留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能

郑宇 于洁 李平 王趁义 徐园园 田啸 汤唯唯

郑宇, 于洁, 李平, 等. 膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能[J]. 复合材料学报, 2022, 39(6): 2774-2782. doi: 10.13801/j.cnki.fhclxb.20210922.002
引用本文: 郑宇, 于洁, 李平, 等. 膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能[J]. 复合材料学报, 2022, 39(6): 2774-2782. doi: 10.13801/j.cnki.fhclxb.20210922.002
ZHENG Yu, YU Jie, LI Ping, et al. Preparation of bentonite-based Fenton composite material and its adsorption and removal of pollutants in wastewater[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2774-2782. doi: 10.13801/j.cnki.fhclxb.20210922.002
Citation: ZHENG Yu, YU Jie, LI Ping, et al. Preparation of bentonite-based Fenton composite material and its adsorption and removal of pollutants in wastewater[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2774-2782. doi: 10.13801/j.cnki.fhclxb.20210922.002

膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能

doi: 10.13801/j.cnki.fhclxb.20210922.002
基金项目: 国家自然科学基金(21207036);浙江省基础公益研究计划(LGF21E080014);浙江省一流学科“生物工程”开放基金(KF2021008);浙江省有机废弃物转化及过程强化技术重点实验室项目(2020E10018);浙江万里学院乡村环保产业技术推广科技特派团队项目
详细信息
    通讯作者:

    王趁义,博士,教授,硕士生导师,研究方向为污染环境的生态修复与治理 E-mail:wcyxz@163.com

  • 中图分类号: X705

Preparation of bentonite-based Fenton composite material and its adsorption and removal of pollutants in wastewater

  • 摘要: 为实现废弃物资源化及去除废水中污染物,将粉煤灰、干化污泥、牡蛎壳等3种原料按照一定比例混合为基础原料(FDO),掺入2种膨润土基无机矿物材料,制得具有去除氨氮(NH4+-N)和高锰酸盐指数(IMn)双重功能的2种新型类芬顿复合材料(SFM),分别记作活性白土型(ATC/FDO)、膨润土型(BT/FDO)。使用SEM和BET对SFM的表面形貌、孔径结构进行了表征,对比研究了2种SFM在类芬顿体系下对废水中的IMn和NH4+-N的吸附去除效果,并采用动力学和吸附等温模型分析其吸附特性。结果表明,ATC/FDO对IMn和NH4+-N的去除效果优于BT/FDO,处理5天后,相应的去除率分别高达95.76%和99.65%;ATC/FDO最优制备条件是:FDO∶ATC的质量比为5∶5,煅烧温度400℃,煅烧时间120 min;最佳使用条件是:20℃、pH=6.5,ATC/FDO∶H2O2用量比为5 g/L∶1 mL/L。2种SFM对NH4+-N的吸附过程均符合准二级动力学,且符合Freundlich吸附等温方程。研究结果能为废弃物的资源化利用和水处理领域提供新技术和新材料。

     

  • 图  1  基础原料(FDO)与活性白土(ATC)膨润土(BT)的质量比 (a)、新型类芬顿复合材料(SFM)的煅烧时间 (b) 和煅烧温度 (c)对污染物去除率的影响

    Figure  1.  Influences of mass ratio of basic raw material (FDO) to activated clay (ATC) bentonite (BT) (a), calcination time (b) and calcination temperature (c) of new Fenton like composite (SFM) on pollutant removal rate

    IMn—Permanganate index

    图  2  活性白土型(ATC/FDO) (a) 和膨润土型(BT/FDO) (b)新型类芬顿复合材料放大倍数为50.0 K的SEM图像

    Figure  2.  SEM images of activated clay type (ATC/FDO) (a) and bentonite type (BT/FDO) (b) new Fenton like composites at 50.0 K magnification

    图  3  SFM的初始pH (a)、投加浓度值 (b)、H2O2投加浓度值 (c)、处理温度 (d) 和处理时间 (e) 对污染物去除率的影响

    Figure  3.  Influence of SFM's initial pH (a), dosing concentration value (b), H2O2 dosing concentration value (c), treatment temperature (d) and treatment time (e) on the removal rate of pollutants

    图  4  SFM的准一级 (a)、准二级 (b)NH4+-N吸附曲线及反应动力学线性拟合曲线 (c)

    Figure  4.  Quasi first order (a), quasi second order (b) adsorption curves of NH4+-N and reaction kinetics linear fitting curves (c) of SFM

    qe—Equilibrium adsorption capacity; qt—Adsorption capacity at time t

    图  5  SFM的NH4+-N吸附量曲线 (a) 、Langmuir (b) 及Freundlich (c) 吸附等温方程拟合曲线

    Figure  5.  NH4+-N adsorption curves (a), Langmuir (b) and Freundlich (c) adsorption isotherm equation fitting curves of SFM

    表  1  试验材料及主要成分

    Table  1.   Main components of test materials

    Material/wt%SiO2Al2O3Fe2O3MgOCaONa2OK2OIgnition loss
    Dried sludge47.6513.8414.144.223.121.920.943.44
    Fly ash45.3224.297.392.462.691.380.752.42
    Bentonite69.8014.261.862.781.781.481.613.16
    Activated clay63.4415.692.371.360.580.690.843.94
    Oyster shell7.890.680.451.9886.340.640.864.89
    下载: 导出CSV

    表  2  SFM的NH4+-N吸附动力学参数

    Table  2.   Kinetic parameters of NH4+-N adsorption of SFM

    ModelParameters and equationsATC/FDOBT/FDO
    First order kineticsEquationy=−0.0396x−0.1756y=−0.0440x+0.5594
    R20.92030.8457
    qe/(mg·g−1)1.11.014
    qmax/(mg·g−1)1.0931.005
    Second order kineticsEquationy=0.8365x+ 9.5827y=0.7547x+ 27.5633
    R20.99860.9853
    qe/(mg·g−1)1.0911.016
    Notes: R2—Correlation coefficient; qmax—Maximum adsorption capacity.
    下载: 导出CSV

    表  3  SFM的NH4+-N等温线参数

    Table  3.   Isotherm parameters NH4+-N adsorption of SFM

    ModelParameters and equationsATC/FDOBT/FDO
    LangmuirEquationy=0.0316x+26.0459y=0.1833x+31.1318
    R20.87380.8583
    qe/(mg·g−1)3.16142.215
    KL0.00120.0059
    FreundlichEquationy=0.9389x−2.6443y=0.8022x−2.9694
    R20.99930.9966
    Kf0.07110.0513
    1/n0.93890.8022
    Notes: KL—Parameters of Langmuir; Kf—Parameters of Freundlich; 1/n—Parameters of Freundlich.
    下载: 导出CSV
  • [1] ZHOU W, ZHAO H, GAO J, et al. Influence of a reagents addition strategy on the Fenton oxidation of rhodamine B: Control of the competitive reaction of OH[J]. Rsc Advances,2016,6(110):108791-108800. doi: 10.1039/C6RA20242J
    [2] 闫云涛, 张柯, 毛岩鹏, 等. Fe2O3@SCe多相芬顿催化剂的制备及其降解放热性能[J]. 中国环境科学, 2020, 40(8):3375-3384. doi: 10.3969/j.issn.1000-6923.2020.08.015

    YAN Y T, ZHANG K, MAO Y P, et al. Fe2O3@SCe Preparation of heterogeneous Fenton catalyst and its degradation exothermic performance[J]. China Environmental Science,2020,40(8):3375-3384(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.08.015
    [3] SHU J, CHEN M, WU H, et al. An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43- and F- in electrolytic manganese residue and phosphogypsum[J]. Journal of Hazardous Materials,2019,376:212-222. doi: 10.1016/j.jhazmat.2019.05.017
    [4] 杨昕达, 郝林林, 常达, 等. 膨润土对垃圾渗滤液絮凝预处理的强化效果[J]. 环境工程学报, 2021(5):1549-1557. doi: 10.12030/j.cjee.202010110

    YANG X D, HAO L L, CHANG D, et al. Strengthening effect of bentonite on flocculation pretreatment of landfill leachate[J]. Journal of Environmental Engineering,2021(5):1549-1557(in Chinese). doi: 10.12030/j.cjee.202010110
    [5] LIU T, TIAN X F, ZHAO Y, et al. Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: A molecular dynamics simulation[J]. Chinese Physics B,2010,19(10):656-662.
    [6] YIP C K, LAM L Y, HU X. A novel heterogeneous acid-activated clay supported copper catalyst for the photobleaching and degradation of textile organic pollutant using photo-Fenton-like reaction[J]. Chemical Communications,2005,41(25):3218-3220.
    [7] 陈宁, 王海滨, 刘树信. 空心粉煤灰对铁氧体-炭黑/水泥基复合材料吸波性能的影响[J]. 复合材料学报, 2017, 34(6):1381-1387.

    CHENG N, WANG H B, LIU S X. Effect of hollow fly ash on the wave absorption properties of Ferrite-carbon black/cement-based composites[J]. Acta Materiae Compositae Sinica,2017,34(6):1381-1387(in Chinese).
    [8] BOULOS R A, HAMAGEA C, DUAN X, et al. Unzipping oyster shell[J]. Rsc Advances,2013,3(10):3284-3290. doi: 10.1039/c2ra21763e
    [9] 张天永, 王智超, 姜爽, 等. 煤渣在水处理方面的应用研究进展[J]. 现代化工, 2018, 38(3):32-36.

    ZHANG T Y, WANG Z C, JIANG S. et. al. Research progress in the application of coal slag in water treatment[J]. Modern Chemical Industry,2018,38(3):32-36(in Chinese).
    [10] 王晶, 高娜, 刘双元, 等. 活性污泥微生物解壳聚糖松江菌中菌胶团形成相关大型基因簇的鉴定和分析[J]. 微生物学通报, 2019, 46(8):1946-1953.

    WANG J, GAO N, LIU S Y, et al. Identification and analysis of large-scale gene clusters related to the formation of micelles in the activated sludge microbial chitosan solution of Songjiang bacteria[J]. Microbiology Bulletin,2019,46(8):1946-1953(in Chinese).
    [11] 刘文, 李天华, 张滕军, 等. 牡蛎壳中钙的改性及吸附特性的研究[J]. 材料导报, 2012, 26(18):88-92. doi: 10.3969/j.issn.1005-023X.2012.18.024

    LIU W, LI T H, ZHANG T J, et al. Study on the modification of calcium in oyster shell and its adsorption characteristics[J]. Material Guide,2012,26(18):88-92(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.18.024
    [12] 生态环境部. 水质 高锰酸盐指数的测定: GB/T 11892—1989[S]. 北京: 北京环保监测中心, 1989.

    Ministry of Ecology and Environment. The water quality Determination of permanganate index: GB/T 11892—1989[S]. Beijing: Beijing Environmental Monitoring Center, 1989(in Chinese).
    [13] 生态环境部. 水质 铵的测定 水杨酸分光光度法: GB/T7481—1987[S]. 赣州: 赣州环境监测站, 1987.

    Ministry of Ecology and Environment. The water quality The determination of ammonium Salicylic acid spectrophotometry: GB/T7481—1987[S]. Ganzhou: Ganzhou Environmental Monitoring Station, 1987(in Chinese).
    [14] 陈凤霞, 马家海. Fe3O4@PCDP纳米复合材料的制备及其在类芬顿体系中的应用(英文)[J]. 中国科学院大学学报, 2020, 37(5):593-598. doi: 10.7523/j.issn.2095-6134.2020.05.003

    CHEN F X, MA J H. Preparation of Fe3O4@PCDP nanocomposite and its application in Fenton-like system (English)[J]. Journal of University of Chinese Academy of Sciences,2020,37(5):593-598(in Chinese). doi: 10.7523/j.issn.2095-6134.2020.05.003
    [15] 魏光涛, 周萍, 韦藤幼, 等. H3PMo12O40/活性白土UV-H2O2催化氧化降解甲基橙[J]. 化工环保, 2011, 31(3):210-213. doi: 10.3969/j.issn.1006-1878.2011.03.005

    WEI G T, ZHOU P, WEI T Y, et al. Catalytic oxidative degradation of methyl orange by H3PMo12O40/activated clay UV- H2O2[J]. Chemical Environmental Protection,2011,31(3):210-213(in Chinese). doi: 10.3969/j.issn.1006-1878.2011.03.005
    [16] MAHATA B K, CHUNG K L, CHANG S M. Removal of ammonium nitrogen (NH4+-N) by Cu-loaded amino-functionalized adsorbents[J]. Chemical Engineering Journal,2021,411(7):128-139.
    [17] 郭欢. 硅藻土-钨渣基多孔陶粒的制备与性能研究[D]. 赣州: 江西理工大学, 2017.

    GUO H. Study on the preparation and properties of diatomite-tungsten slag-based porous ceramsite[D]. Ganzhou: Jiangxi University of Science and Technology, 2017(in Chinese).
    [18] 魏建平, 戴俊, 王政锦, 等. Fenton试剂氧化降解甲烷的动力学规律[J]. 煤炭学报, 2013, 38(9):1597-1603.

    WEI J P, DAI J, WANG Z J, et al. Kinetic law of Fenton reagent oxidative degradation of methane[J]. Journal of China Coal Society,2013,38(9):1597-1603(in Chinese).
    [19] GERMÁN S M , GABRIEL R M, EDUARDO M D C, et al. Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta,2016,195:246-256. doi: 10.1016/j.electacta.2016.02.093
    [20] 赵雅娴, 武帅, 康宸, 等. H2O2改性对聚丙烯腈原丝化学结构的影响[J]. 复合材料学报, 2019, 36(1):85-95.

    ZHAO Y X, WU S, KANG C. et al. Effect of H2O2 modification on the chemical structure of polyacrylonitrile precursor[J]. Acta Materiae Compositae Sinica,2019,36(1):85-95(in Chinese).
    [21] CHEN C Y, TANG C, WANG H F, et al. Oxygen reduction reaction on graphene in an Electro-Fenton system: in situ generation of H2O2 for the oxidation of organic compounds[J]. Chemsuschem,2016,9(10):1194-1199. doi: 10.1002/cssc.201600030
    [22] 赵海谦, 高杏存, 王忠华, 等. Fe2+/H2O2体系O2生成路径[J]. 化工学报, 2016, 67(6):237-245.

    ZHAO H Q, GAO X C, WANG Z H, et al. O2 generation path in Fe2+/H2O2 system[J]. Journal of Chemical Industry,2016,67(6):237-245(in Chinese).
    [23] 陈仕稳, 聂锦旭, 谢伟楠, 等. 改性膨润土颗粒对微污染水中有机物和氨氮的吸附[J]. 环境工程学报, 2015, 9(6):2739-2744. doi: 10.12030/j.cjee.20150632

    CHEN S W, NIE J X, XIE W N, et al. Adsorption of organic matter and ammonia nitrogen in micro-polluted water by modified bentonite particles[J]. Journal of Environmental Engineering,2015,9(6):2739-2744(in Chinese). doi: 10.12030/j.cjee.20150632
    [24] 王趁义, 黄添浩, 滕丽华, 等. 绿沸石对废水中氨氮的吸附效果研究[J]. 非金属矿, 2019, 42(1):21-24. doi: 10.3969/j.issn.1000-8098.2019.01.007

    WANG C Y, HUANG T H, TENG L H, et al. Study on the adsorption effect of Green Zeolite on ammonia nitrogen in wastewater[J]. Non-Metallic Minerals,2019,42(1):21-24(in Chinese). doi: 10.3969/j.issn.1000-8098.2019.01.007
    [25] 魏世勇, 杨小洪. 针铁矿-高岭石复合体的表面性质和吸附氟的特性[J]. 环境科学, 2010, 31(9):2134-2142.

    WEI S Y, YANG X H. Surface properties and fluorine adsorption characteristics of goethite-kaolinite complex[J]. Environmental Science,2010,31(9):2134-2142(in Chinese).
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  314
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-09-13
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回