Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance
-
摘要: 针对太阳能转化应用,溴氧化铋(BiOBr)光催化性能优异,但其光热性能及应用有待研究开发。首先采用水热法制备了BiOBr纳米片粉末,然后利用硼氢化钠(NaBH4)对BiOBr粉末进行化学还原。样品表征结果显示,随着硼氢化钠浓度增加,致密的BiOBr纳米片首先转变为BiOBr/Bi复合多孔纳米片,然后转变为金属Bi多孔纳米片。金属Bi及多孔结构的形成有助于提升材料的光吸收性能及比表面积。经过20 g·L−1 NaBH4溶液还原得到的BiOBr/Bi多孔纳米片具有最优的光吸收性能和比表面积,且润湿性能优异。光热驱动水蒸发测试结果表明,20 g·L−1 NaBH4还原得到的BiOBr/Bi复合多孔纳米片具有最优的光热驱动水蒸发性能,水蒸发速率可达2.18 kg·m−2·h−1,为纯BiOBr纳米片的2倍。Abstract: With regarding to the solar energy conversion applications, BiOBr demonstrated superior photocatalytic property, while its photothermal property and application need further investigation and exploitation. Firstly, BiOBr nanosheets were prepared by hydrothermal method, and then the BiOBr nanopowders were chemically reduced by sodium borohydride. The characterization results show that, with the concentration of sodium borohydride increased, the dense BiOBr nanosheets initially transform into BiOBr/Bi composite porous nanosheets, and then metallic Bi porous nanosheets. The formation of metallic Bi and porous structure is benefit for improving the light absorption ability and specific surface area. The BiOBr/Bi composite porous nanosheets, which are obtained by reduction using 20 g·L−1 NaBH4 solution, possess the best light absorption ability and specific surface area, and the wetting property is also excellent. It therefore demonstrate the best interfacial photothermal driven water evaporation performance. The water evaporation rate reach to 2.18 kg·m−2·h−1, which is twice that of BiOBr nanosheets.
-
图 9 负载有BiOBr和BiOBr/Bi样品滤膜的光热驱动水蒸发性能对比:(a)水蒸发量-时间关系图;(b)水蒸发速率对比图;(c)滤膜表面温度-时间关系图;(d) 30 min时各滤膜表面的红外热成像照片
Figure 9. Photothemal water evaporation properties for filter membranes with BiOBr and BiOBr/Bi samples: (a) Evaporated water-time diagram; (b) Comparison of water evaporation rates; (c) Surface temperature of filter membranes-time diagram; (d) Infrared thermal images of each membrane surface at 30 min
表 1 BiOBr和BiOBr/Bi样品中BiOBr和Bi的晶粒大小
Table 1. Grain size of BiOBr and Bi in BiOBr and BiOBr/Bi samples
BiOBr BiOBr/Bi-5 BiOBr/Bi-20 BiOBr/Bi-50 BiOBr/Bi-100 BiOBr grain size/nm 27.28 23.12 9.47 - - Bi grain size/nm - - 19.52 18.66 17.87 -
[1] TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3:1031-1041. doi: 10.1038/s41560-018-0260-7 [2] LIU Y, YU S, FENG R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials,2015,27(17):2768-2774. doi: 10.1002/adma.201500135 [3] RAZA A, LU J Y, ALZAIM S, et al. Novel receiver-enhancced solar vapor generation: Review and perspectives[J]. Energies,2018,11(1):253. [4] ZHENG Z, LI H, ZHANG X, et al. High-absorption solar steam device comprising Au@Bi2MoO6-CDs: Extraordinary desalination and electricity generation[J]. Nano Energy,2020,68:104298. doi: 10.1016/j.nanoen.2019.104298 [5] ZHU G, XU J, ZHAO W, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8(46):31716-31721. [6] ZHOU L, TAN Y, JI D, et al. Self-assembly of highly efficient, broad-band plasmonic absorbers for solar steam generation[J]. Science Advances,2016,2(4):1-8. [7] CHANG C, CHAO P, LIN K. Flower-like BiOBr decorated stainless steel wire-mesh as immobilized photocatalysts for photocatalytic degradation applications[J]. Applied Surface Science,2019,494:492-500. doi: 10.1016/j.apsusc.2019.07.203 [8] XIONG X, DING L, WANG Q, et al. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed{010} face[J]. Applied Catalysis: Environmental,2016,188:283-291. doi: 10.1016/j.apcatb.2016.02.018 [9] ZHANG H, YANG Y, ZHOU Z, et al. Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed{102}Facets[J]. Journal of Physical Chemistry C,2014,118(26):14662-14669. [10] LIU T, ZHANG Y, SHI Z, et al. BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater[J]. Journal of Colloid and Interface Science,2021,587:633-643. doi: 10.1016/j.jcis.2020.11.020 [11] GUO W, QIN Q, GENG L, et al. Morphology-controlled preparation and plasmonenhanced photocatalytic activity of Pt-BiOBr heterostructures[J]. Journal of Hazardous Materials,2016,308:374-385. doi: 10.1016/j.jhazmat.2016.01.077 [12] CHENG H, HUANG B, WANG P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications,2011,47(25):7054-7056. doi: 10.1039/c1cc11525a [13] GAO Z, YAO B, JI L. et al. Effect of reducing agent NaBH4 on photocatalytic properties of Bi/BiOBr/Bi2WO6 composites[J]. Chemistry Select,2019,4(34):10065-10071. [14] LIU Z, WANG Q, TAN X, et al. Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 NTs for the enhanced photoelectrocatalytic degradation of pollutants[J]. Journal of Alloys and Compounds,2019,815:152478. [15] CAI Z, ZHONG J, LI J, et al. Oxygen vacancies enriched BiOBr with boosted photocatalytic behaviors[J]. Inorganic Chemistry Communications,2021,126:108450. doi: 10.1016/j.inoche.2021.108450 [16] GAO M, ZHANG D, PU X, et al. Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B[J]. Separation and Purification Technology,2015,154:211-216. doi: 10.1016/j.seppur.2015.09.063 [17] FU S, ZHU H, HUANG Q, et al. Construction of hierarchical CuBi2O4/Bi/BiOBr ternary heterojunction with Z-scheme mechanism for enhanced broad-spectrum photocatalytic activity[J]. Journal of Alloys and Compounds,2021,878:160372. [18] 赵斌, 林琳, 陈超, 等. 二氧化钛/钛酸盐纳米粉体的晶体生长机理研究进展[J]. 无机材料学报, 2013, 28(7):683-690.ZHAO Bin, LIN Lin, CHEN Chao, et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials[J]. Journal of Inorganic Materials,2013,28(7):683-690(in Chinese). [19] 宋靖珂, 王学江, 王佳忆, 等. 飘浮型Ag2CrO4-g-C3N4-TiO2/膨胀珍珠岩可见光催化材料除藻性能[J]. 复合材料学报, 2021, 38(6):1914-1921.SONG Jingke, WANG Xuejiang, WANG Jiayi, et al. Photocatalytic inactivation of algae using floating visible-light-responsive photocatalyst Ag2CrO4-g-C3N4-TiO2/modified expanded perlite[J]. Acta Materiae Compositae Sinica,2021,38(6):1914-1921(in Chinese). [20] CAI L. Preparation of mesoporous TiO2 and Pt-doped TiO2 fibers with collagen fiber as a template and their performance for photocatalytic degradation of black liquor[J]. Journal of the Chinese Ceramic Society,2012,40:1479-1494. [21] WU B, CHERN M, LEE H. Size-controllable synthesis and bandgap modulation of single-layered RF-sputtered bismuth nanoparticles[J]. Nanoscale Research Letters,2014,9:249. doi: 10.1186/1556-276X-9-249 [22] XIA J, YIN S, LI H, et al. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Transactions,2011,40(19):5249-5258. doi: 10.1039/c0dt01511c [23] ZHANG W, CHANG Q, XUE C, et al. A gelation-stabilized strategy toward photothermal architecture design for highly efficient solar water evaporation[J]. Solar RRL,2021,5(5):2100113. [24] ZHOU X, ZHAO F, GUO Y, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances,2019,5(6):eaaw5484. doi: 10.1126/sciadv.aaw5484 [25] SUN Y, ZONG X, QU D, et al. Water management by hierarchical structures for highly efficient solar water evaporation[J]. Journal of Materials Chemistry A,2021,9(11):7122-7128. doi: 10.1039/D1TA00113B [26] WANG J, LI Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2016,29(3):1603730.1-1603730.6. [27] PANG Y, ZHANG J, MA R, et al. Solar-thermal water evaporation: A review[J]. ACS Energy Letters,2020,5(2):437-456. doi: 10.1021/acsenergylett.9b02611