留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生蜘蛛丝微纳米复合材料的集水性能

李昶 倪中石

李昶, 倪中石. 仿生蜘蛛丝微纳米复合材料的集水性能[J]. 复合材料学报, 2022, 39(6): 2515-2526. doi: 10.13801/j.cnki.fhclxb.20220107.001
引用本文: 李昶, 倪中石. 仿生蜘蛛丝微纳米复合材料的集水性能[J]. 复合材料学报, 2022, 39(6): 2515-2526. doi: 10.13801/j.cnki.fhclxb.20220107.001
LI Chang, NI Zhongshi. Water harvesting of bio-inspired micro/nano-structured spider silk[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2515-2526. doi: 10.13801/j.cnki.fhclxb.20220107.001
Citation: LI Chang, NI Zhongshi. Water harvesting of bio-inspired micro/nano-structured spider silk[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2515-2526. doi: 10.13801/j.cnki.fhclxb.20220107.001

仿生蜘蛛丝微纳米复合材料的集水性能

doi: 10.13801/j.cnki.fhclxb.20220107.001
基金项目: 国家留学基金管理委员会(202008060076)
详细信息
    作者简介:

    倪中石,硕士,研究方向为智能电子设备及智能制造 E-mail: zhongshini@umass.edu

    通讯作者:

    李昶,硕士,研究方向为材料表界面浸润与黏附  E-mail: c.li19@imperial.ac.uk(国际);hamster@188.com(国内)

  • 中图分类号: TB332;TB381

Water harvesting of bio-inspired micro/nano-structured spider silk

  • 摘要: 水是自然界大多数生物生存的必要条件,而动植物界存在着诸多奇妙的浸润现象。仿生微纳米复合材料浸润性相关研究是近年来国内外发展迅速的前沿热点,涉及跨领域、交叉领域。本文对仿生工程领域拥有集水性能的类蜘蛛丝微纳米复合材料的研究进展进行了评述,简要分析了材料的微纳米复合结构及其控制浸润性/液滴行为的机制,总结了类蜘蛛丝微纳米复合材料及集成蜘蛛网的制备技术发展(包括提拉法、静电纺丝法、微流体技术、三维编织技术、3D打印技术等),展示了不同微纳米复合材料及相应集水性能。本文重点分析并对比了仿生蜘蛛丝微纳米复合材料的仿生结构设计、材料制备技术、集水性能等,并展望了拥有集水性能的微纳米复合材料在微流体芯片、天气预报、海水淡化、药物缓释、微反应器、能量储运与转换等多领域的进一步新兴、多功能化应用。

     

  • 图  1  仿生集水结构单元的液滴受力分析示意图

    Figure  1.  Force analysis sketch of droplets on bio-inspired fog-harvesting units

    FL—Laplace driving force; R1, R2—Radius of curvature at both ends of local spindle node; C—Capillary force on the droplet; Fs—Driving force; Wc—Capillary thickness; β—Half vertex of the spindle node; R1', R2'—Local curvature of the three phase contact line at both ends of the droplet along the spindle node; θ—Contact angle; θ1, θ2—Contact angle on material/location

    图  3  结构多样性的仿生蜘蛛丝纤维:((a), (b)) 天然蜘蛛丝及提拉法制备的传统周期性纺锤节纤维[35];((c)~(e)) 静电纺丝法制备的具有多孔、粗糙结构的纺锤节表面[51];(f) 提拉法结合溶胶-凝胶技术制备的螺旋凹槽周期性纺锤节[53];(g) 流体法制备的梯度尺寸纺锤节[64];(h) 自组装二维星号交叉构筑[47];((i), (j)) 微流体法制备的空心纺锤节纤维及其三维拓扑类蜘蛛网构筑[48]

    Figure  3.  Diverse bio-inspired spider silk: ((a), (b)) Natural spider silk and the traditional periodic spindle knot made using dip-coating[35]; ((c)-(e)) Porous/ rough spindle knot made using electrodynamic[51]; (f) Periodic spindle knot with spiral microgroove made using dip-coating with sol-gel technique[53]; (g) Spindle knot with gradient size made using fluid-coating[64]; (h) 2D self-assembly crossing design of artificial spider silk[47]; ((i), (j)) Hollow spindle knot made using microfluidics and the 3D artificial spider web[48]

    图  2  近3年最新报道的较大规模的仿生集水网材:(a) 微纳米锥修饰三维多交叉结构仿生集水网材,被润湿后液滴低阻快速传播[45];(b) 液滴在静电纺丝法制备的类蜘蛛网交叉丝上的合并行为[78];(c) 液滴在微流体法制备的类蜘蛛网平行丝上的合并行为[79]

    Figure  2.  Bio-inspired large-scale fog-harvesting webs reported in the recent 3 years: (a) A novel 3D multi-intersectional network inspired by spider web, super low retention for liquid transport of wetted fibre[45]; (b) Droplet behaviour on crossing fibres of artificial spider web made with electrospinning[78]; (c) Droplet behaviour on parallel fibres of artificial spider web made with microfluid device[79]

    N3D—Novel 3D multi-intersectional network; BNF-10—Bioinspired nanofibril-humped fibers (106 humps); BNF-20—Bioinspired nanofibril-humped fibers (212 humps); BNF-30—Bioinspired nanofibril-humped fibers (317 humps)

    表  1  不同浸润性及黏附性质表面上的液滴接触状态及相应液滴行为

    Table  1.   Different surface contact states classified via wettability/adhesion property and corresponding liquid dynamics

    SketchContact stateBiological modelWettability and adhesionLiquid behaviour/trend
    Hydrophilic Tear film Hydrophilic, and highly adhesive Droplet can wet the surface or even spread flat
    Pinning Red rose petal; Salvinia (Super-)hydrophobic, but relatively high adhesion Droplet turns spherical, and stays still on the surface
    Slippery Lotus leaf (Super-)hydrophobic, and ultra-low adhesion Droplet turns spherical, and can easily leave the surface
    Anisotropic Butterfly wing; Rice leaf (Super)-hydrophobic, different retention force for different direction Droplet tends to directionally move
    下载: 导出CSV

    表  2  类蜘蛛丝材料制备技术总结

    Table  2.   Fabrication technologies of mimic spider silk

    Method Advantages/features Sketcha
    Dip-coating Firstly developed to mimic artificial spider silks;
    Easy to operate;
    Can be combined with phase-separation avenues to control micro/nano-structures;
    Can realise relatively large-scale preparation
    Coaxial electrospinning/
    electrodynamic
    Same composition of the knot with the host fibre;
    Can be combined with wet-assembly techniques;
    Can use/make bio-materials;
    Can fabricate membrane on a substrate;
    Can spin on other micro/nano-structured materials to optimise the function
    Fluid-coating Mechanical automation;
    Can prepare ultra-long fibres;
    Modify the speed of motor to control the knot size;
    Can prepare gradient structures by setting an acceleration of motor
    Microfluidics Usually use biocompatible materials;
    Can prepare relatively long fibres;
    Can prepare hollow fibres;
    Highly accurate and controllable
    Mechanical or
    textile approach
    Aim to prepare large-scale water-collecting materials;
    Can be combined with the above methods to enlarge the scale of materials;
    Being a trend and a latest research direction (see details in subsection 3.2);
    e.g., 3D printing/additive manufacturing (as shown in the right figure);
    e.g., multi-dimensional multi-directional braid
    Note: a—Sketch maps of dip-coating, electrodynamic, fluid-coating, and microfluidics are adapted with permission from[36].
    下载: 导出CSV
  • [1] CHENG B, LI H E. A Bayesian network approach for determining optimal ecological base flow of rivers in water shortage areas of Northwest China[J]. Environmental Science and Pollution Research,2021,28:37768-37780. doi: 10.1007/s11356-021-13384-w
    [2] MARTÍNEZ B, SANCHEZ-RUIZ S, GILABERT M A, et al. Retrieval of daily gross primary production over Europe and Africa from an ensemble of SEVIRI/MSG products[J]. International Journal of Applied Earth Observation & Geoinformation,2018,65:124-136. doi: 10.1016/j.jag.2017.10.011
    [3] YAO X, SONG Y L, JIANG L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials,2011,23:719-734. doi: 10.1002/adma.201002689
    [4] RICHARDS S, RAO L, CONNELLY S. Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment[J]. Journal of Environmental Management,2021,286:112223. doi: 10.1016/j.jenvman.2021.112223
    [5] ARZT E, QUAN, H C, MCMEEKING R M, et al. Functional surface microstructures inspired by nature—From adhesion and wetting principles to sustainable new devices[J]. Progress in Materials Science,2021,119:100778. doi: 10.1016/j.pmatsci.2021.100778
    [6] JIANG L, ZHAO Y, ZHAI J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber compo-site film prepared by electrohydrodynamics[J]. Angewandte Chemie (International edition in English),2004,43:4338-4341. doi: 10.1002/anie.200460333
    [7] XIN Q P, LI X, HOU H L, et al. Superhydrophobic surface-constructed membrane contactor with hierarchical lotus-leaf-like interfaces for efficient SO2 capture[J]. ACS Applied Materials & Interfaces,2021,13:1827-1837. doi: 10.1021/acsami.0c17534
    [8] 王明超, 杨青林, 王春. 玫瑰花花瓣微观结构与水滴粘附性质的关系[J]. 高等学校化学学报, 2011, 32:1594-1597.

    WANG M C, YANG Q L, WANG C. Effects of micro- and nano-structure on the adhesive property of rose petals[J]. Chemical Journal of Chinese Universities,2011,32:1594-1597(in Chinese).
    [9] SHAO Y L, ZHAO J, FAN Y, et al. Shape memory superhydrophobic surface with switchable transition between "Lotus Effect" to "Rose Petal Effect"[J]. Chemical Engineering Journal,2020,382:122989. doi: 10.1016/j.cej.2019.122989
    [10] AMABILI M, GIACOMELLO A, MELONI S, et al. Unraveling the Salvinia paradox: Design principles for submerged superhydrophobicity[J]. Advanced Materials Interfaces,2015,2:1500248. doi: 10.1002/admi.201500248
    [11] YANG Y, LI X J, ZHENG X, et al. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation[J]. Advanced Materials,2018,30:1704912. doi: 10.1002/adma.201704912
    [12] YAO J, WANG J N, YU Y H, et al. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting[J]. Science Bulletin,2012,57:2631-2634. doi: 10.1007/s11434-012-5220-1
    [13] ZHENG Y M, GAO X F, JIANG L, et al. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter,2007,3:178-182. doi: 10.1039/B612667G
    [14] 陈峒霖, 毛江维, 陈招弟, 等. 激光加工制备仿芦苇叶结构的超疏水表面[J]. 科学通报, 2019, 64:1303-1308. doi: 10.1360/N972018-00872

    CHEN D L, MAO J W, CHEN Z D. Fabrication of bionic reed leaf superhydrophobic surface by laser processing[J]. Chinese Science Bulletin,2019,64:1303-1308(in Chinese). doi: 10.1360/N972018-00872
    [15] LUO X L, LU L F, YIN M, et al. Antireflective and self-cleaning glass with robust moth-eye surface nanostructures for photovoltaic utilization[J]. Materials Research Bulletin,2019,109:183-189. doi: 10.1016/j.materresbull.2018.09.029
    [16] WAHID, F, ZHAO X J, DUAN Y X, et al. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation[J]. Carbohydrate Polymers,2021,257:117611. doi: 10.1016/j.carbpol.2020.117611
    [17] HAN Z W, FENG X M, GUO Z G, et al. Flourishing bioinspired antifogging materials with superwettability: Progresses and challenges[J]. Advanced Materials,2018,30:1704652. doi: 10.1002/adma.201704652
    [18] PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature,2001,414:33-34. doi: 10.1038/35102108
    [19] AL-GHARABLI S, AL-OMARI B, KUJAWSKI W, et al. How can the desert beetle and biowaste inspire hybrid separation materials for water desalination? [J] ACS Applied Materials & Interfaces, 2021, 13: 11268-11283.
    [20] YU Z H, ZHANG H M, HUANG J Y, et al. Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting[J]. Journal of Materials Science and Technology,2021,61:95-92.
    [21] KOSTAL E, STROJ S, KASEMANN S, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers[J]. Langmuir,2018,34:2933-2941. doi: 10.1021/acs.langmuir.7b03699
    [22] WU J B, ZHANG L B, WANG Y C, et al. Efficient and anisotropic fog harvesting on a hybrid and directional surface[J]. Advanced Materials Interfaces,2017,4:1600801. doi: 10.1002/admi.201600801
    [23] WANG Y C, ZHANG L B, WU J B, et al. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting[J]. Journal of Materials Chemistry A,2015,3:18963-18969. doi: 10.1039/C5TA04930J
    [24] BAI H, WANG L, JU J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Advanced Materials,2014,26:5025-5030. doi: 10.1002/adma.201400262
    [25] ZHOU H, JING X S, LI S P, et al. Near-bulge oil meniscus-induced migration and condensation of droplets for water collection: Energy saving, generalization and recyclability[J]. Chemical Engineering Journal,2021,417:129215. doi: 10.1016/j.cej.2021.129215
    [26] JU J, BAI H, ZHENG Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications,2012,3:1247. doi: 10.1038/ncomms2253
    [27] ELBAUM R, ZALTZMAN L, BURGERT I, et al. Role of wheat awns in the seed dispersal unit[J]. Science,2007,316:884-886. doi: 10.1126/science.1140097
    [28] XU T, LIN Y C, ZHANG M X, et al. High-efficiency fog collector: Water unidirectional transport on heterogeneous rough conical wires[J]. ACS Nano,2016,10:10681-10688. doi: 10.1021/acsnano.6b05595
    [29] PEI W L, LI J H, GUO Z Y, et al. Excellent fog harvesting performance of liquid-infused nano-textured 3D frame[J]. Chemical Engineering Journal,2020,409:128180.
    [30] XING Y, WANG S J, FENG S L, et al. Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire[J]. RSC Advances,2017,7:29606-29610. doi: 10.1039/C7RA05534J
    [31] ZHOU H, ZHANG M X, LI C, et al. Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures[J]. Small,2018,14:1801335. doi: 10.1002/smll.201801335
    [32] MA Z, AI J W, SHI Y S, et al. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously[J]. Advanced Materials,2020,32:2006839. doi: 10.1002/adma.202006839
    [33] WAN K, GOU X L, GUO Z G, et al. Bio-inspired fog harvesting materials: basic research and bionic potential applications[J]. Journal of Bionics Engineering,2021,18:501-533. doi: 10.1007/s42235-021-0040-0
    [34] GE P, WANG S L, ZHANG J H, et al. Micro-/nanostructures meet anisotropic wetting: From preparation methods to applications[J]. Materials Horizons,2020,7:2566-2595. doi: 10.1039/D0MH00768D
    [35] ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature,2010,463:640-643. doi: 10.1038/nature08729
    [36] CHEN Y, ZHENG Y M. Bioinspired micro-/nanostructure fibres with a water collecting property[J]. Nanoscale,2014,6:7703-7714. doi: 10.1039/c4nr02064b
    [37] KIM H, JANG Y, LEE D Y, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces,2019,11:31162-31168. doi: 10.1021/acsami.9b09240
    [38] ZHANG M X, ZHENG Y M. Bioinspired structure mater-ials to control water-collecting properties[J]. Materials Today-Proceedings,2016,3:696-702. doi: 10.1016/j.matpr.2016.01.115
    [39] YOON R H, FLINN D H, RABINOVICH Y I. Hydrophobic interactions between dissimilar surfaces[J]. Journal of Colloid & Interface Science,1997,185:363-370. doi: 10.1006/jcis.1996.4583
    [40] GUO C, WANG S, LIU H, et al. Wettability alteration of polymer surfaces produced by scraping[J]. Journal of Adhesion Science & Technology,2008,22:395-402. doi: 10.1163/156856108X304832
    [41] GUO H S, LIU M, XIE C H, et al. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials[J]. Chemical Engineering Journal,2020,402:126161. doi: 10.1016/j.cej.2020.126161
    [42] FENG S L, WANG Q Q, XING Y, et al. Continuous directional water transport on integrating tapered surfaces[J]. Advanced Materials Interfaces,2020,7:2000081. doi: 10.1002/admi.202000081
    [43] LI D, FENG S L, XING Y, et al. Directional bouncing of droplets on oblique two-tier conical structures[J]. RSC Advances,2017,7:35771-35775. doi: 10.1039/C7RA05820A
    [44] LI C, LI M, NI Z, et al. Stimuli-responsive surfaces for switchable wettability and adhesion[J]. Journal of The Royal Society Interface,2021,18:20210162. doi: 10.1098/rsif.2021.0162
    [45] LI C, LIU Y F, GAO C L, et al. Fog harvesting of a bioinspired nanocone-decorated 3D fiber network[J]. ACS Applied Materials & Interfaces,2019,11:4507-4513. doi: 10.1021/acsami.8b15901
    [46] XU C X, JIA Z H, LIAN X H, et al. Wetting and adhesion energy of droplets on wettability gradient surfaces[J]. Jour-nal of Materials Science,2020,55:8185-8198. doi: 10.1007/s10853-020-04607-5
    [47] HE X H, WANG W, LIU Y M, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3D assembly and water collection[J]. ACS Applied Materials & Interfaces,2015,7:17471. doi: 10.1021/acsami.5b05075
    [48] TIAN Y, ZHU P A, TANG X, et al. Large-scale water collection of bioinspired cavity microfibers[J]. Nature Communications,2017,8:1080. doi: 10.1038/s41467-017-01157-4
    [49] DONG H, ZHENG Y, WANG N, et al. Highly efficient fog collection unit by integrating artificial spider silks[J]. Advanced Materials Interfaces,2016,3:1500831. doi: 10.1002/admi.201500831
    [50] BAI H, JU J, SUN R Z, et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Advanced Materials,2011,23:3708. doi: 10.1002/adma.201101740
    [51] FENG S L, HOU Y P, CHEN Y, et al. Water-assisted fabrication of porous bead-on-string fibers[J]. Journal of Mater-ials Chemistry A,2013,1:8363-8366. doi: 10.1039/c3ta11617d
    [52] CHEN Y, WANG L, XUE Y, et al. Bioinspired tilt-angle fabricated structure gradient fibers: Micro-drops fast transport in a long distance[J]. Scientific Reports,2013,3:2927. doi: 10.1038/srep02927
    [53] WANG L, JI X Y, WANG N, et al. Biaxial stress controlled three-dimensional helical cracks[J]. NPG Asia Materials,2012,4:e14. doi: 10.1038/am.2012.26
    [54] ZHAO L, SONG C, ZHANG M X, et al. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles[J]. Chemical Communications,2014,50:10651-10654. doi: 10.1039/C4CC05156D
    [55] TIAN X L, BAI H, ZHENG Y M, et al. Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting[J]. Advanced Functional Materials,2011,21:1398-1402. doi: 10.1002/adfm.201002061
    [56] SONG C, ZHAO L, ZHOU W B, et al. Bioinspired wet-assembly fibers: From nanofragments to microhumps on string in mist[J]. Journal of Materials Chemistry A,2014,2:9465-9468. doi: 10.1039/c4ta01160k
    [57] ZHANG Y Q, SHI G F, CHEN B, et al. Biomass-based carbon nanofibers prepared by electrospinning for supercapacitor[J]. Journal of Nanoscience and Nanotechnology,2018,18:5731-5737. doi: 10.1166/jnn.2018.15423
    [58] DONG H, WANG N, WANG L, et al. Bioinspired electrospun knotted microfibers for fog harvesting[J]. ChemPhysChem,2012,13:1153-1156. doi: 10.1002/cphc.201100957
    [59] THAKUR N, RANGANATH A S, AGARWAL K, et al. Electrospun bead-on-string hierarchical fibers for fog harvesting application[J]. Macromolecular Materials and Engineering,2017,302:1700124. doi: 10.1002/mame.201700124
    [60] GANESH V A, RANGANATH A S, BAJI A, et al. Hierarchical structured electrospun nanofibers for improved fog harvesting applications[J]. Macromolecular Materials and Engineering,2017,302:1600387. doi: 10.1002/mame.201600387
    [61] DU M, ZHAO Y, TIAN Y, et al. Electrospun multiscale structured membrane for efficient water collection and directional transport[J]. Small,2016,12:1000-1005. doi: 10.1002/smll.201502942
    [62] XI H J, ZHAO H J. Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH[J]. Journal of Materials Science,2019,54:4246-4258. doi: 10.1007/s10853-018-3137-z
    [63] BAI H, SUN R Z, JU J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small,2011,7:3429-3433. doi: 10.1002/smll.201101408
    [64] XUE Y, CHEN Y, WANG T, et al. Directional size-triggered microdroplet target transport on gradient-step fibers[J]. Journal of Materials Chemistry A,2014,2:7156-7160. doi: 10.1039/C3TA15445A
    [65] JI X B, GUO S, ZENG C F, et al. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device[J]. RSC Advances,2015,5:2517-2522. doi: 10.1039/C4RA10389K
    [66] TIAN Y, WANG J C, WANG L Q. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds[J]. ACS Applied Materiarls & Interfaces,2018,10:29219-29226. doi: 10.1021/acsami.8b09212
    [67] QUÉRÉ D, MEGLIO J M D, BROCHARD-WYART F. Spreading of liquids on highly curved surfaces[J]. Science,1990,249:1256-1260. doi: 10.1126/science.249.4974.1256
    [68] SONG J N, ZHANG W L, WANG D H, et al. Polymeric microparticles generated via confinement-free fluid instability[J]. Advanced Materials,2021,33:2007154. doi: 10.1002/adma.202007154
    [69] TANG M, CHRISTIE K S S, HOU D Y, et al. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method[J]. Journal of Membrane Science,2021,617:118666. doi: 10.1016/j.memsci.2020.118666
    [70] HUANG J J, HAO H Y, HUANG Y. Gradient porous structure templated by breath figure method[J]. Langmuir,2021,19:6016-6021.
    [71] CHENG R M, COLOMBO R N P, ZHANG L, et al. Porous graphene oxide films prepared via the breath-figure method: A simple strategy for switching access of redox species to an electrode surface[J]. ACS Applied Materials & Interfaces,2020,11:55181-55188.
    [72] LOSCERTALES I G, BARRERO A, GUERRERO I, et al. Micro/nano encapsutation via electrified coaxial liquid jets[J]. Science,2002,1695:295.
    [73] SUN Z C, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced Materials,2003,15:1929. doi: 10.1002/adma.200305136
    [74] REN B N, PI H H, ZHAO X, et al. Janus membrane with novel directional water transport capacity for efficient atmospheric water capture[J]. Nanoscale,2021,13:9354-9363. doi: 10.1039/D1NR01120K
    [75] ZHANG Y P, YANG J H, LI L L, et al. Facile fabrication of superhydrophobic copper-foam and electrospinning polystyrene fiber for combinational oil-water separation[J]. Polymers,2019,11(1):97-111. doi: 10.3390/polym11010097
    [76] KANU N J, GUPTA E, VALES U K, et al. Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers[J]. Materials Research Express,2020,7:035022. doi: 10.1088/2053-1591/ab7f60
    [77] ZHANG P W, DA-SILVA G M, DEATHERAGE C, et al. Cell-penetrating peptide mediates intracellular membrane passage of human papillomavirus L2 protein to trigger retrograde trafficking[J]. Cell, 2018, 176: 1465
    [78] LIU Y F, Y NAN, GAO C L, et al. Bioinspired nanofibril-humped fibers with strong capillary channels for fog capture[J]. ACS Applied Materials& Interfaces,2020,12:28876-28884. doi: 10.1021/acsami.0c06945
    [79] LIU Y F, YANG N, LI X, et al. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics[J]. Small,2020,16:1901819. doi: 10.1002/smll.201901819
    [80] VOLLRATH F. Biology of spider silk[J]. International Journal of Biological Macromolecules,1999,24:81-88. doi: 10.1016/S0141-8130(98)00076-2
    [81] WU R, KIM T. Review of microfluidic approaches for fabricating intelligent fiber devices: Importance of shape characteristics[J]. Lab on a Chip,2021,21:1217-1240. doi: 10.1039/D0LC01208D
    [82] LI D S, YANG Y, JIANG L. Experimental study on the fabrication, high-temperature properties and failure analysis of 3D seven-directional braided composites under compression[J]. Composite Structures,2021,268:113934. doi: 10.1016/j.compstruct.2021.113934
    [83] YAN C Y, JIANG P, JIA, X. 3D printing of bioinspired textured surfaces with superamphiphobicity[J]. Nanoscale,2020,12:2924-2938. doi: 10.1039/C9NR09620E
    [84] VAES D, VAN-PUYVELDE P. Semi-crystalline feedstock for filament-based 3D printing of polymers[J]. Progress in Polymer Science,2021,118:101411. doi: 10.1016/j.progpolymsci.2021.101411
    [85] WITHANAGE S, SAVIN A, NIKOLAEVA V, et al. Native spider silk-based antimicrobial hydrogels for biomedical applications[J]. Polymers,2021,13:1796. doi: 10.3390/polym13111796
    [86] NEUBAUER V J, TROSSMANN, V T, JACOBI S, et al. Recombinant spider silk gels derived from aqueous-organic solvents as depots for drugs[J]. Angewandte Chemie International Edition,2021,60:11847-11851. doi: 10.1002/anie.202103147
    [87] FESSEHAYE M, ABDUL-WAHAB S A, SAVAGE M J, et al. Fog-water collection for community use[J]. Renewable & Sustainable Energy Reviews,2014,29:52-62. doi: 10.1016/j.rser.2013.08.063
    [88] LI X, LIU Y F, ZHOU H, et al. Fog collection on a bio-inspired topological alloy net with micro-/nanostructures[J]. ACS Applied Materials & Interfaces,2020,12:5065-5072. doi: 10.1021/acsami.9b19756
    [89] YAN C, WANG T. A new view for nanoparticle assemblies: From crystalline to binary cooperative complementarity[J]. Chemical Society Reviews,2017,46:1483. doi: 10.1039/C6CS00696E
    [90] FANG R C, LIU M J, et al. Progress of binary cooperative complementary interfacial nanomaterials[J]. Nanotoday,2019,24:48-80. doi: 10.1016/j.nantod.2018.12.007
    [91] FANG R C, LIU M J, JIANG L. Design of nanoparticle systems by controllable assembly and temporal/spatial regulation[J]. Advanced Functional Materials,2020,30:1903351. doi: 10.1002/adfm.201903351
    [92] LIU C, LU C G, ZHAN H Y, et al. Multibioinspired JANUS mem-branes with spatial surface refreshment for enhanced fog collection[J]. Advanced Materials Interfaces,2021,8:2101212. doi: 10.1002/admi.202101212
    [93] TAO Y L, LI Q Q, WU Q N, et al. Embedding metal foam into metal-organic framework monoliths for triggering a highly efficient release of adsorbed atmospheric water by localized eddy current heating[J]. Materials Horizons,2021,8:1439-1445. doi: 10.1039/D1MH00306B
    [94] KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science,2017,356:430-432. doi: 10.1126/science.aam8743
    [95] 肖优明. MOF: 从干燥空气中捕捉水分[J]. 检察风云, 2018, 5:38-39. doi: 10.3969/j.issn.1005-5444.2018.01.018

    XIAO Y M. MOF: Capturing moisture from dry air[J]. Prosecutorial View,2018,5:38-39(in Chinese). doi: 10.3969/j.issn.1005-5444.2018.01.018
    [96] LI J, RAN R J S, WANG H H, et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors[J]. Nature Communications,2021,12:5484. doi: 10.1038/s41467-021-25764-4
    [97] LI T T, FANG Q L, LIN H B, et al. Enhancing solar steam generation through manipulating the heterostructure of PVDF membranes with reduced reflection and conduction[J]. Journal of Materials Chemistry A,2019,7:17505-17515. doi: 10.1039/C9TA03865E
    [98] LI X J, ZHANG L Q, FENG Y, et al. Reversible temperature-sensitive liquid–solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing[J]. Advanced Functional Materials,2021,31:2010220. doi: 10.1002/adfm.202010220
    [99] MU P, ZHANG Z, BAI W, et al. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J]. Advanced Energy Materials,2019,9:1802158. doi: 10.1002/aenm.201802158
    [100] WANG Y C, WANG C Z, SONG X J, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Mater-ials Chemistry A,2018,6:963. doi: 10.1039/C7TA08972D
    [101] ZHANG Z, LI X, YIN J, et al. Emerging hydrovoltaic technology[J]. Nature Nanotechnology,2018,13:1109-1119. doi: 10.1038/s41565-018-0228-6
    [102] PRESTON D J, WANG E N. Jumping droplets push the boundaries of condensation heat transfer[J]. Joule,2018,2:205-207. doi: 10.1016/j.joule.2018.01.011
    [103] LO C W, CHU Y C, YEN M H, et al. Enhancing condensation heat transfer on three-dimensional hybrid surfaces[J]. Joule,2019,3:2806-2823. doi: 10.1016/j.joule.2019.08.005
    [104] EDALATPOUR M, LIU L, JACOBI A, et al. Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation[J]. Applied Energy,2018,222:967-992. doi: 10.1016/j.apenergy.2018.03.178
    [105] XU W H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature,2020,578:392-396. doi: 10.1038/s41586-020-1985-6
    [106] HAO G N, DONG X W, LI Z L, et al. Dynamic response of PVDF cantilever due to droplet impact using an electromechanical model[J]. Sensors,2020,20:5764. doi: 10.3390/s20205764
    [107] XU W, ZHOU X, HAO C, et al. SLIPS-TENG: Robust triboelectric nanogenerator with optical and charge transparency using a slippery interface[J]. National Science Review,2019,6:540-550. doi: 10.1093/nsr/nwz025
    [108] LIU Y P, ZHANG Y B, LI T H, et al. Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting[J]. Nano Energy,2019,61:454-461. doi: 10.1016/j.nanoen.2019.05.007
    [109] YANG D, NI Y F, SU H, et al. Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator[J]. Nano Energy,2021,79:105394. doi: 10.1016/j.nanoen.2020.105394
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2868
  • HTML全文浏览量:  742
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2021-12-20
  • 录用日期:  2022-01-03
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回