留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化

于本田 陈延飞 李双洋 杨玉祥 胡柏春 刘涛

于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. doi: 10.13801/j.cnki.fhclxb.20211110.002
引用本文: 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. doi: 10.13801/j.cnki.fhclxb.20211110.002
YU Bentian, CHEN Yanfei, LI Shuangyang, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874. doi: 10.13801/j.cnki.fhclxb.20211110.002
Citation: YU Bentian, CHEN Yanfei, LI Shuangyang, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874. doi: 10.13801/j.cnki.fhclxb.20211110.002

正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化

doi: 10.13801/j.cnki.fhclxb.20211110.002
基金项目: 中国科学院重点部署项目(ZDRW-ZS-2020-1);中国铁路总公司科技研究开发计划 (P2018G004)
详细信息
    通讯作者:

    于本田,博士,副教授,硕士生导师,研究方向为水泥混凝土材料与结构  E-mail: yubentian@mail.lzjtu.cn

  • 中图分类号: TU528

Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials

  • 摘要: 以正十四烷(C14)为相变材料,膨胀石墨(EG)为载体,通过物理吸附法制备C14/EG复合相变材料,采用SEM、DSC、FTIR对C14/EG复合相变材料的微观形貌、相变温度、相变潜热、化学结构进行了测试。开展了外掺(与水泥质量比)0%、2%、4%、6%相变材料的相变储能水泥基材料(PCESM)快速冻融循环试验,分析了冻融循环对表面损伤、质量损失、动弹模量损失、抗压强度及孔结构的影响规律,揭示了PCESM冻融循环劣化机制。试验结果表明:C14能够较好地吸附在EG孔隙中,C14与EG之间有良好的相容性,二者未发生化学反应。由于C14/EG相较于水泥基材料为弱相,因此随着C14/EG相变材料掺量的提高,PCESM的力学性能随之下降,但抗冻性能随着C14/EG相变材料掺量的提高呈现先提高后降低的规律,C14/EG相变材料掺量为4%的PCESM抗冻性最优。

     

  • 图  1  石墨 (a)、膨胀石墨(EG) (b) 和正十四烷/膨胀石墨(C14/EG)复合相变材料 (c) 的SEM图像

    Figure  1.  SEM images of graphite (a), expanded graphite (EG) (b) and n-tetradecane/expanded graphite (C14/EG) composite phase change materials (c)

    图  2  C14和C14/EG复合相变材料的DSC曲线

    Figure  2.  DSC curves of C14 and C14/EG composite phase change materials

    Tonset—Onset temperature of the phase transformation in each phase change material (PCM); Tmax-peak—Temperature at the peak of heat flow; Tcompletion—Temperature when each PCM completes the phase transformation; ∆H—Latent heat of each PCM

    图  3  EG、C14和C14/EG的FTIR图谱

    Figure  3.  FTIR spectra of EG, C14 and C14/EG

    图  4  相变储能水泥基材料(PCESM)抗压强度

    Figure  4.  Compressive strength of phase change energy storage mortar (PCESM)

    图  5  不同冻融循环次数后PCESM试件表观现象

    Figure  5.  Apparent phenomena of PCESM specimens after different freeze-thaw cycles

    图  6  PCESM质量损失率 (a) 和相对动弹性模量 (b) 与冻融循环次数之间的关系

    Figure  6.  Relationship between mass loss rate (a), relative dynamic elastic modulus (b) and freeze-thaw cycles of PCESM

    图  7  PCESM抗压强度与冻融循环次数之间的关系曲线

    Figure  7.  Relationship between compressive strength and freeze-thaw cycles of PCESM

    图  8  不同冻融循环次数下PCESM T2谱分布

    Figure  8.  T2 spectrum distributions of PCESM under different freeze-thaw cycles

    图  9  不同冻融循环次数PCESM孔隙分布

    Figure  9.  Pore distributions of PCESM with different freeze-thaw cycles

    表  1  相变储能水泥基材料(PCESM)配合比

    Table  1.   Mixture ratios of phase change energy storage cement-based materials (PCESM) kg·m−3

    SampleC14/EGCementSandWater
    JC05401278270
    2%(C14/EG)/C10.85401278270
    4%(C14/EG)/C21.65401278270
    6%(C14/EG)/C32.45401278270
    Notes: JC—Reference concrete without phase change materials; C14—n-Tetradecane; EG—Expanded graphite; C—Cement.
    下载: 导出CSV
  • [1] METHA P K. Concrete durability-fifty years progress[C]. Proceedings of 2nd International Conference on Concrete Durability, ACI SP 126-1, Detroit, 1991: 1-31.
    [2] CAI H, LIU X. Freeze-thaw durability of concrete: Ice formation process in pores[J]. Cement and Concrete Research,1998,28(9):1281-1287. doi: 10.1016/S0008-8846(98)00103-3
    [3] KESSLER S, THIEL C, GROSSE C U, et al. Effect of freeze-thaw damage on chloride ingress into concrete[J]. Materials and Structures,2017,50:121. doi: 10.1617/s11527-016-0984-4
    [4] SCHERER G W. Crystallization in pores[J]. Cement and Concrete Research,1999,29:1347-1358. doi: 10.1016/S0008-8846(99)00002-2
    [5] 金伟良, 赵羽习. 混凝土结构耐久性(第二版)[M]. 北京: 科学出版社, 2014.

    JIN Weiliang, ZHAO Yuxi. Durability of concrete structures (Second edition)[M]. Beijing: Science Press, 2014(in Chinese).
    [6] 苏怀智, 谢威. 寒区水工混凝土冻融损伤及其防控研究进展[J]. 硅酸盐通报, 2021, 40(4):1053-1071.

    SU Huaizhi, XIE Wei. Review on frost damages of hydraulic concrete in cold region and its preventive control[J]. Bulletin of the Chinese Ceramic Society,2021,40(4):1053-1071(in Chinese).
    [7] 曹大富, 葛文杰, 郭容邑, 等. 冻融循环作用后钢筋混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35(6):137-144.

    CAO Dafu, GE Wenjie, GUO Rongyi, et al. Experimental study on flexural behavior of reinforced concrete beams subjected to freeze-thaw cycles[J]. Journal of Building Structures,2014,35(6):137-144(in Chinese).
    [8] 谭克锋. 水灰比和掺合料对混凝土抗冻性能的影响[J]. 武汉理工大学学报, 2006, 28(3):58-60. doi: 10.3321/j.issn:1671-4431.2006.03.017

    TAN Kefeng. Effect of water-cement ratio and mineral admixture on frost resistance of concrete[J]. Journal of Wuhan University of Technology,2006,28(3):58-60(in Chinese). doi: 10.3321/j.issn:1671-4431.2006.03.017
    [9] FU X P, XIAO X L, YI Z S, et al. Experimental study of mechanical properties of concrete after freeze-thaw exposures[J]. Advanced Materials Research,2014,912-914:131-135. doi: 10.4028/www.scientific.net/AMR.912-914.131
    [10] 谢剑, 唐静, 孙雅丹. 超低温条件下引气剂对混凝土抗冻性能影响的试验研究[J]. 硅酸盐通报, 2020, 39(1):12-19.

    XIE Jian, TANG Jing, SUN Yadan. Experimental study on the effect of air entraining agent on frost resistance of concrete at ultra-low temperature[J]. Bulletin of the Chinese Ceramic Society,2020,39(1):12-19(in Chinese).
    [11] 张凯, 王起才, 杨子江, 等. 多年冻土区引气混凝土抗压强度及抗冻性研究[J]. 铁道学报, 2019, 41(5):156-161. doi: 10.3969/j.issn.1001-8360.2019.05.019

    ZHANG Kai, WANG Qicai, YANG Zijiang, et al. Effect of air-entrained concrete on compressive strength and frost re-sistance in permafrost regions[J]. Journal of the China Railway Society,2019,41(5):156-161(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.05.019
    [12] DZIGITA N, GIEDRIUS G, GINTAUTAS S. Properties of concrete modified with mineral additives[J]. Construction and Building Materials,2017,135:37-42. doi: 10.1016/j.conbuildmat.2016.12.215
    [13] 周立霞, 王起才. 矿物掺合料对混凝土抗冻性的影响[J]. 混凝土, 2011(5):53-56, 59. doi: 10.3969/j.issn.1002-3550.2011.05.019

    ZHOU Lixia, WANG Qicai. Effect of mineral admixture on frost resistance of concrete[J]. Concrete,2011(5):53-56, 59(in Chinese). doi: 10.3969/j.issn.1002-3550.2011.05.019
    [14] 孟博旭, 许金余, 彭光. 纳米碳纤维增强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(10):2458-2468.

    MENG Boxu, XU Jinyu, PENG Guang. Frost resistance test of carbon fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2458-2468(in Chinese).
    [15] 牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5):705-717.

    NIU Ditao, HE Jiaqi, FU Qiang, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society,2020,48(5):705-717(in Chinese).
    [16] ZHAO Y, CUI N, ZHAO S Y, et al. Aggressive environment resistance of concrete products modified with nano alumina and nano silica[J]. Frontiers in Materials,2021,8:695624. doi: 10.3389/fmats.2021.695624
    [17] LAUSTSEN S, HASHOLT M T, JENSEN O M, et al. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete[J]. Materials and Structures,2015,48:357-368. doi: 10.1617/s11527-013-0188-0
    [18] MEJLHEDE J O. Use of superabsorbent polymers in construction materials[J]. Conference on Microstructure Related Durability of Cementitious Composites,2008,2:754-763.
    [19] SARDORBEK R, SANG W K, MINHO K, et al. Mechanical behavior of fiber-reinforced lightweight concrete subjected to repeated freezing and thawing[J]. Construction and Building Materials,2021,273:121710. doi: 10.1016/j.conbuildmat.2020.121710
    [20] 李趁趁, 胡婧, 元成方, 等. 纤维/高强混凝土抗冻性能试验[J]. 复合材料学报, 2019, 36(8):1977-1983.

    LI Chenchen, HU Jing, YUAN Chengfang, et al. Experiment on frost resistance of fiber/high strength concrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1977-1983(in Chinese).
    [21] ZEYNEP A, SUMEYRA G. Freeze-thaw resistance and water permeability properties of roller compacted concrete produced with macro synthetic fiber[J]. Construction and Building Materials,2020,234:117382. doi: 10.1016/j.conbuildmat.2019.117382
    [22] 孙家瑛. 纤维混凝土抗冻性能研究[J]. 建筑材料学报, 2013, 16(3):437-440. doi: 10.3969/j.issn.1007-9629.2013.03.010

    SUN Jiaying. Study on frost resistance of fiber reinforced concrete[J]. Journal of Building Materials,2013,16(3):437-440(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.03.010
    [23] 龚升, 张武满, 张劲松. 橡胶颗粒-钢纤维混掺对碾压混凝土抗冻性及抗冲击性能的影响[J]. 复合材料学报, 2018, 35(8):2199-2207.

    GONG Sheng, ZHANG Wuman, ZHANG Jinsong. Effect of rubber particle-steel fiber blending on frost resistance and impact resistance of roller compacted concrete[J]. Acta Materiae Compositae Sinica,2018,35(8):2199-2207(in Chinese).
    [24] RUIZHE S, GUO S C, DAI Q L. Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles[J]. Construction and Building Materials,2017,153:496-505. doi: 10.1016/j.conbuildmat.2017.07.085
    [25] 陈昕, 李文婷, 蒋正武. 相变材料在改善水泥基材料抗冻性方面的研究进展[J]. 硅酸盐通报, 2017, 36(10):3330-3335.

    CHEN Xin, LI Wenting, JIANG Zhengwu. Utilization of phase change materials to improve the frost resistance of cement based materials[J]. Bulletin of the Chinese Ceramic Society,2017,36(10):3330-3335(in Chinese).
    [26] ROMERO C R, FILHO F F D M, FIGUEIREDO S C, et al. Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materials[J]. Cement and Concrete Composites,2020,113:103705. doi: 10.1016/j.cemconcomp.2020.103705
    [27] SAKULICH A R, BENTZ D P. Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles[J]. Journal of Materials in Civil Engineering,2012,24:1034-1042. doi: 10.1061/(ASCE)MT.1943-5533.0000381
    [28] BENTZ D P, TURPIN R. Potential applications of phase change materials in concrete technology[J]. Cement and Concrete Composites,2007,29(7):527-532. doi: 10.1016/j.cemconcomp.2007.04.007
    [29] 杨献章, 胡柏学, 廖春芳, 等. 相变控温技术在桥梁防冻工程的应用[J]. 公路工程, 2013, 38(1):1-4, 27.

    YANG Xianzhang, HU Baixue, LIAO Chunfang, et al. Application of phase-change temperature control technique in bridge antifreeze engineering[J]. Highway Engineering,2013,38(1):1-4, 27(in Chinese).
    [30] LI W T, LING C W, JIANG Z W. Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete[J]. Construction and Building Materials,2019,203:621-632. doi: 10.1016/j.conbuildmat.2019.01.098
    [31] 朱洪洲, 陈瑞璞, 苟珊, 等. 低温下水泥路面调温相变材料的制备及性能[J]. 材料导报, 2021, 35(14):14198-14203. doi: 10.11896/cldb.20050159

    ZHU Hongzhou, CHEN Ruipu, GOU Shan, et al. Preparation and properties of phase change materials for temperature control of cement pavement at low tempera-ture[J]. Materials Reports,2021,35(14):14198-14203(in Chinese). doi: 10.11896/cldb.20050159
    [32] 朱洪洲, 陈瑞璞, 苟珊, 等. 相变水泥混凝土的力学性能与低温调温性能[J]. 硅酸盐通报, 2020, 39(11):3510-3514.

    Zhu Hongzhou, CHEN Ruipu, GOU Shan, et al. Mechanical properties and low temperature tempering performance of phase change cement concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(11):3510-3514(in Chinese).
    [33] 中华人民共和国国家质量技术监督局. 水泥胶砂强度检验方法(ISO法): GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Method of testing cements-determination of strength: GB/T 17671—1999 [S]. Beijing: Standards Press of China, 1999(in Chinese).
    [34] 张素凌, 方玉堂, 汪双凤. SA-AC/膨胀石墨的制备及性能研究[J]. 工程热物理学报, 2017, 38(12):2691-2696.

    ZHANG Suling, FANG Yutang, WANG Shuangfeng. The preparation and study on the properties of SA-AC/expanded graphite composite[J]. Journal of Engineering Thermophysics,2017,38(12):2691-2696(in Chinese).
    [35] 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效导热系数的数值计算[J]. 复合材料学报, 2015, 32(6):1596-1601.

    SUN Wenge, HAN Lei, WU Zhigen. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica,2015,32(6):1596-1601(in Chinese).
    [36] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of basic properties of construction mortar: JGJ/T 70—2009 [S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [37] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国水利水电出版社, 2021.

    Ministry of Water Resources of the People’s Republic of China. Test code for hydraulic concrete: SL/T 352—2020 [S]. Beijing: China Water & Power Press, 2021(in Chinese).
    [38] 仵斯, 李廷贤, 闫霆, 等. 高性能定形复合相变储能材料的制备及热性能[J]. 化工学报, 2015, 66(12):5127-5134.

    WU Si, LI Tingxian, YAN Ting, et al. Preparation and thermal properties of high performance shaped-stabilized phase change composites using stearic acid and expanded graphite[J]. CIESC Journal,2015,66(12):5127-5134(in Chinese).
    [39] 吴韶飞, 闫霆, 蒯子函, 等. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4):4186-4193.

    WU Shaofei, YAN Ting, KUAI Zihan, et al. Properties of high-anisotropy hexadecanoic acid/expanded graphite from-stable phase change heat storage materials[J]. Materials Reports,2021,35(4):4186-4193(in Chinese).
    [40] ZHANG H, GAO X N, CHEN C X, et al. A capricpalmitic-stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing,2016,87:138-145. doi: 10.1016/j.compositesa.2016.04.024
    [41] YANG X, YUAN Y, ZHANG N, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Solar Energy,2014,99:259-266. doi: 10.1016/j.solener.2013.11.021
    [42] LI M, WU Z, KAO H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells,2011,95(8):2412-2416. doi: 10.1016/j.solmat.2011.04.017
    [43] KARAIPEKLI A, SARI A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage[J]. Journal of Industrial and Engineering Chemistry,2010,16(5):767-773. doi: 10.1016/j.jiec.2010.07.003
    [44] ADESINA A. Review of the impact of incorporation of phase change materials on the compressive strength of concrete[C]. 38th Cement and Concrete Science Conference, Coventry University, London, 2018.
    [45] WEI Z H, GABRIEL F, WANG B, et al. The durability of cementitious composites containing microencapsulated phase change materials[J]. Cement and Concrete Compo-sites,2017,81:66-76. doi: 10.1016/j.cemconcomp.2017.04.010
    [46] AMITHA J, RACKEL S N, MASSOUD S, et al. Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials[J]. Construction and Building Materials,2016,120:408-417. doi: 10.1016/j.conbuildmat.2016.05.116
    [47] LECOMPTE T, BIDEAU P L, GLOUANNEC P, et al. Mechanical and thermo-physical behavior of concretes and mortars containing phase change material[J]. Energy and Buildings,2015,94:52-60. doi: 10.1016/j.enbuild.2015.02.044
    [48] 于本田, 陈延飞, 王焕, 等. 大掺量高吸附性石粉高强机制砂混凝土收缩开裂抑制试验[J]. 复合材料学报, 2021, 38(8):2625-2634.

    YU Bentian, CHEN Yanfei, WANG Huan, et al. Experiment on control measures of shrinkage and cracking of high strength manufactured sand concrete containing a large amount of high absorbency stone powder[J]. Acta Materiae Compositae Sinica,2021,38(8):2625-2634(in Chinese).
    [49] LI J L, KAUNDA R B, ZHOU K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology,2018,154:133-141. doi: 10.1016/j.coldregions.2018.06.015
    [50] SHEN Y J, WANG Y Z, WEI X, et al. Investigation on meso-debonding process of the sandstone–concrete interface induced by freeze–thaw cycles using NMR technology[J]. Construction and Building Materials,2020,252:118962. doi: 10.1016/j.conbuildmat.2020.118962
    [51] 郭寅川, 黄忠财, 王文真, 等. 湿热环境下SAP内养生混凝土抗碳化性能及机理研究[J]. 建筑材料学报, 2022, 25(1): 8-20.

    GUO Yinchuan, HUANG Zhongcai, WANG Wenzhen, et al. Investigation of carbonation resistance and mechanism of SAP internal curing concrete in humid and hot environment[J]. Journal of Building Materials, 2022, 25(1): 8-20(in Chinese).
    [52] 于蕾, 张君, 张金喜, 等. 水泥混凝土宏观性能与孔结构量化关系模型[J]. 哈尔滨工程大学学报, 2015, 36(11):1459-1464.

    YU Lei, ZHANG Jun, ZHANG Jinxi, et al. Quantitative relationship model between macroscopic properties and pore structure of cement concrete[J]. Journal of Harbin Engineering University,2015,36(11):1459-1464(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  658
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-10-30
  • 录用日期:  2021-11-01
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回