基钠离子电池负极材料研究进展[J]. 物理化学学报, 2021, 37(12):155, 156-182.

    WANG Silan, YANG Guorui, NASIR Muhammad salman, et al. Research progress on phosphorus-based anode mater-ials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2021,37(12):155, 156-182(in Chinese).
    [9] SUN Dan, YE Delai, LIU Ping, et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Advanced Energy Materials,2018,8(10):1702383. doi: 10.1002/aenm.201702383
    [10] XU Zhenglong, YOON Gabin, PARK Kyuyoung, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10:2598. doi: 10.1038/s41467-019-10551-z
    [11] CONG Lin, TIAN Guorong, LUO Dongyue, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2020,871:114249. doi: 10.1016/j.jelechem.2020.114249
    [12] BOBYLEVA Z V, DROZHZHIN O A, DOSAEV K A, et al. Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries[J]. Electrochimica Acta,2020,354:136647. doi: 10.1016/j.electacta.2020.136647
    [13] LI Changhao, SUN Yi, WU Qiujie, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications,2020,56(45):6078-6081. doi: 10.1039/D0CC01431A
    [14] PEI Zengxia, MENG Qiangqiang, WEI Li, et al. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode mater-ials[J]. Energy Storage Materials,2020,28:55-63. doi: 10.1016/j.ensm.2020.02.033
    [15] YU Peng, TANG Wei, WU Fangfang, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review[J]. Rare Metals,2020,39(9):1019-1033. doi: 10.1007/s12598-020-01443-z
    [16] ZHANG Wu, LIU Tiefeng, WANG Yao, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries[J]. Nano Energy,2021,90:106475. doi: 10.1016/j.nanoen.2021.106475
    [17] YANG Ze, SONG Yuwei, ZHANG Chunfang, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions[J]. Advanced Energy Materials,2021,11(33):2101197. doi: 10.1002/aenm.202101197
    [18] KIM Youngjin, PARK Yuwon, CHOI Aram, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877
    [19] QIAN Jiangfeng, WU Xianyong, CAO Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie,2013,125(17):4731-4734. doi: 10.1002/ange.201209689
    [20] 徐汝辉, 姚耀春, 梁风. 磷基负极材料在金属离子电池中的现状与趋势[J]. 化工进展, 2019, 38(9):4142-4154.

    XU Ruhui, YAO Yaochun, LIANG Feng. Status and development trend of phosphorus-based materials applied in metal ion battery anode[J]. Chemical Industry and Engineering Progress,2019,38(9):4142-4154(in Chinese).
    [21] SUN Jie, ZHENG Guangyuan, LEE Hyun Wook, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Letters,2014,14(8):4573-4580. doi: 10.1021/nl501617j
    [22] FENG Ligang, XUE Huaiguo. Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis[J]. ChemElectroChem,2016,4(1):20-34.
    [23] LI Weijie, YANG Qiuran, CHOU Shulei, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources,2015,294:627-632. doi: 10.1016/j.jpowsour.2015.06.097
    [24] LI Weijie, CHOU Shulei, WANG Jiazhao, et al. A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications,2015,51(17):3682-3685. doi: 10.1039/C4CC09604E
    [25] BREHM W, SANTHOSHA A L, ZHANG Z G, et al. Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes[J]. Journal of Power Sources,2020,6:100031. doi: 10.1016/j.powera.2020.100031
    [26] 张芃, 汝强, 郭庆, 等. 高能球磨制备钠离子电池负极材料CuP2/C[J]. 电池, 2017, 47(6):319-322.

    ZHANG Peng, RU Qiang, GUO Qing, et al. Preparing anode material CuP2/C for sodium ion battery via high-energy ball-milling[J]. Battery Bimonthly,2017,47(6):319-322(in Chinese).
    [27] ZHANG Yuanjun, WANG Guanyao, WANG Liang, et al. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries[J]. Nano Letters,2019,19(4):2575-2582. doi: 10.1021/acs.nanolett.9b00342
    [28] LI Wenwu, SHEN Pengfei, LIAO Jun, et al. Cu2P7-black P-MWCNTs (CuP5/MWCNTs): An advanced hybrid anode for Li/Na-ion batteries[J]. Materials Letters,2019,253:263-267. doi: 10.1016/j.matlet.2019.06.080
    [29] FULLENWARTH J, DARWICHE A, SOARES A, et al. NiP3: A promising negative electrode for Li-and Na-ion batteries[J]. Journal of Materials Chemistry A,2014,2(7):2050-2059. doi: 10.1039/C3TA13976J
    [30] ZHANG Yuanxing, SUN Li, LI Yitao, et al. CTAB-modified Ni2P@ACNT composite with enhanced supercapacitive and lithium/sodium storage performance[J]. Journal of Electroanalytical Chemistry,2020,873:114441. doi: 10.1016/j.jelechem.2020.114441
    [31] ZHANG Ruihan, RAVEENDRAN Vidhur, HE Yining, et al. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high-performance sodium-ion batteries[J]. Energy Material Advances,2021(1):333-341.
    [32] GUO Huinan, CHEN Chengcheng, CHEN Kai, et al. High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage[J]. Journal of Materials Chemistry A,2017,5(42):22316-22324. doi: 10.1039/C7TA06843C
    [33] SHI Shanshan, LI Zhen, SHEN Liying, et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials,2020,29:78-83. doi: 10.1016/j.ensm.2020.03.029
    [34] ZHANG Wanjie, DAHBI Mouad, AMAGASA Shota, et al. Iron phosphide as negative electrode material for Na-ion batteries[J]. Electrochemistry Communications,2016,69:11-14. doi: 10.1016/j.elecom.2016.05.005
    [35] LI Xinwei, LI Wenwu, SHEN Pengfei, et al. Layered GeP-black P (Ge2P3): An advanced binary-phase anode for Li/Na-storage[J]. Ceramics International,2019,45(12):15711-15714. doi: 10.1016/j.ceramint.2019.04.219
    [36] WANG Ting, ZHANG Kai, PARK Mihui, et al. Highly reversible and rapid sodium storage in GeP3 with synergistic effect from outside-in optimization[J]. ACS nano,2020,14(4):4352-4365. doi: 10.1021/acsnano.9b09869
    [37] JING Yu, MA Yandong, LI Yafei, et al. GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement[J]. Nano Letters,2016,17(3):1833-1838.
    [38] DENG Xiaoyu, CHEN Xianfei, HUANG Yi, et al. Two-dimensional GeP3 as a high capacity anode material for non-lithium-ion batteries[J]. The Journal of Physical Chemistry C,2019,123(8):4721-4728. doi: 10.1021/acs.jpcc.8b11574
    [39] WEI Yaqing, CHEN Jiajun, HE Jun, et al. Morphology processing by encapsulating GeP5 nanoparticles into nano-fibers toward enhanced thermo/electrochemical stability[J]. ACS Applied Materials & Interfaces,2018,10:32162-32170.
    [40] NING Qiuli, HOU Baohua, WANG Yingying, et al. Hierarchical GeP5/carbon nanocomposite with dual-carbon conductive network as promising anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(43):36902-36909.
    [41] YANG Fuhua, HONG Jian, HAO Junnan, et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage[J]. Advanced Energy Materials,2020,10(14):1903826. doi: 10.1002/aenm.201903826
    [42] TSENG Kuanwei, HUANG Shengbor, CHANG Weichung, et al. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes[J]. Chemistry of Materials,2018,30(13):4440-4447. doi: 10.1021/acs.chemmater.8b01922
    [43] LI Nan, WANG Ying, LIU Liangsen, et al. "Self-doping" defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage[J]. Journal of Colloid and Interface Science,2021,592(4):279-290.
    [44] ZENG Tianbiao, FENG Dong, XIE Yuhui, et al. Nano Sn4P3 embedded in nitrogenous carbon matrix as the anode of sodium ion battery for enhanced cyclability[J]. Journal of Alloys and Compounds,2021,874(8):159944.
    [45] 杨皖皖, 孙硕, 王健, 等. 机械球磨法制备Sn4P3/RGO钠离子电池负极材料及其电化学性能研究[J]. 常熟理工学院学报, 2019, 33(2):6-10. doi: 10.3969/j.issn.1008-2794.2019.02.002

    YANG Wanwan, SUN Shuo, WANG Jian, et al. Electrochemical properties for Sn4P3/RGO by mechanical ball milling method as anode materials for sodium ion batteries[J]. Journal of Changshu Institute of Technology,2019,33(2):6-10(in Chinese). doi: 10.3969/j.issn.1008-2794.2019.02.002
    [46] XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite[J]. Advanced Energy Materials,2018,8(3):1701847. doi: 10.1002/aenm.201701847
    [47] WANG Ying, SHI Haiting, NIU Jiarong, et al. Self-healing Sn4P3@Hard carbon Co-storage anode for sodium-ion batteries[J]. Journal of Alloys and Compounds,2021,851:156746. doi: 10.1016/j.jallcom.2020.156746
    [48] ZHAO Wenxi, MA Xiaoqing, GAO Lixia, et al. Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries[J]. Carbon,2020,167:736-745. doi: 10.1016/j.carbon.2020.06.050
    [49] LIU Junfeng, WANG Shutao, KRAVCHYK Kostiantyn, et al. SnP nanocrystals as anode material for Na-ion battery[J]. Journal of Materials Chemistry A,2018,6(23):10958-10966. doi: 10.1039/C8TA01492B
    [50] FAN Xiulin, MAO Jianfeng, ZHU Yujie, et al. Superior stable self-healing SnP3 anode for sodium-ion batteries[J]. Advanced Energy Materials,2015,5(18):2314-2316.
    [51] LI Xinwei, LI Wenwu, YU Jiale, et al. Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances[J]. Journal of Alloys and Compounds,2017,724:932-939. doi: 10.1016/j.jallcom.2017.07.016
    [52] NAM K H, HWA Y, PARK C M. Zinc phosphides as outstanding sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2020,12(13):15053-15062.
    [53] XIAO Lifen, LU Haiyan, FANG Yongjin, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials,2018,8(20):1703238. doi: 10.1002/aenm.201703238
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1799
  • HTML全文浏览量:  1012
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2021-12-24
  • 录用日期:  2022-01-11
  • 网络出版日期:  2022-01-20
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回