Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials
-
摘要: 以正十四烷(C14)为相变材料,膨胀石墨(EG)为载体,通过物理吸附法制备C14/EG复合相变材料,采用SEM、DSC、FTIR对C14/EG复合相变材料的微观形貌、相变温度、相变潜热、化学结构进行了测试。开展了外掺(与水泥质量比)0%、2%、4%、6%相变材料的相变储能水泥基材料(PCESM)快速冻融循环试验,分析了冻融循环对表面损伤、质量损失、动弹模量损失、抗压强度及孔结构的影响规律,揭示了PCESM冻融循环劣化机制。试验结果表明:C14能够较好地吸附在EG孔隙中,C14与EG之间有良好的相容性,二者未发生化学反应。由于C14/EG相较于水泥基材料为弱相,因此随着C14/EG相变材料掺量的提高,PCESM的力学性能随之下降,但抗冻性能随着C14/EG相变材料掺量的提高呈现先提高后降低的规律,C14/EG相变材料掺量为4%的PCESM抗冻性最优。Abstract: C14/EG composite phase change material was prepared by physical adsorption method with n-tetradecane (C14) as phase change material and expanded graphite (EG) as carrier. The micro-morphology, phase change temperature, phase change latent heat and chemical structure of C14/EG composite phase change material were tested by SEM, DSC and FTIR. The quick freeze-thaw cycle tests of phase change energy storage cement-based materials (PCESM) doped (mass ratio to cement) with 0%, 2%, 4% and 6% phase change materials were carried out. The effects of freeze-thaw cycle on the surface damage, mass loss, dynamic modulus loss, compressive strength and pore structure were analyzed, and the deterioration mechanism of PCESM during freeze-thaw cycle was revealed. The experimental results show that C14 can be well adsorbed in the pores of EG, and C14 has good compatibility with EG, and there is no chemical reaction between them. With the increase of C14/EG phase change material content, the porosity increases and the mechanical properties decrease, but the frost resistance increases first and then decreases. The frost resistance of PCESM with 4% C14/EG phase change material is the best.
-
图 2 C14和C14/EG复合相变材料的DSC曲线
Figure 2. DSC curves of C14 and C14/EG composite phase change materials
Tonset—Onset temperature of the phase transformation in each phase change material (PCM); Tmax-peak—Temperature at the peak of heat flow; Tcompletion—Temperature when each PCM completes the phase transformation; ∆H—Latent heat of each PCM
表 1 相变储能水泥基材料(PCESM)配合比
Table 1. Mixture ratios of phase change energy storage cement-based materials (PCESM)
kg·m−3 Sample C14/EG Cement Sand Water JC 0 540 1278 270 2%(C14/EG)/C 10.8 540 1278 270 4%(C14/EG)/C 21.6 540 1278 270 6%(C14/EG)/C 32.4 540 1278 270 Notes: JC—Reference concrete without phase change materials; C14—n-Tetradecane; EG—Expanded graphite; C—Cement. -
[1] METHA P K. Concrete durability-fifty years progress[C]. Proceedings of 2nd International Conference on Concrete Durability, ACI SP 126-1, Detroit, 1991: 1-31. [2] CAI H, LIU X. Freeze-thaw durability of concrete: Ice formation process in pores[J]. Cement and Concrete Research,1998,28(9):1281-1287. doi: 10.1016/S0008-8846(98)00103-3 [3] KESSLER S, THIEL C, GROSSE C U, et al. Effect of freeze-thaw damage on chloride ingress into concrete[J]. Materials and Structures,2017,50:121. doi: 10.1617/s11527-016-0984-4 [4] SCHERER G W. Crystallization in pores[J]. Cement and Concrete Research,1999,29:1347-1358. doi: 10.1016/S0008-8846(99)00002-2 [5] 金伟良, 赵羽习. 混凝土结构耐久性(第二版)[M]. 北京: 科学出版社, 2014.JIN Weiliang, ZHAO Yuxi. Durability of concrete structures (Second edition)[M]. Beijing: Science Press, 2014(in Chinese). [6] 苏怀智, 谢威. 寒区水工混凝土冻融损伤及其防控研究进展[J]. 硅酸盐通报, 2021, 40(4):1053-1071.SU Huaizhi, XIE Wei. Review on frost damages of hydraulic concrete in cold region and its preventive control[J]. Bulletin of the Chinese Ceramic Society,2021,40(4):1053-1071(in Chinese). [7] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6):137-144.CAO Dafu, GE Wenjie, GUO Rongyi, et al. Experimental study on flexural behavior of reinforced concrete beams subjected to freeze-thaw cycles[J]. Journal of Building Structures,2014,35(6):137-144(in Chinese). [8] 谭克锋. 水灰比和掺合料对混凝土抗冻性能的影响[J]. 武汉理工大学学报, 2006, 28(3):58-60. doi: 10.3321/j.issn:1671-4431.2006.03.017TAN Kefeng. Effect of water-cement ratio and mineral admixture on frost resistance of concrete[J]. Journal of Wuhan University of Technology,2006,28(3):58-60(in Chinese). doi: 10.3321/j.issn:1671-4431.2006.03.017 [9] FU X P, XIAO X L, YI Z S, et al. Experimental study of mechanical properties of concrete after freeze-thaw exposures[J]. Advanced Materials Research,2014,912-914:131-135. doi: 10.4028/www.scientific.net/AMR.912-914.131 [10] 谢剑, 唐静, 孙雅丹. 超低温条件下引气剂对混凝土抗冻性能影响的试验研究[J]. 硅酸盐通报, 2020, 39(1):12-19.XIE Jian, TANG Jing, SUN Yadan. Experimental study on the effect of air entraining agent on frost resistance of concrete at ultra-low temperature[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):12-19(in Chinese). [11] 张凯, 王起才, 杨子江, 等. 多年冻土区引气混凝土抗压强度及抗冻性研究[J]. 铁道学报, 2019, 41(5):156-161. doi: 10.3969/j.issn.1001-8360.2019.05.019ZHANG Kai, WANG Qicai, YANG Zijiang, et al. Effect of air-entrained concrete on compressive strength and frost re-sistance in permafrost regions[J]. Journal of the China Railway Society,2019,41(5):156-161(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.05.019 [12] DZIGITA N, GIEDRIUS G, GINTAUTAS S. Properties of concrete modified with mineral additives[J]. Construction and Building Materials,2017,135:37-42. doi: 10.1016/j.conbuildmat.2016.12.215 [13] 周立霞, 王起才. 矿物掺合料对混凝土抗冻性的影响[J]. 混凝土, 2011(5):53-56, 59. doi: 10.3969/j.issn.1002-3550.2011.05.019ZHOU Lixia, WANG Qicai. Effect of mineral admixture on frost resistance of concrete[J]. Concrete,2011(5):53-56, 59(in Chinese). doi: 10.3969/j.issn.1002-3550.2011.05.019 [14] 孟博旭, 许金余, 彭光. 纳米碳纤维增强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(10):2458-2468.MENG Boxu, XU Jinyu, PENG Guang. Frost resistance test of carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2458-2468(in Chinese). [15] 牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5):705-717.NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society,2020,48(5):705-717(in Chinese). [16] ZHAO Y, CUI N, ZHAO S Y, et al. Aggressive environment resistance of concrete products modified with nano alumina and nano silica[J]. Frontiers in Materials,2021,8:695624. doi: 10.3389/fmats.2021.695624 [17] LAUSTSEN S, HASHOLT M T, JENSEN O M, et al. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete[J]. Materials and Structures,2015,48:357-368. doi: 10.1617/s11527-013-0188-0 [18] MEJLHEDE J O. Use of superabsorbent polymers in construction materials[J]. Conference on Microstructure Related Durability of Cementitious Composites,2008,2:754-763. [19] SARDORBEK R, SANG W K, MINHO K, et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing[J]. Construction and Building Materials,2021,273:121710. doi: 10.1016/j.conbuildmat.2020.121710 [20] 李趁趁, 胡婧, 元成方, 等. 纤维/高强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(8):1977-1983.LI Chenchen, HU Jing, YUAN Chengfang, et al. Experiment on frost resistance of fiber/high strength concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1977-1983(in Chinese). [21] ZEYNEP A, SUMEYRA G. Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fiber[J]. Construction and Building Materials,2020,234:117382. doi: 10.1016/j.conbuildmat.2019.117382 [22] 孙家瑛. 纤维混凝土抗冻性能研究[J]. 建筑材料学报, 2013, 16(3):437-440. doi: 10.3969/j.issn.1007-9629.2013.03.010SUN Jiaying. Study on frost resistance of fiber reinforced concrete[J]. Journal of Building Materials,2013,16(3):437-440(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.03.010 [23] 龚升, 张武满, 张劲松. 橡胶颗粒-钢纤维混掺对碾压混凝土抗冻性及抗冲击性能的影响[J]. 复合材料学报, 2018, 35(8):2199-2207.GONG Sheng, ZHANG Wuman, ZHANG Jinsong. Effect of rubber particle-steel fiber blending on frost resistance and impact resistance of roller compacted concrete[J]. Acta Materiae Compositae Sinica,2018,35(8):2199-2207(in Chinese). [24] RUIZHE S, GUO S C, DAI Q L. Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles[J]. Construction and Building Materials,2017,153:496-505. doi: 10.1016/j.conbuildmat.2017.07.085 [25] 陈昕, 李文婷, 蒋正武. 相变材料在改善水泥基材料抗冻性方面的研究进展[J]. 硅酸盐通报, 2017, 36(10):3330-3335.CHEN Xin, LI Wenting, JIANG Zhengwu. Utilization of phase change materials to improve the frost resistance of cement based materials[J]. Bulletin of the Chinese Ceramic Society,2017,36(10):3330-3335(in Chinese). [26] ROMERO C R, FILHO F F D M, FIGUEIREDO S C, et al. Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materials[J]. Cement and Concrete Composites,2020,113:103705. doi: 10.1016/j.cemconcomp.2020.103705 [27] SAKULICH A R, BENTZ D P. Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles[J]. Journal of Materials in Civil Engineering,2012,24:1034-1042. doi: 10.1061/(ASCE)MT.1943-5533.0000381 [28] BENTZ D P, TURPIN R. Potential applications of phase change materials in concrete technology[J]. Cement and Concrete Composites,2007,29(7):527-532. doi: 10.1016/j.cemconcomp.2007.04.007 [29] 杨献章, 胡柏学, 廖春芳, 等. 相变控温技术在桥梁防冻工程的应用[J]. 公路工程, 2013, 38(1):1-4, 27.YANG Xianzhang, HU Baixue, LIAO Chunfang, et al. Application of phase-change temperature control technique in bridge antifreeze engineering[J]. Highway Engineering,2013,38(1):1-4, 27(in Chinese). [30] LI W T, LING C W, JIANG Z W. Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete[J]. Construction and Building Materials,2019,203:621-632. doi: 10.1016/j.conbuildmat.2019.01.098 [31] 朱洪洲, 陈瑞璞, 苟珊, 等. 低温下水泥路面调温相变材料的制备及性能[J]. 材料导报, 2021, 35(14):14198-14203. doi: 10.11896/cldb.20050159ZHU Hongzhou, CHEN Ruipu, GOU Shan, et al. Preparation and properties of phase change materials for temperature control of cement pavement at low tempera-ture[J]. Materials Reports,2021,35(14):14198-14203(in Chinese). doi: 10.11896/cldb.20050159 [32] 朱洪洲, 陈瑞璞, 苟珊, 等. 相变水泥混凝土的力学性能与低温调温性能[J]. 硅酸盐通报, 2020, 39(11):3510-3514.Zhu Hongzhou, CHEN Ruipu, GOU Shan, et al. Mechanical properties and low temperature tempering performance of phase change cement concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(11):3510-3514(in Chinese). [33] 中华人民共和国国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.The State Bureau of Quality and Technical Supervision. Method of testing cements-determination of strength: GB/T 17671—1999 [S]. Beijing: Standards Press of China, 1999(in Chinese). [34] 张素凌, 方玉堂, 汪双凤. SA-AC/膨胀石墨的制备及性能研究[J]. 工程热物理学报, 2017, 38(12):2691-2696.ZHANG Suling, FANG Yutang, WANG Shuangfeng. The preparation and study on the properties of SA-AC/expanded graphite composite[J]. Journal of Engineering Thermophysics,2017,38(12):2691-2696(in Chinese). [35] 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效导热系数的数值计算[J]. 复合材料学报, 2015, 32(6):1596-1601.SUN Wenge, HAN Lei, WU Zhigen. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica,2015,32(6):1596-1601(in Chinese). [36] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of basic properties of construction mortar: JGJ/T 70—2009 [S]. Beijing: China Architecture & Building Press, 2009(in Chinese). [37] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国水利水电出版社, 2021.Ministry of Water Resources of the People’s Republic of China. Test code for hydraulic concrete: SL/T 352—2020 [S]. Beijing: China Water & Power Press, 2021(in Chinese). [38] 仵斯, 李廷贤, 闫霆, 等. 高性能定形复合相变储能材料的制备及热性能[J]. 化工学报, 2015, 66(12):5127-5134.WU Si, LI Tingxian, YAN Ting, et al. Preparation and thermal properties of high performance shaped-stabilized phase change composites using stearic acid and expanded graphite[J]. CIESC Journal,2015,66(12):5127-5134(in Chinese). [39] 吴韶飞, 闫霆, 蒯子函, 等. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4):4186-4193.WU Shaofei, YAN Ting, KUAI Zihan, et al. Properties of high-anisotropy hexadecanoic acid/expanded graphite from-stable phase change heat storage materials[J]. Materials Reports,2021,35(4):4186-4193(in Chinese). [40] ZHANG H, GAO X N, CHEN C X, et al. A capricpalmitic-stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing,2016,87:138-145. doi: 10.1016/j.compositesa.2016.04.024 [41] YANG X, YUAN Y, ZHANG N, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Solar Energy,2014,99:259-266. doi: 10.1016/j.solener.2013.11.021 [42] LI M, WU Z, KAO H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells,2011,95(8):2412-2416. doi: 10.1016/j.solmat.2011.04.017 [43] KARAIPEKLI A, SARI A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage[J]. Journal of Industrial and Engineering Chemistry,2010,16(5):767-773. doi: 10.1016/j.jiec.2010.07.003 [44] ADESINA A. Review of the impact of incorporation of phase change materials on the compressive strength of concrete[C]. 38th Cement and Concrete Science Conference, Coventry University, London, 2018. [45] WEI Z H, GABRIEL F, WANG B, et al. The durability of cementitious composites containing microencapsulated phase change materials[J]. Cement and Concrete Compo-sites,2017,81:66-76. doi: 10.1016/j.cemconcomp.2017.04.010 [46] AMITHA J, RACKEL S N, MASSOUD S, et al. Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials[J]. Construction and Building Materials,2016,120:408-417. doi: 10.1016/j.conbuildmat.2016.05.116 [47] LECOMPTE T, BIDEAU P L, GLOUANNEC P, et al. Mechanical and thermo-physical behavior of concretes and mortars containing phase change material[J]. Energy and Buildings,2015,94:52-60. doi: 10.1016/j.enbuild.2015.02.044 [48] 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8):2625-2634.YU Bentian, CHEN Yanfei, WANG Huan, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica,2021,38(8):2625-2634(in Chinese). [49] LI J L, KAUNDA R B, ZHOU K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology,2018,154:133-141. doi: 10.1016/j.coldregions.2018.06.015 [50] SHEN Y J, WANG Y Z, WEI X, et al. Investigation on meso-debonding process of the sandstone–concrete interface induced by freeze–thaw cycles using NMR technology[J]. Construction and Building Materials,2020,252:118962. doi: 10.1016/j.conbuildmat.2020.118962 [51] 郭寅川, 黄忠财, 王文真, 等. 湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J]. 建筑材料学报, 2022, 25(1): 8-20.GUO Yinchuan, HUANG Zhongcai, WANG Wenzhen, et al. Investigation of carbonation resistance and mechanism of SAP internal curing concrete in humid and hot environment[J]. Journal of Building Materials, 2022, 25(1): 8-20(in Chinese). [52] 于蕾, 张君, 张金喜, 等. 水泥混凝土宏观性能与孔结构量化关系模型[J]. 哈尔滨工程大学学报, 2015, 36(11):1459-1464.YU Lei, ZHANG Jun, ZHANG Jinxi, et al. Quantitative relationship model between macroscopic properties and pore structure of cement concrete[J]. Journal of Harbin Engineering University,2015,36(11):1459-1464(in Chinese).