Research progress on metal phosphides anode materials for sodium ion batteries
-
摘要: 钠离子电池(SIBs)因其成本低、安全性高等优势引起了愈加广泛的关注与研究。在已报道的SIBs负极材料中,磷由于理论容量极高被认为是最具应用前景的负极材料之一。然而磷的电导率低,且在充放电过程中会发生体积膨胀,极大地影响了其倍率性能和循环稳定性。将磷与锗、锡、铜等金属结合形成金属磷化物可有效提高其导电性,并显著改善磷基负极材料的倍率性能和循环性能。本文主要综述了金属磷化物及其与碳纳米管、石墨烯等复合材料作为SIBs负极的最新研究进展,总结了目前金属磷化物SIBs负极材料存在的问题,比如实际容量偏低、储钠机制研究不够深入等;提出了相应的解决方法和手段,例如复合材料设计和构筑、表面修饰、尺寸形貌调控和先进原位表征手段等;并对金属磷化物SIBs负极材料的发展前景进行了展望。Abstract: Sodium ion batteries (SIBs) have attracted more and more attention because of their low cost and high safety. Due to the extremely high theoretical capacity, phosphorus-based material has been considered as one of the most promising anode materials for SIBs. However, phosphorus has shortcomings such as low conductivity and large volume expansion during sodiation-desodiation cycles, which significantly deteriorate its rate performance and cycle stability. Constructing metal phosphides by combining P with germanium, tin, copper or other metals can not only enhance their conductivity, but also significantly improve the reversibility and cycle performance of phosphorus-based anode materials. In this review, recent progress on metal phosphides and their composites with carbon nanotubes and graphene for SIBs anode materials were summarized. Furthermore, the current issues of metal phosphides anodes for SIBs were discussed, such as low practical capacity, poor cycle performance and so no. Meanwhile, various approaches and techniques to address these issues were proposed, including design and construction of composite materials, surface modification, regulation of size and morphology, advanced in-situ characterizations, etc. Finally, future perspectives of metal phosphides anode materials for SIBs were also presented.
-
Key words:
- sodium-ion batteries /
- metal phosphides /
- anode materials /
- composite /
- electrochemical performance
-
图 2 (a) NiP3/Na电池在0.0~2.5 V的电压范围内以C/3的倍率第一次放电时的不同阶段的原位XRD图谱[29];(b) Ni2P@CNT、Ni2P@酸处理的碳纳米管(ACNT)和Ni2P@ACNT(CTAB)合成过程示意图;(c) Ni2P@ACNT(CTAB)储钠机制示意图[30]
Figure 2. (a) XRD patterns collected at various stages of the first discharge of a NiP3/Na cell cycled between 0.0 and 2.5 V at a C/3 rate[29]; (b) Schematic illustration of the synthesis process of Ni2P@CNT, Ni2P@acid treated carbon nanotubes (ACNT) and Ni2P@ACNT(CTAB); (c) Sodiation schematics of Ni2P@ACNT(CTAB) [30]
CATB—Cetyltrimethyl ammonium bromid
图 4 Ge2P3复合材料合成过程示意图[35](a);GeP3、GeP3@还原氧化石墨烯(rGO)、GeP3/C和GeP3/C@rGO合成路线示意图(GeP3/C和GeP3/C@rGO中的线表示碳基体)及循环性能和相应的库伦效率[36](b);GeP5/乙炔黑(AB)/部分还原氧化石墨烯(p-rGO)复合材料合成过程示意图[40](c);FL-GP/rGO合成过程示意图[41](d);多孔磷化锗(MGeP
x) 的SEM图像及其与其他磷化物在不同电流密度下的比容量比较[42](e) Figure 4. Illustrated preparation process of the Ge2P3 composite [35] (a); Schematic illustration of the synthesis routes for bare GeP3, GeP3@reduced graphene oxide (rGO), GeP3/C, and GeP3/C@rGO (Lines in GeP3/C and GeP3/C@rGO represent the carbon matrix) and their long-term cyclability and corresponding coulombic efficiency[36] (b); Schematic illustration of the synthesis process for the GeP5/acetylene black (AB)/partially reduced graphene oxide (p-rGO) composite[40] (c); Synthesis process for FL-GP/rGO[41] (d); SEM images for porous germanium phosphate (MGePx) and comparison of the specific capacities at various current densities for MGePx with other phosphides[42] (e)
HEMM—High-energy mechanical ball milling; p-rGO—Partially reduced graphene oxide
图 5 (a) Sn4P3-P(Sn:P=1:3)@GNs(SPPG)的机械化学合成过程原理图;(b)不同的电流密度下,SPPG的循环性能和相应的库仑效率;(c) SPPG中的钠嵌入/脱出机制示意图[46]
Figure 5. (a) Schematic of the mechanochemical synthesis process of Sn4P3-P(Sn:P=1:3)@GNs(SPPG); (b) Long-term cyclability and corresponding coulombic efficiencies of SPPG at different current rates; (c) Schematic illustration on the de-/sodiation mechanism in SPPG[46]
HEBM—High energy ball milling
表 1 SnPx的性能比较
Table 1. Comparison of properties of SnPx
Sample Sn/P Theoretical specific capacity/(mA·h·g−1) Composite ICE/% Cycling stability/(mA·h· g−1/cycles/A·g−1) Ref. Sn4P3 1.33 1132 SPPG 75.1 >550/1000/1 [46] Sn4P3@HC 69.5 430/100/0.1 [47] Sn4P3@CNF 31.0 297.6/1750/1 [48] SnP 1 1209 SnP NCs >60 600/200/0.1 [49] SnP3 0.33 1616 SnP3/C 71.2 810/150/0.15 [50] Notes: ICE—Initial coulombic efficiency; HC—Hard carbon; CNF—Carbon nanofibers; NCs—Nanocrystallines. 表 2 金属磷化物负极材料电化学性能
Table 2. Electrochemical performance of metal phosphides for SIBs
Sample Voltage range/V ICE/% Charging potential/V Cycling Stability/
(mA·h·g−1)/cycles/(A·g−1)Rate performance/
(mA·h·g−1)/(A·g−1)Ref. Cu3P/C 0.01-2.5 50 0.4 120/120/0.0366 130/0.363 [25] CuP2@GNs − 83 0.5-0.9 640/50/0.5 508/5 [27] CuP5/MWCNTs − 84 0.4 1170/200/- 580/5 [28] NiP3 0.0-2.5 − 0.2 900/15/0.1C − [29] Ni2P@ACNT(CTAB) 0.01-3 35.2 0.6 150.1/100/0.1 104.8/4 [30] PNAF-NP 0.01-3 88.49 0.2 456.34/300/0.2 432.23/5 [31] Ni12P5@C/GNs 0.1-3 45.5 0.8 164.8/500/0.1 105.6/2 [32] FeP@NPC 0.01-3 49 0.5 391/1000/0.1 250.2/5 [33] FeP4 0.05-2.0 84.0 0.6 1000/30/0.089 ~920/3.578 [34] Ge2P3 − 88 0.6 890/100/- 275/5 [35] GeP3/C@rGO 0.01-2.5 57.8 0.7 823/400/0.2 435.4/5 [36] Monolayer GeP3 − − − 1295.42(theoretical) − [38] GeP5/AB/p-rGO 0.01-2.8 ~60 0.5 400/50/0.5 175/5 [40] FL-GP/rGO 0.01-2.5 57 0.5 504.2/70/0.1
230/250/1250/2 [41] MGePx 0.01-2 65.28 0.4 704/100/0.24
278/200/1.2117/12 [42] SPPG 0.005-2 75.1 0.5 >550/1000/1 315/10 [46] SnP NCs 0.005-1.5 >60 0.46 600/200/0.1 396/2.5 [49] SnP3/C 0-2.0 71.2 0.5 810/150/0.15 400/2.56 [50] ZnP2-C 0-2.0 65.8 0.6 883/130/0.05 350/2.7 [51] Notes: PNAF-NP—Porous nanosheets assemble flower-like Ni5P4; NPC—N, P-codoped carbon nanofifiber; FL-GP—Few-layer GeP. -
[1] TANG Yakun, WANG Hairong, ZHANG Yue, et al. In-situ reduction synthesis of one dimensional hybrid porous TiO@C anode for high-performance Li-ion storage[J]. Ceramics International,2021,47(4):5832-5836. doi: 10.1016/j.ceramint.2020.10.053 [2] XIA Yang, QUE Lanfang, YU Fuda, et al. Boosting ion/e- transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors[J]. Chemical Engineering Journal,2021,404:127116. doi: 10.1016/j.cej.2020.127116 [3] YANG Zhaofeng, YU Haifeng, HU Yanjie, et al. Pomegranate-like Ti-doped LiNi0.4Mn1.6O4 5 V-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries[J]. Chemical Engineering Science,2021,231:116297. doi: 10.1016/j.ces.2020.116297 [4] 薛俊鹏, 夏笑虹, 刘洪波. MXene@Sn4P3复合材料的制备及在锂离子电池负极材料中的应用研究[J]. 陶瓷学报, 2020, 41(3):364-370.XUE Junpeng, XIA Xiaohong, LIU Hongbo. Preparation and application of MXene@Sn4P3 composite as anode for lithium ion batteries[J]. Journal of Ceramics,2020,41(3):364-370(in Chinese). [5] ZENG Cheng, XIE Fangxi, YANG Xianfeng, et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie International Edition,2018,57(28):8540-8544. doi: 10.1002/anie.201803511 [6] ZHANG Jian, LIU Yongchang, ZHAO Xudong, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries[J]. Advanced Materials,2020,32(11):1906348. doi: 10.1002/adma.201906348 [7] 夏广辉, 王丁, 李雪豹, 等. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13):13041-13051. doi: 10.11896/cldb.20010069XIA Guanghui, WANG Ding, LI Xuebao, et al. Recent research progress of metal sulfides as anode materials for sodium ion batteries[J]. Materials Reports,2021,35(13):13041-13051(in Chinese). doi: 10.11896/cldb.20010069 [8] 王思岚, 杨国锐, NASIR Muhammad salman, 等. 磷基钠离子电池负极材料研究进展[J]. 物理化学学报, 2021, 37(12):155, 156-182.WANG Silan, YANG Guorui, NASIR Muhammad salman, et al. Research progress on phosphorus-based anode mater-ials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2021,37(12):155, 156-182(in Chinese). [9] SUN Dan, YE Delai, LIU Ping, et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Advanced Energy Materials,2018,8(10):1702383. doi: 10.1002/aenm.201702383 [10] XU Zhenglong, YOON Gabin, PARK Kyuyoung, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10:2598. doi: 10.1038/s41467-019-10551-z [11] CONG Lin, TIAN Guorong, LUO Dongyue, et al. Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2020,871:114249. doi: 10.1016/j.jelechem.2020.114249 [12] BOBYLEVA Z V, DROZHZHIN O A, DOSAEV K A, et al. Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries[J]. Electrochimica Acta,2020,354:136647. doi: 10.1016/j.electacta.2020.136647 [13] LI Changhao, SUN Yi, WU Qiujie, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications,2020,56(45):6078-6081. doi: 10.1039/D0CC01431A [14] PEI Zengxia, MENG Qiangqiang, WEI Li, et al. Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode mater-ials[J]. Energy Storage Materials,2020,28:55-63. doi: 10.1016/j.ensm.2020.02.033 [15] YU Peng, TANG Wei, WU Fangfang, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review[J]. Rare Metals,2020,39(9):1019-1033. doi: 10.1007/s12598-020-01443-z [16] ZHANG Wu, LIU Tiefeng, WANG Yao, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries[J]. Nano Energy,2021,90:106475. doi: 10.1016/j.nanoen.2021.106475 [17] YANG Ze, SONG Yuwei, ZHANG Chunfang, et al. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions[J]. Advanced Energy Materials,2021,11(33):2101197. doi: 10.1002/aenm.202101197 [18] KIM Youngjin, PARK Yuwon, CHOI Aram, et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries[J]. Advanced Materials,2013,25(22):3045-3049. doi: 10.1002/adma.201204877 [19] QIAN Jiangfeng, WU Xianyong, CAO Yuliang, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie,2013,125(17):4731-4734. doi: 10.1002/ange.201209689 [20] 徐汝辉, 姚耀春, 梁风. 磷基负极材料在金属离子电池中的现状与趋势[J]. 化工进展, 2019, 38(9):4142-4154.XU Ruhui, YAO Yaochun, LIANG Feng. Status and development trend of phosphorus-based materials applied in metal ion battery anode[J]. Chemical Industry and Engineering Progress,2019,38(9):4142-4154(in Chinese). [21] SUN Jie, ZHENG Guangyuan, LEE Hyun Wook, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes[J]. Nano Letters,2014,14(8):4573-4580. doi: 10.1021/nl501617j [22] FENG Ligang, XUE Huaiguo. Advances in transition-metal phosphide applications in electrochemical energy storage and catalysis[J]. ChemElectroChem,2016,4(1):20-34. [23] LI Weijie, YANG Qiuran, CHOU Shulei, et al. Cobalt phosphide as a new anode material for sodium storage[J]. Journal of Power Sources,2015,294:627-632. doi: 10.1016/j.jpowsour.2015.06.097 [24] LI Weijie, CHOU Shulei, WANG Jiazhao, et al. A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications,2015,51(17):3682-3685. doi: 10.1039/C4CC09604E [25] BREHM W, SANTHOSHA A L, ZHANG Z G, et al. Mechanochemically synthesized Cu3P/C composites as a conversion electrode for Li-ion and Na-ion batteries in different electrolytes[J]. Journal of Power Sources,2020,6:100031. doi: 10.1016/j.powera.2020.100031 [26] 张芃, 汝强, 郭庆, 等. 高能球磨制备钠离子电池负极材料CuP2/C[J]. 电池, 2017, 47(6):319-322.ZHANG Peng, RU Qiang, GUO Qing, et al. Preparing anode material CuP2/C for sodium ion battery via high-energy ball-milling[J]. Battery Bimonthly,2017,47(6):319-322(in Chinese). [27] ZHANG Yuanjun, WANG Guanyao, WANG Liang, et al. Graphene-encapsulated CuP2: A promising anode material with high reversible capacity and superior rate-performance for sodium-ion batteries[J]. Nano Letters,2019,19(4):2575-2582. doi: 10.1021/acs.nanolett.9b00342 [28] LI Wenwu, SHEN Pengfei, LIAO Jun, et al. Cu2P7-black P-MWCNTs (CuP5/MWCNTs): An advanced hybrid anode for Li/Na-ion batteries[J]. Materials Letters,2019,253:263-267. doi: 10.1016/j.matlet.2019.06.080 [29] FULLENWARTH J, DARWICHE A, SOARES A, et al. NiP3: A promising negative electrode for Li-and Na-ion batteries[J]. Journal of Materials Chemistry A,2014,2(7):2050-2059. doi: 10.1039/C3TA13976J [30] ZHANG Yuanxing, SUN Li, LI Yitao, et al. CTAB-modified Ni2P@ACNT composite with enhanced supercapacitive and lithium/sodium storage performance[J]. Journal of Electroanalytical Chemistry,2020,873:114441. doi: 10.1016/j.jelechem.2020.114441 [31] ZHANG Ruihan, RAVEENDRAN Vidhur, HE Yining, et al. A poriferous nanoflake-assembled flower-like Ni5P4 anode for high-performance sodium-ion batteries[J]. Energy Material Advances,2021(1):333-341. [32] GUO Huinan, CHEN Chengcheng, CHEN Kai, et al. High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage[J]. Journal of Materials Chemistry A,2017,5(42):22316-22324. doi: 10.1039/C7TA06843C [33] SHI Shanshan, LI Zhen, SHEN Liying, et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials,2020,29:78-83. doi: 10.1016/j.ensm.2020.03.029 [34] ZHANG Wanjie, DAHBI Mouad, AMAGASA Shota, et al. Iron phosphide as negative electrode material for Na-ion batteries[J]. Electrochemistry Communications,2016,69:11-14. doi: 10.1016/j.elecom.2016.05.005 [35] LI Xinwei, LI Wenwu, SHEN Pengfei, et al. Layered GeP-black P (Ge2P3): An advanced binary-phase anode for Li/Na-storage[J]. Ceramics International,2019,45(12):15711-15714. doi: 10.1016/j.ceramint.2019.04.219 [36] WANG Ting, ZHANG Kai, PARK Mihui, et al. Highly reversible and rapid sodium storage in GeP3 with synergistic effect from outside-in optimization[J]. ACS nano,2020,14(4):4352-4365. doi: 10.1021/acsnano.9b09869 [37] JING Yu, MA Yandong, LI Yafei, et al. GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement[J]. Nano Letters,2016,17(3):1833-1838. [38] DENG Xiaoyu, CHEN Xianfei, HUANG Yi, et al. Two-dimensional GeP3 as a high capacity anode material for non-lithium-ion batteries[J]. The Journal of Physical Chemistry C,2019,123(8):4721-4728. doi: 10.1021/acs.jpcc.8b11574 [39] WEI Yaqing, CHEN Jiajun, HE Jun, et al. Morphology processing by encapsulating GeP5 nanoparticles into nano-fibers toward enhanced thermo/electrochemical stability[J]. ACS Applied Materials & Interfaces,2018,10:32162-32170. [40] NING Qiuli, HOU Baohua, WANG Yingying, et al. Hierarchical GeP5/carbon nanocomposite with dual-carbon conductive network as promising anode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(43):36902-36909. [41] YANG Fuhua, HONG Jian, HAO Junnan, et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage[J]. Advanced Energy Materials,2020,10(14):1903826. doi: 10.1002/aenm.201903826 [42] TSENG Kuanwei, HUANG Shengbor, CHANG Weichung, et al. Synthesis of mesoporous germanium phosphide microspheres for high-performance lithium-ion and sodium-ion battery anodes[J]. Chemistry of Materials,2018,30(13):4440-4447. doi: 10.1021/acs.chemmater.8b01922 [43] LI Nan, WANG Ying, LIU Liangsen, et al. "Self-doping" defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage[J]. Journal of Colloid and Interface Science,2021,592(4):279-290. [44] ZENG Tianbiao, FENG Dong, XIE Yuhui, et al. Nano Sn4P3 embedded in nitrogenous carbon matrix as the anode of sodium ion battery for enhanced cyclability[J]. Journal of Alloys and Compounds,2021,874(8):159944. [45] 杨皖皖, 孙硕, 王健, 等. 机械球磨法制备Sn4P3/RGO钠离子电池负极材料及其电化学性能研究[J]. 常熟理工学院学报, 2019, 33(2):6-10. doi: 10.3969/j.issn.1008-2794.2019.02.002YANG Wanwan, SUN Shuo, WANG Jian, et al. Electrochemical properties for Sn4P3/RGO by mechanical ball milling method as anode materials for sodium ion batteries[J]. Journal of Changshu Institute of Technology,2019,33(2):6-10(in Chinese). doi: 10.3969/j.issn.1008-2794.2019.02.002 [46] XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite[J]. Advanced Energy Materials,2018,8(3):1701847. doi: 10.1002/aenm.201701847 [47] WANG Ying, SHI Haiting, NIU Jiarong, et al. Self-healing Sn4P3@Hard carbon Co-storage anode for sodium-ion batteries[J]. Journal of Alloys and Compounds,2021,851:156746. doi: 10.1016/j.jallcom.2020.156746 [48] ZHAO Wenxi, MA Xiaoqing, GAO Lixia, et al. Engineering carbon-nanochain concatenated hollow Sn4P3 nanospheres architectures as ultrastable and high-rate anode materials for sodium ion batteries[J]. Carbon,2020,167:736-745. doi: 10.1016/j.carbon.2020.06.050 [49] LIU Junfeng, WANG Shutao, KRAVCHYK Kostiantyn, et al. SnP nanocrystals as anode material for Na-ion battery[J]. Journal of Materials Chemistry A,2018,6(23):10958-10966. doi: 10.1039/C8TA01492B [50] FAN Xiulin, MAO Jianfeng, ZHU Yujie, et al. Superior stable self-healing SnP3 anode for sodium-ion batteries[J]. Advanced Energy Materials,2015,5(18):2314-2316. [51] LI Xinwei, LI Wenwu, YU Jiale, et al. Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances[J]. Journal of Alloys and Compounds,2017,724:932-939. doi: 10.1016/j.jallcom.2017.07.016 [52] NAM K H, HWA Y, PARK C M. Zinc phosphides as outstanding sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2020,12(13):15053-15062. [53] XIAO Lifen, LU Haiyan, FANG Yongjin, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials,2018,8(20):1703238. doi: 10.1002/aenm.201703238