Effect of interface modification on mechanical properties of polypropylene-glass fiber composites
-
摘要: 聚合物的填充改性及共混改性是通用塑料高性能化的重要方法。界面相容性是聚合物改性通常遇到的问题,如何提高复合材料界面相容性以及探索界面相容性和泊松比相关性仍然是聚合物改性重要的话题。采用固相法制备三元单体接枝聚丙烯(GPP),与玻璃纤维和聚丙烯共混制备聚丙烯-玻璃纤维(PP-GF)复合材料。采用视频引伸计、差示扫描量热法、扫描电镜、红外光谱、动态流变测试、万能拉力试验等分析测试方法表征复合材料的结构与性能。结果表明,GPP的加入提高PP-GF复合材料界面强度。随着GPP增加,储能模量(G')和损耗模量(G'')都在增加,G'增加的幅度大于G'',因此复合材料体系表现出弹性行为要明显大于粘性行为。添加7wt%GPP的PP-GF复合材料力学性能最佳,通过Cole-Cole曲线得到了验证。红外光谱和扫描电镜结果表明,GPP和玻璃纤维形成了界面层,改善了树脂与玻璃纤维界面相容性,提高了玻璃纤维在聚丙烯中应力传递。GPP作为PP-GF复合材料提高界面相容性改性剂,PP-GF复合材料拉伸时形成了更大的横向应变,且泊松比变小,提高了复合材料的力学性能。Abstract: The filling modification and blending modification of polymers were important methods for the high performance of general plastics. Interfacial compatibility was a common problem in polymer modification. How to improve the interfacial compatibility of composites and explore the correlation between interfacial compatibility and Poisson's ratio are still important topics in polymer modification. Ternary monomer graft polypropylene (GPP) was prepared by solid phase method and blended with glass fiber and polypropylene to prepare polypropylene/glass fiber composites. The structure and properties of the composites were characterized by video extensometer, differential scanning calorimetry, scanning electron microscopy, infrared spectroscopy, dynamic rheological test and universal tensile test. The results show that the addition of GPP compatibilizer improve the interfacial strength of polypropylene-glass fiber composites. With the increase of GPP compatibilizer, the storage modulus (G') and loss modulus (G'') are both increasing, and the increase of G' is greater than that of G''. Therefore, the elastic behavior of the composite system is significantly greater than that of the viscous behavior. The mechanical properties of polypropylene-glass fiber composite with 7wt% GPP are the best, which was verified by Cole-Cole curve. The results of infrared spectroscopy and scanning electron microscopy show that the GPP compatibilizer form an interfacial layer with the glass fiber, which improve the interfacial compatibility between the resin and the glass fiber and enhance the stress transfer of the glass fiber in the polypropylene matrix. GPP was used as a modifier to improve the interfacial compatibility of PP-GF composites. As a modifier to improve the interfacial compatibility of PP-GF composites, larger transverse strain and smaller Poisson's ratio are formed during the tensile process, which improve the mechanical properties of the composites.
-
Key words:
- glass fiber /
- polypropylene /
- compatibilizer /
- poisson's ratio /
- interfacial modification /
- lateral strain /
- polymer modification
-
表 1 主要实验材料
Table 1. Experimental materials
Raw materials Grade Production company Polypropylene (PP) 013 Maoming Petro-Chemical Shihua Co., Ltd. Maleic anhydride (MAH) AR Shanghai Macklin Biochemical Co., Ltd. Methyl methacrylate (MMA) AR Shanghai Macklin Biochemical Co., Ltd. Butyl acrylate (BA) AR Shanghai Macklin Biochemical Co., Ltd. Xylene AR Tianjin Damao Chemical Reagent Factory Short glass fibre (SGF) ECS 10-3 Taiwan Fiberglass Co., Ltd. Dicumyl peroxide (DCP) AR Tianjin Damao Chemical Reagent Factory 表 2 PP-GF复合材料的配比
Table 2. Formulation of PP-GF composites
PP/wt% Glass fiber/wt% GPP/wt% 100 0 0 70 30 0 69 30 1 67 30 3 65 30 5 63 30 7 61 30 9 59 30 11 -
[1] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface[J]. Composites Part B:Engineering,2020,192:108011. doi: 10.1016/j.compositesb.2020.108011 [2] XIE Z, WU K, LIU D, et al. One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocompo-sites with enhanced thermal conductivity and ultra-low dielectric loss[J]. Composites Science and Technology,2021,208:108756. doi: 10.1016/j.compscitech.2021.108756 [3] AGARWAL J, MOHANTY S, NAYAK SK. Influence of cellulose nanocrystal/sisal fiber on the mechanical, thermal, and morphological performance of polypropylene hybrid composites[J]. Polymer Bulletin,2020,78(3):1609-1635. [4] AGARWAL J, MOHANTY S, NAYAK SK. Valorization of pineapple peel waste and sisal fiber: Study of cellulose nanocrystals on polypropylene nano-composites[J]. Journal of Applied Polymer Science,2020,137(42):e49291. doi: 10.1002/app.49291 [5] ALEXANDRESCU L, SNMEZ M, GEORGES-CU M, et al. Polyamide/Polypropylene/graphite nanocomposites with functional compatibilizers: Morpho-structural and physico-mechanical characterization[J]. Procedia Structural Integrity, 2017, 5: 675-682. [6] SZABO L, IMANISHI S, HIROSE D, et al. Mussel-inspired design of a carbon fiber-cellulosic polymer interface toward engineered biobased carbon fiber-reinforced composites[J]. ACS Omega,2020,5(42):27072-27082. doi: 10.1021/acsomega.0c02356 [7] BORYSIAK S, GRZABKA A, ODALANOW-SKA M, et al. The effect of chemical modification of wood in ionic liquids on the super-molecular structure and mechanical properties of wood/poly-propylene composites[J]. Cellulose, 2018, 25(8): 4639-4652. [8] HAJJ EI N, SEIF S, SALIBA K, et al. Recycling of plastic mixture wastes as carrier resin for short glass fiber compo-sites[J]. Waste and Biomass Valorization,2018,11(5):2261-2271. [9] HAJJ EI N, SEIF S, ZGHEIB N K. Recycling of poly(propy-lene)-based car bumpers as carrier resin for short glass fiber composites[J]. Journal of Material Cycles and Waste Management,2020,23(1):288-300. [10] DONG Y, BHATTACHARYYA D. Effects of clay type, clay/compatibilizer content and matrix viscosity on the mechanical properties of Polypropylene/organoclay nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,39(7):1177-1191. [11] FRANCISZCZAK P, KALNINS K, BLEDZKI K A. Hybridisation of man-made cellulose and glass reinforcement in short-fibre composites for injection moulding-Effects on mechanical performance[J]. Composites Part B: Enginee-ring,2018,145:14-27. doi: 10.1016/j.compositesb.2018.03.008 [12] RAHMAN A N, HASSAN A, HEIDARIAN J. Effect of compa-tibilizer on the properties of polypropylene/glass fibre/nanoclay composites[J]. Polímeros,2018,28(2):103-111. [13] JIANG J W, PARK H S. Negative poisson's ratio in single-layer black phosphorus[J]. Nature Communications,2014,5:4727. doi: 10.1038/ncomms5727 [14] ZHOU G, SUN Q, LI D, et al. Meso-scale modeling and damage analysis of carbon/epoxy woven fabric composite under in-plane tension and compression loadings[J]. International Journal of Mechanical Sciences,2021,190:1-42. [15] MENTRASTI L, MOLARI L, FABIANI M. Poisson's ratio bounds in orthotropic materials. Application to natural composites: Wood, bamboo and Arundo donax[J]. Composites Part B: Engineering,2021,209:108612. doi: 10.1016/j.compositesb.2021.108612 [16] YAN X, CAYLA A, DEVAUX E, et al. Simultaneous surface modification and mechanical enhancement of micro/nano-fiber fabrics achieved by Janus particles[J]. Express Polymer Letters,2021,15(7):626-640. doi: 10.3144/expresspolymlett.2021.53 [17] WAN H, FAN L, HAN Q, et al. Micromechanical modeling over two length-scales for elastic properties of graphene nanoplatelet/graphite fiber/polyimide composites[J]. Materials Chemistry and Physics,2021,262:124255. doi: 10.1016/j.matchemphys.2021.124255 [18] 刘冬冬, 扈艳红, 张芳芳, 等. 叠氮苯并咪唑偶联剂增强国产芳纶-聚三唑树脂复合材料界面[J]. 复合材料学报, 2017, 34(2):336-344.LIU Dongdong, HU Yanhong, ZHANG Fangfang, et al. The interface of domestic aramid-polytriazole resin compo-sites was reinforced by azido benzimidazole coupling agent[J]. Acta Materae Compositae Sinica,2017,34(2):336-344(in Chinese). [19] WEI K, PENG Y, QU Z, et al. A cellular meta-structure incor-porating coupled negative thermal expansion and nega-tive Poisson's ratio[J]. Inter-national Journal of Solids and Structures,2018,150:255-267. doi: 10.1016/j.ijsolstr.2018.06.018 [20] 杨霞, 杨鸣波, 李忠明, 等. 具有负泊松比效应的聚烯烃共混物[J]. 高分子学报, 2003(2):221-224. doi: 10.3321/j.issn:1000-3304.2003.02.013YANG Xia, YANG Mingbo, LI Zhongming, et al. The nega-tive Poisson’s ratio effect of polyolefin blends[J]. Acta Polymerica Sinica,2003(2):221-224(in Chinese). doi: 10.3321/j.issn:1000-3304.2003.02.013 [21] ZHANG M, COLBY R, MILNER S, et al. Synthesis and cha-racterization of maleic anhydride grafted polypropylene with a well-defined molecular structure[J]. Macromole-cules,2013,46:4313-4323. doi: 10.1021/ma4006632 [22] 陈淼灿, 刘涛, 赵玲, 等. 非水滴定和傅立叶红外光谱在聚丙烯马来酸酐接枝物表征中的应用[J]. 功能高分子学报. 2005, 18(2): 335-339.CHEN Miaocan, LIU Tao, ZHAO Ling, et al. Characterization of polypropylene maleic anhydride grafts by non-droplet steady-state and Fourier transform infrared spectroscopy. Journal of Functional Polymers[J]. 2005, 18(2): 335-339. (in Chinese) [23] International Organization for Standardization.Plastics-Determination of tensile properties-Part 1: General principles: ISO 527-1:2012[S]. Geneva: ISO, 2012. [24] International Organization for Standardization.Plastics-Determination of flexural properties: ISO 178:2019(E)[S]. ISO:Geneva, 2019. [25] International Organization for Standardization.Plastics-Determination of Charpy impact properties-Part 1: Non-instrumented impact test: ISO 527-1:2010[S]. ISO:Geneva, 2010. [26] TURCSANYI B, PUKANSZKY B, TUDOS F. Composition dependence of tensile yield stress in filled polymers[J]. Journal of Materials Science Letters,1988,7(2):160-162. doi: 10.1007/BF01730605 [27] PUKÁNSZKY B. Influence of interface interaction on the ultimate tensile properties of polymer composites[J]. Composites,1990,21:255-262. doi: 10.1016/0010-4361(90)90240-W [28] YING Z, WU D, ZHANG M, et al. Polylactide/basalt fiber composites with tailorable mechanical properties: effect of surface treatment of fibers and annealing[J]. Composite Structures,2017,176:1020-1027. doi: 10.1016/j.compstruct.2017.06.042 [29] BETTINI S, BICUDO A, AUGUSTO I, et al. Investigation on the use of coir fiber as alternative reinforcement in polypropylene[J]. Journal of Applied Polymer Science,2010,118:2841-2848. doi: 10.1002/app.32418 [30] SABRI I, BAKAR M, ROSDI N, et al. Effects on MAPP compatibilizer on mechanical properties of kenaf core fibre/graphene nanoplatelets reinforced polypropylene hybrid composites[C]. IOP Conf. Series: Earth and Environmental Science, 2020, 596: 012023. [31] 陈家俊, 白绘宇, 王炜, 等. 动态流变学对PVDF/PTW共混物相容性研究[J]. 高分子学报, 2016(3):315-323. doi: 10.11777/j.issn1000-3304.2016.15206CHEN Jiajun, BAI Huiyu, WANG Wei, et al. Study on the compatibility of PVDF/PTW blends by dynamic rheology[J]. Acta Polymerica Sinca,2016(3):315-323(in Chinese). doi: 10.11777/j.issn1000-3304.2016.15206 [32] MUZATA T S, L J P, KAR G P, et al. Phase miscibility and dynamic heterogeneity in PMMA/SAN blends through solvent free reactive grafting of SAN on graphene oxide[J]. Physical Chemistry Chemical Physics,2018,20:19470-19485. doi: 10.1039/C8CP02716A [33] 刘文庆, 李强, 姜秉元. 泊松比对复合材料层板断裂韧性的影响[J]. 纤维复合材料, 2001(2):27-28. doi: 10.3969/j.issn.1003-6423.2001.02.007LIU Wenqing, LI Qiang, JIANG Bingyuan. Effect of Poisson's ratio on fracture toughness of composite lami-nates[J]. Fiber Composites,2001(2):27-28(in Chinese). doi: 10.3969/j.issn.1003-6423.2001.02.007