留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菠萝蜜种子淀粉可生物降解复合膜的制备及性能

王向兵 李小侠 冯航航 彭辉 马国富

王向兵, 李小侠, 冯航航, 等. 菠萝蜜种子淀粉可生物降解复合膜的制备及性能[J]. 复合材料学报, 2022, 39(6): 2907-2917. doi: 10.13801/j.cnki.fhclxb.20210909.005
引用本文: 王向兵, 李小侠, 冯航航, 等. 菠萝蜜种子淀粉可生物降解复合膜的制备及性能[J]. 复合材料学报, 2022, 39(6): 2907-2917. doi: 10.13801/j.cnki.fhclxb.20210909.005
WANG Xiangbing, LI Xiaoxia, FENG Hanghang, et al. Preparation and properties of jackfruit seeds starch biodegradable composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2907-2917. doi: 10.13801/j.cnki.fhclxb.20210909.005
Citation: WANG Xiangbing, LI Xiaoxia, FENG Hanghang, et al. Preparation and properties of jackfruit seeds starch biodegradable composite film[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2907-2917. doi: 10.13801/j.cnki.fhclxb.20210909.005

菠萝蜜种子淀粉可生物降解复合膜的制备及性能

doi: 10.13801/j.cnki.fhclxb.20210909.005
基金项目: 国家自然科学基金(21703173;42167068);甘肃省杰出青年基金项目(20JR5RA539)
详细信息
    通讯作者:

    马国富,博士,教授,博士生导师,研究方向为生态功能高分子材料 E-mail: magf@nwnu.edu.cn

  • 中图分类号: TB332

Preparation and properties of jackfruit seeds starch biodegradable composite film

  • 摘要: 针对传统塑料制品难降解、污染环境等问题,选用环境友好、可降解菠萝蜜种子淀粉(JFss)、羧甲基纤维素钠(CMC)和海藻酸钠(SA)为原料,采用涂膜工艺制备了一种可生物降解复合膜。研究JFss的用量对复合膜力学性能、耐水性、水溶性、透湿性的影响及复合膜润湿性随着时间变化规律,并对复合膜进行土埋降解性测试。采用SEM、FITR、XRD和TGA对复合膜形貌、结构和热稳定性表征。结果表明,JFss的添加使复合膜拉伸强度提高35.8%,耐水性提高4.16%,水溶性提高7.8%,水蒸汽阻隔性提高153.7%,且具有良好的润湿性、保湿性和生物降解性。另外,复合膜中CMC、SA、JFss各组分形成分子间氢键,具有良好的相容性和热稳定性。本方法复合膜制备的原料廉价、制备简单,可大规模生产,在生物降解材料领域具有潜在的应用价值。

     

  • 图  1  JFss-CMC-SA复合膜制备过程示意图

    Figure  1.  Schematic representation of the fabrication ofJFss-CMC-SA composite film

    图  2  CMC-SA (a) 和JFss-CMC-SA (b) 复合膜的拉伸强度和断裂伸长率

    Figure  2.  Tensile strength and elongation at break of CMC-SA (a) and JFss-CMC-SA (b) composite films

    图  3  CMC-SA (a) 和JFss-CMC-SA (b) 复合膜吸水、保水性

    Figure  3.  Moisture adsorption and moisture retention of CMC-SA (a) and JFss-CMC-SA (b) composite films

    图  4  CMC-SA (a) 和JFss-CMC-SA (b) 复合膜的水溶性

    Figure  4.  Water solubility of CMC-SA (a) and JFss-CMC-SA (b) composite films

    图  5  CMC-SA (a) 和JFss-CMC-SA (b) 复合膜透湿性

    Figure  5.  Water vapour transmission of CMC-SA (a) and JFss-CMC-SA (b) composite membranes

    图  6  1.5%JFss-CMC-SA复合膜在不同时间的接触角

    Figure  6.  Contact angles of 1.5%JFss-CMC-SA composite films at different time

    图  7  CMC-SA ((a)~(c)) 和1.5%JFss-CMC-SA ((a')~(c')) 复合膜分别在0天、40天、80天的SEM图像

    Figure  7.  SEM images of CMC-SA ((a)-(c)) and 1.5%JFss-CMC-SA ((a')-(c')) composite films at 0, 40 and 80 days

    图  8  CMC-SA和不同JFss-CMC-SA复合膜的降解率

    Figure  8.  Biodegradation rates of CMC-SA and differentJFss-CMC-SA composite films

    图  9  JFss、CMC-SA和1.5%JFss-CMC-SA复合膜的FTIR图谱

    Figure  9.  FTIR spectra of JFss, CMC-SA and 1.5%JFss-CMC-SA composite films

    图  10  JFss (a)、CMC-SA (b)、0.5%JFss-CMC-SA (c)、1.5%JFss-CMC-SA (d) 和2.5%JFss-CMC-SA (e) 复合膜的SEM图像

    Figure  10.  SEM images of JFss (a) and CMC-SA (b), 0.5%JFss-CMC-SA (c), 1.5%JFss-CMC-SA (d) and 2.5%JFss-CMC-SA (e) composite films

    图  11  JFss (a) 和CMC-SA、1.5%JFss-CMC-SA (b)复合膜的XRD图谱

    Figure  11.  XRD spectra of JFss (a) and CMC-SA, 1.5%JFss-CMC-SA (b) composite films

    图  12  CMC-SA和1.5%JFss-CMC-SA复合膜的TGA曲线

    Figure  12.  TGA curves of CMC-SA and 1.5%JFss-CMC-SA composite films

    表  1  羧甲基纤维素钠(CMC)-海藻酸钠(SA)复合膜各组分配比

    Table  1.   Proportions of carboxymethyl cellulose (CMC)-sodium alginate (SA) composite films

    NumberCMC/
    g
    SA/
    g
    DW/
    mL
    GLY/
    mL
    CMC∶SA
    (Mass ratio)
    1 0.24 0.96 40 0.6 1∶4
    2 0.3 0.9 40 0.6 1∶3
    3 0.4 0.8 40 0.6 1∶2
    4 0.6 0.6 40 0.6 1∶1
    5 0.8 0.4 40 0.6 2∶1
    6 0.9 0.3 40 0.6 3∶1
    7 0.96 0.24 40 0.6 4∶1
    Notes: DW—Deionized water; GLY—Glycerin.
    下载: 导出CSV

    表  2  菠萝蜜种子淀粉(JFss)-CMC-SA复合膜各组分配比

    Table  2.   Proportions of jackfruit seed starch (JFss)-CMC-SA composite films

    Sample JFss/g CMC/g SA/g
    0.5%JFss-CMC-SA 0.006 0.6 0.6
    1.0%JFss-CMC-SA 0.012 0.6 0.6
    1.5%JFss-CMC-SA 0.018 0.6 0.6
    2.0%JFss-CMC-SA 0.024 0.6 0.6
    2.5%JFss-CMC-SA 0.03 0.6 0.6
    下载: 导出CSV
  • [1] RAI P, MEHROTRA S, PRIYA S, et al. Recent advances in the sustainable design and applications of biodegradable polymers[J]. Bioresource Technology,2021,325(1):124739.
    [2] SHRIVASTAVA A, DONDAPATI S. Biodegradable compo-sites based on biopolymers and natural bast fibres: A review[J]. Materials Today: Proceedings,2021,2:652.
    [3] ZHANG Y J, LI B, ZHANG Y T, et al. Effect of degree of polymerization of amylopectin on the gelatinization properties of Jackfruit seed starch[J]. Food Chemistry,2021,107(11):268-283.
    [4] 钟旋, 简秀梅, 蒋恩臣, 等. 稻壳生物炭/醋酸酯淀粉-尿素复合膜的结构和性能[J]. 复合材料学报, 2019, 36(7):1746-1752.

    ZHONG Xuan, JIAN Xiumei, JIANG Enchen, et al. Structure and properties of rice husk biochar/acetate starch-ureastarch composite films[J]. Acta Materiae Compositae Sinica,2019,36(7):1746-1752(in Chinese).
    [5] ABID U, GILL Y Q, IRFAN M S, et al. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers[J]. International Journal of Biological Macromolecules,2021,181:1-29. doi: 10.1016/j.ijbiomac.2021.03.057
    [6] LIU D, ZHAO K Y, QI M, et al. Preparation of protein molecular-imprinted polysiloxane membrane using calcium alginate film as matrix and its application for cell culture[J]. Polymers (Basel),2018,10:170. doi: 10.3390/polym10020170
    [7] GALIANO F, BRICENO K, MARINOA T, et al. Advances in biopolymer-based membrane preparation and applications[J]. Journal of Membrane Science,2018,564(5):562-586.
    [8] ZHANG Y J, ZHANG Y T, XU F, et al. Structural characterization of starches from chinese Jackfruit seeds (artocarpus heterophyllus lam)[J]. Food Hydrocolloids,2018,80:141-148. doi: 10.1016/j.foodhyd.2018.02.015
    [9] ZHANG Y T, ZHANG Y J, LI B, et al. In vitro hydrolysis and estimated glycemic index of Jackfruit seed starch prepared by improved extrusion cooking technology[J]. International Journal of Biological Macromolecules,2019,121:1109-1117. doi: 10.1016/j.ijbiomac.2018.10.075
    [10] SURYADEVARA V, LANKAPALLI S R, DANDSA L H, et al. Studies on Jackfruit seed starch as a novel natural superdisintegrant for the design and evaluation of irbesartan fast dissolving tablets[J]. Integrative Medicine Research,2017,6:280. doi: 10.1016/j.imr.2017.04.001
    [11] ZHANG Y J, HU M J, ZHU K X, et al. Functional properties and utilization of Artocarpus Heterophyllus Lam seed starch from new species in China[J]. International Journal of Biological Macromolecules,2018,107:1395-1405. doi: 10.1016/j.ijbiomac.2017.10.001
    [12] ZHANG Y T, LI B, ZHANG Y J, et al. Effect of degree of polymerization of amylopectin on the gelatinization properties of Jackfruit seed starch[J]. Food Chemistry,2019,289(3):152-159.
    [13] ZHU H M, ZHANG Y J, TIAN J W, et al. Effect of a new shell material-Jackfruit seed starch on novel flavor microcapsules containing vanilla oil[J]. Industrial Crops and Products,2018,112(7):47-52.
    [14] ZHANG Y J, ZUO H Y, XU F, et al. The digestion mechanism of Jackfruit seed starch using improved extrusion cooking technology[J]. Food Hydrocolloids,2021,110(6):106154.
    [15] JIANG T Y, DUAN Q F, ZHU J, et al. Starch-based biodegradable materials: Challenges and opportunities[J]. Advanced Industrial and Engineering Polymer Research,2020,3(1):8-18. doi: 10.1016/j.aiepr.2019.11.003
    [16] BONOMO R C F, SANTOS T A, SANTOS L S, et al. Effect of the incorporation of lysozyme on the properties of Jackfruit starch films[J]. Journal of Polymers and the Environment,2018,26:508. doi: 10.1007/s10924-016-0902-4
    [17] SANTANA R F, BONOMO R C F, GANDOLFI O R R, et al. Characterization of starch-based bioplastics from Jackfruit seed plasticized with glycerol[J]. Journal of Food Science and Technology,2018,55:278.
    [18] WANG R J, LI X J, REN Z Y, et al. Characterization and antibacterial properties of biodegradable films based on CMC, mucilage from dioscorea opposita Thunb. and Ag nanoparticles[J]. International Journal of Biological Macromolecules,2020,163:2189-2198. doi: 10.1016/j.ijbiomac.2020.09.115
    [19] 陈港, 胡稳, 朱朋辉, 等. 高透明羧甲基纤维素/纤维素纤维复合薄膜的制备及其力学性能[J]. 复合材料学报, 2018, 35(6):1574-1581.

    CHEN Gang, HU Wen, ZHU Penghui, et al. Preparation and mechanical properties of highly transparent carboxymethyl cellulose/cellulose fiber composite films[J]. Acta Materiae Compositae Sinica,2018,35(6):1574-1581(in Chinese).
    [20] 中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, In section and Quarantine of the People’s Republic of China. Plastics-Determination of tensile properties: GB/T 1040—2006[S]. Beijing: Standards Press of China, 2006(in Chinese)
    [21] 国家技术监督局. 漆膜耐水性测定法: GB/T 1733—93[S]. 北京: 中国标准出版社, 1993.

    The State Bureau of Quality and Technical Supervision. Determination of resistance to water of films: GB 1733—93[S]. Beijing: China Standards Press, 1993(in Chinese).
    [22] ASTM. Standard test methods for water vapor transmission of materials: ASTM E96/E96M—05[S]. West Conshohocken: American Society for Testing and Materials, 2005.
    [23] KONG W J, LI Q, LI X D, et al. A biodegradable biomass-based polymeric composite for slow release andwater retention[J]. Journal of Environmental Management,2019,230:190-198.
    [24] JAYARAMUDU J, REDDY G S M, VARAPRASAD K, et al. Preparation and properties of biodegradable films from sterculia urens short fiber/cellulose green composites[J]. Carbohydrate Polymers,2013,93:622. doi: 10.1016/j.carbpol.2013.01.032
    [25] CHEN Q F, SHI Y H, CHEN G X, et al. Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent[J]. International Journal of Biological Macromolecules,2020,142:846-854. doi: 10.1016/j.ijbiomac.2019.10.024
    [26] BADIGER H, SHUKLA S, KALYANI S, et al. Thin film composite sodium alginate membranes for dehydration of acetic acid and isobutanol[J]. Journal of Applied Polymer Science,2014,131(6):131.
    [27] NGUYEN VU H P, LUMDUBWONG N. Starch behaviors and mechanical properties of starch blend films with different plasticizers[J]. Carbohydrate Polymers,2016,154:112-120. doi: 10.1016/j.carbpol.2016.08.034
    [28] SIFUENTES-NIEVES I, FLORES-SILVA P C, GALLARDO-VEGA C, et al. Films made from plasma-modified corn starch: chemical, mechanical and barrier properties[J]. Carbohydrate Polymers,2020,237(2):116103.
    [29] MARAN J P, SIVAKUMAR V, THIRUGNANASAMBANDHAM K, et al. Modeling and analysis of film composition on mechanical properties of maize starch based edible films[J]. International Journal of Biological Macromolecules,2013,62:565. doi: 10.1016/j.ijbiomac.2013.09.027
    [30] CHENG S, LIU X M, ZHEN J H, et al. Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application[J]. Carbohydrate Polymers,2019,225(8):115214.
    [31] WANG Q Q, ZHANG G Q, ZHANG L, et al. Mechanical properties and water absorption of alginate/hydroxypropyl methyl cellulose blend membranes with semi-interpenetrating network[J]. Fibers Polymers,2020,21:1403. doi: 10.1007/s12221-020-9854-3
    [32] FLORENCIAl V, LOPEZ O V, GARCIA M A,. Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch[J]. Composites Part B: Engineering,2020,182:107653.
    [33] XU C J, CHEN C, WU D F. The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties[J]. Carbohydrate Polymers,2018,182:115. doi: 10.1016/j.carbpol.2017.11.001
    [34] BAHREMAND A H, MOUSAVI S M, AHMADPOUR A, et al. Biodegradable blend membranes of poly (butylene succinate)/cellulose acetate/dextran: Preparation, characterization and performance[J]. Carbohydrate Polymers,2017,173:497. doi: 10.1016/j.carbpol.2017.06.010
    [35] SINTIM H Y, BARY A I, HAYES D G, et al. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils[J]. Science of the Total Environment,2020,727:138668. doi: 10.1016/j.scitotenv.2020.138668
    [36] 郑霞, 李新功, 吴义强, 等. 竹纤维/聚乳酸可生物降解复合材料自然降解性能[J]. 复合材料学报, 2014, 31(2):363-367.

    ZHENG Xia, LI Xingong, WU Yiqiang, et al. Natural degradation properties of bamboo fibers/polylactic acid biodegradable composites[J]. Acta Materiae Compositae Sinica,2014,31(2):363-367(in Chinese).
    [37] VONON BORRIE-MEDRANOS E, JAIME-FONSECA M R, AGUILAR-MENDEZ M A, et al. Starch-guar gum extrudates: microstructure, physicochemical properties and in-vitro digestion[J]. Food Chemistry,2016,194:891. doi: 10.1016/j.foodchem.2015.08.085
    [38] ANDREUCCETTI C, CARVALHO R A, GALICIA-GARCÍA T, et al. Effect of surfactants on the functional properties of gelatin-based edible films[J]. Journal of Food Engineering,2011,103:129. doi: 10.1016/j.jfoodeng.2010.10.007
    [39] LAN W T, ZHANG R, JI T T, et al. Improving nisin production by encapsulated lactococcus lactis with starch/carboxymethyl cellulose edible films[J]. Carbohydrate Polymers,2021,251:117062.
    [40] ZHANG Y J, ZHU K X, HE S Z, et al. Characterizations of high purity starches isolated from five different Jackfruit Cultivars[J]. Food Hydrocolloids,2016,52:785. doi: 10.1016/j.foodhyd.2015.07.037
    [41] WANG Z Y, QIAO X Y, SUN K. Rice straw cellulose nanofibrils reinforced poly(vinyl alcohol) composite films[J]. Carbohydrate Polymers,2018,197(4):442-450.
    [42] TAVARES K M, CAMPOS A D, MITSUYUKI M C, et al. Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties[J]. Carbohydrate Polymers,2019,223(6):115055.
    [43] TAVARES K M, CAMPOS A D, LUCHESI B R, et al. Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films[J]. Carbohydrate Polymers,2020,246(2):116521.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1195
  • HTML全文浏览量:  658
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-08-01
  • 录用日期:  2021-08-30
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回